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Topological and system‑level 
protein interaction network (PIN) 
analyses to deduce molecular 
mechanism of curcumin
Anupam Dhasmana1,2, Swati Uniyal3, Anukriti2, Vivek Kumar Kashyap1, Pallavi Somvanshi  4,  
Meenu Gupta2, Uma Bhardwaj2, Meena Jaggi1, Murali M. Yallapu1, Shafiul Haque5 & 
Subhash C. Chauhan1*

Curcumin is an important bioactive component of turmeric and also one of the important natural 
products, which has been investigated extensively. The precise mode of action of curcumin and its 
impact on system level protein networks are still not well studied. To identify the curcumin governed 
regulatory action on protein interaction network (PIN), an interectome was created based on 788 
key proteins, extracted from PubMed literatures, and constructed by using STRING and Cytoscape 
programs. The PIN rewired by curcumin was a scale-free, extremely linked biological system. MCODE 
plug-in was used for sub-modulization analysis, wherein we identified 25 modules; ClueGo plug-in was 
used for the pathway’s enrichment analysis, wherein 37 enriched signalling pathways were obtained. 
Most of them were associated with human diseases groups, particularly carcinogenesis, inflammation, 
and infectious diseases. Finally, the analysis of topological characteristic like bottleneck, degree, 
GO term/pathways analysis, bio-kinetics simulation, molecular docking, and dynamics studies were 
performed for the selection of key regulatory proteins of curcumin-rewired PIN. The current findings 
deduce a precise molecular mechanism that curcumin might exert in the system. This comprehensive 
in-silico study will help to understand how curcumin induces its anti-cancerous, anti-inflammatory, 
and anti-microbial effects in the human body.

Naturally derived compounds possess enormous potential for medicinal and therapeutic actions for the manage-
ment of diseases and curcumin is one of the most suitable examples among them. Curcumin is a yellowish-orange 
polyphenolic compound of turmeric/haldi (Curcuma longa), a herb often found in curry powder. The reason 
for the selection of curcumin for this study is, it is one of the important and thoroughly investigated naturally 
occurring bioactive compound, but its precise mode of action is still unclear. The global curcumin market was 
valued at $58.4 million in 2019 and is projected to reach $104.19 million by 2025. (https​://www.allie​dmark​
etres​earch​.com/press​-relea​se/curcu​min-marke​t.html & https​://www.grand​viewr​esear​ch.com/indus​try-analy​sis/
turme​ric-extra​ct-curcu​min-marke​t). Earlier studies clearly exhibit the highly pleiotropic actions of curcumin as 
anti-cancerous1,2, anti-inflammatory2,3, anti-microbial4 , anti-oxidant5, cardio-protective6, radio-protective7 and 
many more that makes it an ideal ingredient in different medical and food applications. Curcumin’s market is 
expected to witness a huge development due to growth in consumer awareness regarding its therapeutic proper-
ties, and that’s why an intense scientific study are urgently needed to explore the precise mechanistic action of 
curcumin. Many research studies have been published in the past dealing with the mode of action of curcumin 
yet inconclusive, and still the puzzle remains unsolved. This pleiotropic potential of curcumin can be endorsed 
to its capability to interact with a huge interactome of biomolecular targets of cellular system that participate 
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in multiple signalling pathways8. Thus, it is of huge interest to advert the key regulatory targets of curcumin in 
various patho-biological conditions.

Hartwell et al. (1999), have published an influential article entitled "From molecular to modular cell biology" 
on the new challenges of modern biology and pointed out an issue on the importance of constructing a general 
framework in which biological networks could be understood as a part of a complex modular organization of 
biomolecules of cellular system9. In modern molecular biology, antireductionism or zoom out approach should 
be followed by biologist, it should not be only focused on functioning of individual biomolecular components, 
this kind of approach leads our vision towards the reductionism or zoom in approach. The anti-reductionism 
view provides a bigger picture of biomolecular components system and how these components are intercon-
nected through a complex web system of interactions, directing to a function of a living cell. To solve this kind of 
complex proteome/genome networking, researchers generally use system biology and graph theory approaches 
and principles. Systems biology is an interdisciplinary field that has capacity to bridges the gap between in vitro 
and in vivo models by the data produced from omics and to reveal the functional perceptive of all biomolecules 
present in any biological model44. Whereas, the study of a complex network called graph theory, which is an area 
of a branch of discrete mathematics and simplify the complex biological problems43.

The whole proteome is involved in important physiological and signalling tasks in the cellular system, 
and every expression of the protein modulates the whole interactome. They rarely act alone and mostly form 
dynamic protein–protein interaction (PPI) networks to achieve multi-functionality and various cellular signal-
ling pathways10,11. PPIs are fundamental action for many cellular pathways12,13.

Whereas Gene ontology (GO) offers a compilation of well-defined biological processes, molecular functions 
and cellular components of gene products. GO enrichment is well accepted statistical scheme utilized to spot 
mutual links between proteins and annotations to GO14. Keeping the potential of above stated in silico approaches 
in view, topological parameters, network modulation of big interactions and GO investigation might offer a 
competent technique to exemplify the biomolecular mechanism of curcumin.

The background of this article is based on the identification and elucidation of the key regulatory proteins 
among the interactome of curcumin that may play critical role in whole communication path/or process. Topo-
logical and system-level protein interaction network approaches were applied to identify the most significant 
proteins and to analyse the molecular pharmacology of curcumin. PubMed database was screened and extracted 
for the biomolecular targets sets of curcumin. The protein interaction networks (PINs) of curcumin were con-
structed by STRING followed by Cytoscape programs, different network properties and module were analysed 
based on graph theory parameters like degree, clustering co-efficient, betweeness centrality distribution and 
most important bottle neck. The modulation was done using MCODE and seed proteins were identified, and 
further pathway enrichment was performed using ClueGO. Molecular docking simulation was performed to 
find the best binding affinity of curcumin with the most probable and key regulatory biomolecular targets of 
curcumin. At last, bio-kinetic and molecular dynamic analysis were executed to find the kinetic behaviour of 
the key regulatory proteins in the absence and presence of curcumin followed by molecular dynamics to identify 
the best and most stable binding confirmation of the complex (key regulatory protein + curcumin). Overall, the 
findings of this study will aid in providing a more clear and comprehensive reference for therapeutic application 
of curcumin in a systemic model.

Results
Construction of the network.  To provide an extensive insight view in the mechanistic action of curcumin 
in biological system, the network-based exploration was accomplished as shown in Supplementary Fig. 1. PES-
CADOR text mining PubMed web server with the key words "Curcumin, Angiogenesis, Antioxidant, Apopto-
sis, Cancer, Cell Cycle, Cell Division, Free Radicals, Immunity, Inflammation, Inflammatory Response, Malignant, 
Migration, Neoplastic, Tumor, Wound healing” were used to construct the abstract library that appraised the 
upshot of curcumin on gene/protein expression. A total of 2,228 reports were found from the above repository, 
and a total of 788 curcumin-altered genes/proteins were derived. STRING database was employed for generat-
ing the protein interaction network rewired by curcumin with 888 nodes (788 seed proteins & 100 connector 
proteins) (Supplementary Fig. 2). Those 888 proteins covered 30 different molecular functions (Supplementary 
Fig. 3), 62 different pathways (Fig. 1), 6,918 (physical or functional interactions) with an average node degree 
1.56, average local clustering coefficient 0.479 and PPI enrichment p value < 1.0e−16.

Topological features of interactome.  The PIN of any complex cellular system can be accessed from 
its topology and mutual connections. The topology can precisely expose the connectivity and interactions of 
biomolecules involved in diverse cellular and metabolic pathways37,45. In the present study, the protein/gene 
communication pathways were modified by curcumin, and Cytoscape and Network analyser plugin were used 
for topological analyses. Following the analysis by network analyser of Cytoscape, the number of links with each 
biomolecule called its ‘node degree’ was analysed. Node degree distribution is generally applied for differen-
tiating the random and scale-free network topologies, whereas biological/cellular systems are generally scale-
free19,50. In this study the degree exponent was calculated as 1.171 through fitting the node degree distribution 
curve (Fig. 2). If the number of a degree exponent is consistent with less than two, then it clearly signifies as a 
known biological network(s)45.

Whereas the shortest path length for a PIN depicts the quantity of edges along the shortest paths among two 
nodes. On other side, closeness centrality is the inverse of the average shortest path (Fig. 3). These constraints 
specify the information transport competence and the overall navigability of the PIN39,45. The characteristic 
path length for curcumin-rewired PIN was 3.188. Clustering coefficient represents the closeness of nodes and 
neighbours and the hierarchical modularity of the PIN, and is used to spot the possible functional modules and 



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:12045  | https://doi.org/10.1038/s41598-020-69011-0

www.nature.com/scientificreports/

uncover the molecular complexes or signalling pathways in the PIN19,22,45. For the curcumin-rewired network, 
the clustering coefficient distribution was determined as 0.472 (Fig. 4).

Figure 1.   Classification of 62 enriched KEGG pathways for human diseases obtained during the PPI of 
curcumin associated proteins list of pathways was generated by STRING.

Figure 2.   Node degree distribution. A power law of the form y = 258.52x − 1.171 was fitted (R-squared = 0.715) 
Graph generated by Cytoscape plugin Network Analyzer.
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Analysis of sub‑clustering and gene ontology enrichment.  MCODE plugin was used to recognize 
25 modules from the PIN rewired by curcumin, (Supplementary Fig. 4). Red and yellow nodes indicated seed 
nodes and connector proteins, respectively.

Modularization was performed to remove the noise (yellow connector proteins from the whole curcumin 
interactome), screening of a huge data set for selecting the most important seed proteins in interactome and 
enrich the biomolecular pathways of the selected seed proteins. By using MCODE plugin in Cytoscape, the total 
curcumin-rewired network was divided into 25 modules. ClueGO plugin was used to determine the biological 

Figure 3.   Characteristics Path length distribution is 3.188. Graph generated by Cytoscape plugin Network 
Analyzer.

Figure 4.   Clustering coefficient distribution is 0.472. Graph generated by Cytoscape plugin Network Analyzer.
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function of each module. A total of 37 pathways distributed in 25 modules and 195 seed proteins were recognized 
(Supplementary Table 1a and b gives the description of all 195 seed proteins with their impacts in the presence 
of curcumin).

PIN construction, topological and GO analysis of final selected seed proteins.  Finally selected 
195 curcumin-altered seed proteins were evaluated again by using STRING database and these seed proteins 
were integrated into the total PIN rewired by curcumin with 295 nodes (195 seed proteins & 100 connector 
proteins) (Fig. 5). The PIN generated string network setting was ‘evidence based’, extracting furthermore infor-
mation through ‘experiments and curated databased’. We have selected the ‘high confidence score option of 0.9′ 
and have selected ‘50–50 interactors option in 1st and 2nd shells’. Following are the statistical details of curcumin 
rewired PIN: the number of nodes were 295 (195 seed proteins and 100 connectors), average node degree was 
17.7, average clustering coefficient was 0.641 and PPI enrichment p-value was < 1.0e−16. Cytohubba plugin of 
Cytoscape was used for the topological analysis like bottle neck, betweenness, closeness, clustering coefficient 
and degree. By using the above said parameters top 10 bottle neck scored, 22 (21 seed proteins and 1 connector 
protein ’RB1’) proteins were selected (their clustering coefficient was less than 0.5) as shown in Table 1.

Finally, the key 22 proteins underwent for GO functional annotation and enrichment analysis. Gene Ontol-
ogy (GO) enrichment analysis was performed by the ClueGO plugin (version 2.5.2) according to KEGG and 
Reactome database (Fig. 6 and Table 2). From this ClueGO plugin study, 17 GO groups were generated (from 0 
to 16), with their GO ID, GO term and associated genes.

Molecular docking of curcumin with key proteins.  Auto Dock 4.0, was used for the molecular dock-
ing of final 12 possible key proteins, which were screened on the basis of each proteins participated in max no. 
of pathways. MAPK1/Erk2 showed the highest and strongest binding affinity with curcumin (− 8.43 kcal/Mol), 
followed by STAT1 (− 7.68 kcal/Mol), KRAS (− 7.48 kcal/Mol), P53 (− 6.57 kcal/Mol), CREBBP (− 6.29 kcal/
Mol), RELA (− 6.07 kcal/Mol), AKT1 (− 6.04 kcal/Mol), CASP8 (− 5.81Kcal/Mol), CREB1 (− 5.73 kcal/Mol), 
NFKB1 (− 5.72 kcal/Mol), RB1 (− 5.34 kcal/Mol) and SRC (− 4.85 kcal/Mol) as shown in Supplementary Table 2.

Figure 5.   Final selected PIN of modulated seed proteins and connector proteins (Figure generated from 
Cytoscape) obtained from STRING. 
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Molecular dynamics simulation analysis of MAPK1 and curcumin.  Molecular dynamics simula-
tions of the docked MPAK1-curcumin complexes were carried out to analyse the effect of curcumin on confor-
mational dynamics of MAPK1 protein in curcumin bound form. The dynamic behaviour of curcumin bound 
MAPK1 complex during molecular dynamics simulation was analysed for the stability via RMSD calculations, 
which showed that the system reached to a perfect equilibrium at around 25,000 pico-second and remains stable 
till the end of the simulation with minimal fluctuations of 0.05 nm (Fig. 7A). Per residue amino acid flexibility 
analysis was done to find the effect of curcumin binding on MAPK1 flexibility40. Root mean square fluctuation 
(RMSF) of each amino acid residue was calculated with c-alpha atoms 41 and the RMSF curves showed that cur-
cumin bound MAPK1 residues had lower RMSF values, which indicated the stable binding (Fig. 7B). Figure 7C 
and D represents hydrogen and hydrophobic interactions before and after the molecular dynamic simulations.

Inhibitory analysis of curcumin on the bio‑kinetic simulation of MAPK cascade.  For the con-
struction of interacting molecules of MAPK cascade and inhibitory impact of curcumin, Cell Designer was used 

Table 1.   10 best bottle neck scores of seed and connector proteins. The selection was done on the basis of 
higher bottle neck score and clustering coefficient (less than 0.5, these proteins were considered as a date hub 
proteins).

S. No Name Bottle neck Betweenness Closeness Clustering coefficient Degree

1 CREBBP 52 13,223.35 155.8333 0.15837 50

2 TP53 22 7,640.317 148.4167 0.17639 38

3 RELA 14 4,458.032 149.0833 0.20863 51

4 MAPK1 13 4,779.75 146.5 0.18316 47

5 NFKB1 11 3,211.738 144.8333 0.22304 44

6 CYP1A1 10 4,831.488 110.8667 0.43137 18

7

SRC 9 2,899.138 135.6667 0.17424 33

BRCA1 9 1537.711 128.1 0.38413 36

EDN1 9 684.0157 123.8333 0.29412 18

ATR​ 9 647.5952 124.0667 0.38391 30

8
RB1 7 2,625.42 142.8333 0.29445 38

SP1 7 391.5314 130.6667 0.34762 21

9

CASP8 6 2,299.261 123.3667 0.4152 19

STAT1 6 1,012.291 130.1667 0.36594 24

CREB1 6 597.4255 121.6667 0.30882 17

10

AKT1 5 2,328.794 137.4167 0.17094 27

IL8 5 2,227.319 121.1667 0.4058 24

CDH1 5 1,162.138 113 0.34848 12

KRAS 5 917.6512 120.8333 0.25692 23

SYK 5 796.2624 123.6667 0.24265 17

CCR5 5 669.6932 108.3667 0.42222 10

HDAC3 5 471.1578 124.3333 0.35263 20

Figure 6.   ClueGO results of GO functional enrichment of key proteins.
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Table 2.   GO functional group analysis with their associated genes (data generated by ClueGO plugin).

GOID GO term GO groups Associated genes found

KEGG:04137 Mitophagy Group00 [KRAS, RELA, SP1, SRC, TP53]

R-HSA:10906 Intrinsic pathway for apoptosis Group01 [AKT1, CASP8, TP53]

KEGG:05167 Kaposi’s sarcoma-associated herpes virus infection Group02 [AKT1, CASP8, CCR5, CREB1, CREBBP, CXCL8, KRAS, MAPK1, NFKB1, RB1, RELA, 
SRC, STAT1, SYK, TP53]

KEGG:04210 Apoptosis Group03 [AKT1, CASP8, KRAS, MAPK1, NFKB1, RELA, TP53]

KEGG:04926 Relaxin signalling pathway Group04 [AKT1, CREB1, EDN1, KRAS, MAPK1, NFKB1, RELA, SRC]

KEGG:05161 Hepatitis B Group05 [AKT1, CASP8, CREB1, CREBBP, CXCL8, KRAS, MAPK1, NFKB1, RB1, RELA, SRC, 
STAT1, TP53]

KEGG:05218 Melanoma Group06 [AKT1, CDH1, KRAS, MAPK1, RB1, TP53]

KEGG:04919 Thyroid hormone signalling pathway Group07 [AKT1, CREBBP, HDAC3, KRAS, MAPK1, SRC, STAT1, TP53]

R-HSA:8940973 RUNX2 regulates osteoblast differentiation Group08 [HDAC3, MAPK1, RB1, SRC]

KEGG:05203 Viral carcinogenesis Group09 [CASP8, CCR5, CREB1, CREBBP, HDAC3, KRAS, MAPK1, NFKB1, RB1, RELA, SRC,  
SYK, TP53]

KEGG:04066 HIF-1 signalling pathway Group10 [AKT1, CREBBP, EDN1, MAPK1, NFKB1, RELA]

KEGG:05165 Human papilloma virus infection Group11 [AKT1, ATR, CASP8, CREB1, CREBBP, HDAC3, KRAS, MAPK1, NFKB1, RB1, RELA, 
STAT1, TP53]

KEGG:05212 Pancreatic cancer Group12 [AKT1, KRAS, MAPK1, NFKB1, RB1, RELA, STAT1, TP53]

R-HSA:8878166 Transcriptional regulation by RUNX2 Group13 [AKT1, HDAC3, MAPK1, RB1, SRC, STAT1]

KEGG:05215 Prostate cancer Group14 [AKT1, CREB1, CREBBP, KRAS, MAPK1, NFKB1, RB1, RELA, TP53]

KEGG:04062 Chemokine signalling pathway Group15 [AKT1, CCR5, CXCL8, KRAS, MAPK1, NFKB1, RELA, SRC, STAT1]

KEGG:05152 Tuberculosis Group16 [AKT1, CASP8, CREB1, CREBBP, MAPK1, NFKB1, RELA, SRC, STAT1, SYK]

Figure 7.   (A) Backbone RMSD of curcumin bound MAPK1 during 50000 ps molecular dynamics trajectory; 
(B) Per residue fluctuations of curcumin bound MAPK1 during 50000 ps molecular dynamics; (C) Pre-MD 
interactions of curcumin with MAPK1; (D) Post-MD interactions of curcumin with MAPK1.
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as shown in Fig. 8. To carry out bio-kinetics study in the presence/absence of curcumin, each entity values were 
assigned in the form of concentration, which were mentioned in BioModel database (BIOMD0000000009); 
20 µM concentration was assigned for curcumin42 and the whole kinetics was applied for the entire pathway 
using mass action kinetics equation. The current study predicted the role of entities involved in the activation 
MAPK cascade from its inactive MAPK1/Erk2 (conc. 1.2 µM/L in 0 s, 1.19995 µM/L in 1.5 s and 0.0010782 µM/L 
in 150 s) to active phosphorylated MAPK1/Erk2 form (0.981202 µM/L in 150 s) (Fig. 9) and changes in MAPK 
bio-kinetic, followed by the inhibition of MAPK1/Erk2 (conc. 1.2 µM/L in 0 s, 0.0602204 µM/L in 1.5 s and 
0.000465626 µM/L in 150 s) and inhibited phosphorylated MAPK1/Erk2 (0.0331032 µM/L in 150 s) in the pres-
ence of curcumin (20 µM) using systems biology approach (Fig. 10). X-axis symbolizes the transition time and 
Y-axis concentration of the entities.

Discussion
In the present study, with the help of text mining software PESCADOR, we have tried to extract out all the pub-
lished genes/proteins that have been reported to show alterations on interaction with curcumin. Using graph 
theory43 and systems biology44 approaches, 888 (788 seed proteins and 100 connecter proteins) nodes containing 
global curcumin–rewired PIN was constructed by using STRING db software. Curcumin induces an intense 
and highly connected PIN, which clearly shows broad influence of curcumin on various biological systems. The 

Figure 8.   Demonstrate the MAPK cascade and the inhibition of MAPK1/Erk2 by curcumin.

Figure 9.   Bio-kinetic simulation of MAPK cascade in normal condition.
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network was further analysed for its topological properties based on the tools of graph theory. Network analyser, 
a plugin of Cytoscape software was used for the analysis. The most important topological property of any net-
work is its node degree distribution that tells, whether a network is scale free or not. The topological property 
analysis of curcumin rewired network clearly depicted that it is a scale free network in which all the nodes were 
free to interact globally. The degree distribution of a scale-free network in a logarithmic scale, can observe how 
it fits with a power-law line, having a less number of biomolecules/nodes with high degree (the hubs) and a 
large number of biomolecules/nodes with a low degree. The node degree distribution of the curcumin-rewired 
PINs was in accord with the power law, indicating that the constructed network had scale-free topology. The 
significance of the hubs is indicated by the exponent of the power law, which distinguishes between biological 
and non-biological networks. Usually, a small exponent means significant central hubs19,45. In cellular systems, 
the hubs with an exponent of < 2 usually have important roles, which demonstrated that the number for degree 
exponent less than two is consistent with known biological networks19,38,39,45. The degree exponent of this network 
was 1.171, which clearly signified that the generated PIN was biological and scale-free.

Another important topological properties are shortest path length and average clustering coefficient, which 
came out to be 3.188 and 0.472. The path length shows that the information in the network travels at a fast pace 
and clustering coefficient depicts the tendency of nodes to form a cluster. From small path lengths and clustering 
coefficient we can infer that the network is packed with nodes that pass on the information quickly and small 
average clustering coefficient depicts that the network had high number of nodes, but holds lesser no. of con-
nection, so there are chances of binding of drug or other ligands47.

Following the topological analysis of the network, modulation using MCODE50 and pathway enrichment 
using ClueGo51 was performed. On modularization 25 modules were obtained and on ClueGo analysis 37 GO 
pathways were identified from the global networks, which are mentioned in Supplementary Table 1. The major-
ity of the pathways belong to the pathological conditions, particularly in, ageing, stress, metabolic pathways, 
cancer, DNA replication, apoptosis, inflammatory, infectious and allergic diseases etc., which suggests that these 
signalling pathways may be the main contributing factors to the pharmacological effects of curcumin. The role of 
modularization was to sort the noise or less important proteins from the global curcumin-rewired PIN, that led 
us towards the exploration of more precise key regulatory proteins, which regulate the interactome of curcumin. 
The modularization was executed for spotting the clusters of nodes that are strongly connected with each other 
but are less connected with the nodes outside. The modularization possibly characterize the node from the impor-
tant complexes like signal transducer, and are the network core in terms of functionality45. After modularization 
of 195 seed proteins, STRING was used again to construct a core PIN of 295 nodes (195 seed proteins and 100 
connector proteins). The motive of this PIN construction was to reconstruct and find other important connector 
proteins that might play an important role in exhibiting the pharmacological action of curcumin and were not 
reported earlier. In continuation of this approach, graph theory based topological analysis was performed and 
further protein sorting was done on the basis of top 10 bottle neck score and clustering coefficient of less than 
0.5. These proteins were considered as date hub proteins. This sorting parameter led to the identification of 22 

Figure 10.   Bio-kinetic simulation of inhibitory impact of curcumin on MAPK cascade.
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possible key proteins (21 seed proteins and 1 connector protein, RB1) among 295 proteins. These 22 possible 
key proteins (CREBBP, TP53, RELA, MAPK1, NFKB1, CYP1A1, SRC, BRCA1, EDN1, ATR, RB1, SP1, CASP8, 
STAT1, CREB1, AKT1, IL8, CDH1, KRAS, SYK, CCR5, HDAC3) referred as top 10 bottleneck scorer (from 52 
to 5) proteins. The characteristics of bottlenecks proteins are with a high betweenness centrality i.e., PIN nodes 
with many “shortest paths” going through them, similar to bridges and tunnels on a highway map, this character 
considered the fast communication between the nodes. These are possibly very crucial proteins in the PIN and 
much more significant indicator of essentiality than degree (hub proteins)46. CREBBP, TP53, RELA, MAPK1 and 
NFkB1 were best top five possible key proteins with bottleneckness score of 52, 22, 14, 13 and 11, respectively.

Furthermore, another important topological feature of the selection of these possible key proteins is clus-
tering co-efficient (Pearson correlation coefficient), which is less than 0.5, was assumed and classified the date 
hubs. These date proteins are important in PIN but holds less no. of connection, so the chances of the binding 
of a drug or any other ligand will be higher than the party proteins (party proteins: co-efficient more than 0.5 
and show high degree of co-expression with interaction nodes/partner, are assumed to interact at the same time 
with their interaction nodes/partners)47.

Twenty-two (22) possible key proteins underwent to GO functional annotation and enrichment analysis. In 
this study, ClueGO plugin generated 17 GO groups (from 0 to 16), including GO ID, GO term/Pathways and 
associated genes/proteins as shown in Table 2. Among all the associated proteins, MAPK1 was covering and 
associated with highest 15 pathways as shown in Fig. 11, followed by AKT1; 14, RELA; 13, KRAS; 12, TP53; 11, 
NFKB1; 11, SRC; 10, RB1; 9, CREBBP; 8, STAT1; 8, CREB1; 7, CASP8; 7, HDAC3; 5, SYK; 3, CCR5; 3, EDN1; 2, 
SP1; 1, CDH1; 1, ATR; 1 and IL8, CYP1A1 and BRCA1 were not associated with any enriched pathway.

The associated proteins were further sorted based on a total number of enriched pathways. The median (which 
was 7) of all the numbers of the pathways covered by 22 possible key proteins was considered as a statistical cut-
off, and by considering this cut-off, possible key regulatory proteins were sorted from 22 to 12 (MAPK1, AKT1, 
RELA, KRAS, TP53, NFKB1, SRC, RB1, CREBBP, STAT1, CREB1 and CASP8). These 12 possible key regulatory 
proteins were very crucial candidates of curcumin those have potential to efficiently interact with curcumin and 
regulate the whole curcumin-rewired PIN followed by induction of the desired pharmacological action. However, 
what will happen, while curcumin present in cell vicinity and which protein will hold the best binding affinity 
with curcumin, is not known. The answer to this question is molecular docking analysis, which is a globally 
accepted tool of biophysics and structural biology to calculate the binding energy. The aim of ligand–protein 
docking is to calculate the thermodynamic or binding affinity (ΔG; Gibbs free energy) and predominant binding 
mode(s) of a ligand with a protein. The docking results predicted that MAPK1/Erk2 (− 8.43 kcal/Mol), STAT1 
(− 7.68Kcal/Mol) and KRAS (− 7.48Kcal/Mol) might be the best suitable targets of curcumin in its interactome 
(as shown in Supplementary Fig. 5), followed by P53 (− 6.57 kcal/Mol), CREBBP (− 6.29 kcal/Mol), RELA 
(− 6.07 kcal/Mol) and AKT1 (− 6.04 kcal/Mol), which also showed significant binding ability with curcumin. 
But when compared, the binding energies and the numbers of pathway coverage by these 12 proteins, then the 
most suitable and strongest candidate was MAPK1/Erk2 (highest binding energy − 8.43 kcal/Mol, and highest 
pathway coverage, i.e., 15) among other possible key proteins. Earlier published reports have also discussed the 
inhibition potential of curcumin on MAPK1/Erk2 and its activated and phosphorylated MAPK1/Erk2 entity48,49. 
Further, to endorse the above findings, a comparative docking analysis was performed between MAPK1/Erk2 
and activated MAPK1/Erk2 with curcumin, and the result obtained showed that MAPK1/Erk2 (PDB Id: 3W55 & 
binding energy − 8.43 kcal/Mol, Ki 662.55 nM) binds more than twice strongly with curcumin compared to the 
activated MAPK1/Erk2 (PDB Id: 4IZA & binding energy − 4.15 kcal/Mol, Ki 910.81 µM). This result predicts that, 
if curcumin is present in the cell vicinity along with MAPK1/Erk2 and activated MAPK1/Erk2 then curcumin 
will have strong binding affinity towards MAPK1/Erk2 over activated MAPK/Erk2. This incidence designates 

Figure 11.   Graphical representation of curcumin’s impact on systems level proteins interaction network with 
their respective key proteins, number of associated and enriched pathways.
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that presence of curcumin on MAPK1/Erk2 induces some conformational changes in the protein skeleton, 
which would disturb the activation of MAPK1/Erk2 and block its activity. The molecular dynamics simulation 
was also strongly evident the strong and stable binding of MAPK1 and curcumin. Root mean square deviation 
calculations illustrated that the complex system of MAPK1-curcumin reached to a perfect equilibrium at around 
25,000 picosecond and remains stable till the end of the simulation with very nominal fluctuations of 0.05 nm.

After getting strong evidences for MAPK1/Erk2 as a key regulatory protein, the bio-kinetics of MAPK cascade 
was simulated by using COPASI. In this experiment, bio-kinetics indicated the functional and concentration 
loss of MAPK1/Erk2 (from 0.0010782 µM/L to 0.000465626 µM/L in 150 s) and activated MAPK1/Erk2 (from 
0.981202 µM/L to 0.0331032 µM/L in 150 s) in the presence of curcumin and alter the MAPK cascade, which 
may lead to several associated dysfunctions in the normal cell physiology like proliferation, differentiation and 
apoptosis. Overall, in depth topological, system protein–protein interactions, bio-kinetics and molecular dynam-
ics analysis reveal that MAPK1 can be potentially considered as a key regulatory protein for inducing the desired 
pharmacological action of curcumin in the biological and cellular system.

Conclusion
In this article, the anti-reductionism approach was implemented to illustrate the bigger picture of curcumin 
rewired biomolecular components system. Since, no reports have identified the complete topological network 
and key regulatory proteins of curcumin governed communication path yet, so in this article we have tracked the 
continuous development process of the research and tried to construct a possible curcumin associated PIN to the 
currently available information on curcumin. The key proteins were evaluated and obtained based on their topo-
logical parameters (degree, clustering coefficient and bottleneck scores), sub-modulization approach and func-
tional ontology analyses. Finally, 12 most important key proteins (MAPK1/ERK2, AKT1, RELA, KRAS, TP53, 
NFKB1, SRC, RB1, CREBBP, STAT1, CREB1 and CASP8) were spotted, and found responsible to initiate and 
regulate curcumin governed pharmacological effects. Among all these key proteins MAPK1/ERK2 was identified 
as the most important key regulatory protein based on binding affinity and pathways enrichment analysis. MD 
conformational changes (MAPK1 on interaction with curcumin) and changes in protein concentration of MAPK 
cascade in the presence of curcumin via to simulate a biokinetic model also indicated the effect of curcumin 
on MAPK1 and its associated cascade. In conclusion, this study offers a competent way to explore the possible 
mechanistic actions of curcumin and opens the door for new clinical possibilities for novel drug development.

Materials and methods
Construction and visualization of protein–protein interaction network.  788 altered biomolecular 
targets of curcumin were identified from 2,228 literatures by using PESCADOR text mining server. PESCADOR 
is a web-based tool to assist the text-mining of bio-interactions extracted from PubMed queries15, then further 
all the abstracts were manually-curated and standardized by authors.

The protein–protein interaction (PPI) network was obtained from the online databases of STRING 10.5 (https​
://strin​g-db.org), which was used to retrieve the predicted interactions for the targets16. All associations available 
in STRING are provided with a probabilistic confidence score. The targets with a high confidence score greater 
than 0.7, experimental and curated databases were active interaction sources, max number of interactors in shell 
1 and 2 were 50. These parameters were selected to construct the PPI network. Cytoscape software (version 3.6.1; 
https​://www.cytos​cape.org/), with a variety of network-related plugins were used for network visualization and 
integration platform 17,18.

Protein interaction network (PIN) analysis.  The topological properties are very important to bring an 
insight into the large complex networks19,20. In the procedure of protein interaction networks (PINs) analysis, 
Cytoscape and its in-build Network Analyzer plugin21 were used to calculate the basic topological parameters of 
the curcumin-rewired PINs, such as the degree distribution, clustering coefficient, betweeness centrality, close-
ness centrality, path distribution and topological coefficients distribution.

Protein interaction network modular analysis and pathway enrichment.  MCODE plugin of 
cytoscape was used for the modulation of big PINs. The term modulation stands for the find clusters (highly 
interconnected regions) in a network. Clusters mean different things in different types of networks. For exam-
ple, clusters in a protein–protein interaction network are often protein complexes and parts of pathways, while 
clusters in a protein similarity network represent protein families22. Each module was scored by Cytoscape soft-
ware through the density and size; a higher score meant a tighter module. Based on the identified modules, GO 
functional annotation and enrichment analysis were performed. Within the modules, pathway analyses were 
processed by the ClueGO plugin (version 2.5.1) according to the Kyoto Encyclopaedia of Genes and Genomes 
(KEGG) and Reactome database23, with a threshold of P < 0.05 based on a two-sided hypergeometric test and the 
Bonferroni correction were used.

Molecular docking analysis.  The aim of docking between ligand and biomolecule is, to predict the prin-
cipal binding modes of a ligand with a biomolecule of known 3D structure. Docking studies were performed by 
Autodock 4.0 MGL suite24,25 in the Intel (R) i7-5500U, CPU 2.40 GHz and 16.0 GB of RAM of DELL Machine. 
The parameters used for docking studies using Autodock program for this study have been discussed in detail 
in our previously published article26. All the ten docking conformations of biomolecular targets and curcumin 
complex obtained were analysed for the interactions and binding energies of the docked structure using Discov-
ery Studio visualizer version 3.1.

https://string-db.org
https://string-db.org
https://www.cytoscape.org/
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Construction and simulation of bio‑kinetic graph of key regulatory protein MAPK1/Erk2.  The 
bio-kinetic model of MAPK cascade (BIOMD0000000009) was procured from BioModel Database (https​://
www.ebi.ac.uk/biomo​dels/). Cell Designer 4.427 was used for the construction of new inhibited MAPK cascade 
(curcumin was used as an inhibitor) and COPASI28 was employed for the generation of rate kinetics and simulate 
bio-kinetic graph of both the reactions (normal and inhibited MAPK cascade).

Molecular dynamics.  MAPK1 docked complexes of curcumin was further subjected to molecular dynam-
ics simulations using GROMACS version 5.0.729. GROMACS compatible ligand parameter for curcumin were 
obtained from the Dundee PRODRG server30. A united atom force field, gromos53a6, was applied to the system 
solvated in space water molecules inside a triclinic box, which was neutralized using sodium and chloride ions. 
Energy minimization was done to achieve a maximum force of < 1,000.0 kJ/mol/nm with the steepest descent 
algorithm and verlet cut-off method. The system was then equilibrated up to 100 ps each at constant temperature 
(300 K) and pressure (1 bar), simultaneously31–33. All the bonds were constrained using LINCS algorithm and 
Particle Mesh Ewald (PME) method was used for long range electrostatics. The production run of molecular 
dynamics was performed for 50000 ps. All the post-MD analyses of the 50000 ps trajectory of MAPK1-curcumin 
complex were performed using the inbuilt scripts of GROMACS as done in earlier studies34–36.
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