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A B S T R A C T

Molecular switches serve as key regulators of biological systems by acting as one of the crucial driving forces in
the initiation of signal transduction pathway cascades. The Ras homolog gene family member A (RhoA) is one of
the molecular switches that binds with GTP in order to cycle between an active GTP-bound state and an inactive
GDP-bound state. Any aberrance in control over this circuit, particularly due to any perturbation in switching,
leads to the development of different pathogenicity. Consequently, the single nucleotide polymorphisms (SNPs)
within the RhoA gene, especially deleterious genetic variations, are crucial to study to forecast structural
alteration and their functional impacts in light of disease onset. In this comprehensive study, we employed a
range of computational tools to screen the deleterious SNPs of RhoA from 207 nonsynonymous SNPs (nsSNPs).
By utilizing 7 distinct tools for further analysis, 8 common deleterious SNPs were sorted, among them 5 nsSNPs
(V9G, G17E, E40K, A61T, F171L) were found to be in the highly conserved regions, with E40K and A61T at G2
and G3 motif of the GTP-binding domain respectively, indicating potential perturbation in GTP/GDP binding
ability of the protein. RhoA-GDP complex interacts with the enzyme phospholipase, specifically PLD1, to regulate
different cellular activities. PLD1 is also a crucial regulator of thrombosis and cancer. In that line of focus, our
initial structural analysis of Y66H, A61T, G17E, I86N, and I151T mutations of RhoA revealed remarkable
decreased hydrophobicity from which we further filtered out G17E and I86N which may have potential impact
on the RhoA-GDP-PLD1 complex. Intriguingly, the comparative 250 ns (ns) molecular dynamics (MD) simulation
of these two mutated complexes revealed overall structural instability and altered interaction patterns. There-
fore, further investigation into these deleterious mutations with in vitro and in vivo studies could lead to the
identification of potential biomarkers in terms of different pathogenesis and could also be utilized in personalized
therapeutic targets in the long run.

1. Introduction

The Ras homolog gene family member A (RhoA) is one of the key
members of the Rho GTPase superfamily. RhoA and other GTPases act as
molecular switches that regulate the actin cytoskeleton, cell growth,
motility, morphogenesis, differentiation, innate and adaptive immunity,
and apoptosis by changing between GTP-bound active and GDP-bound
inactive forms (Wheeler and Ridley, 2004; Takai et al., 2001; Vega
and Ridley, 2008; Burridge and Wennerberg, 2004). In all eukaryotic

organisms, this sort of molecular switching is a fundamental mechanism
in respective contexts to cover precise control over processes including
survival, proliferation, advancement, defense, diversification, and
reproduction (Wittinghofer and Vetter, 2011; Perica et al., 2021). The
underlying factor that accounts for such potential is their ambidexterity
in switching “ON” and “OFF” in response to various stimuli such as
ligand binding, changes in pH or temperature, mechanical stress, and
other external as well as internal influences. One specific example of this
switching in signal transduction pathways is the Rho family of small
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GTPases binding to the C-terminal domain of Phospholipase D1 (PLD1),
regulating its activity in generating phosphatidic acid. PLD1 is an iso-
form of Phospholipase which has a crucial role in activating the lipid
second messenger phosphatidic acid (Xie et al., 2002; Du et al., 2000).

Rho GTPase activity is determined by Rho guanine nucleotide ex-
change factors (RhoGEFs) which facilitate the association of GTP, while
inactivation is achieved through the action of Rho GTPase activating
proteins (RhoGAPs) via the hydrolysis of GTP (Hanna and El-Sibai,
2013). In case of RhoA, when this protein is in its inactive state, gua-
nine nucleotide dissociation inhibitors (GDIs) lock it in the cytosol.
Conversely, when activated, RhoA remains associated with the plasma
membrane (Leonard et al., 1992).

However, the perturbation of any dynamic switching events leads to
a wide range of pathological conditions, such as cancer, cardiovascular
disease, and neurological disorders, etc. (Alexanian et al., 2021;
McWilliams et al., 2018; Wittinghofer and Waldmann, 2000; Chen et al.,
2021). Therefore, the understanding of the complex interplay between
molecular switching and its regulatory mechanisms could provide
elucidation of the significant fundamental principles behind eukaryotic
biology and the development of new strategies for the prevention and
treatment of diseases. Recent studies have shown that RhoA can be
active at the leading edge of migrating cells, and the cooperation of Rho
effector Rhotekin and S100A4 can suppress stress fibre generation to
permit RhoA-mediated lamellae formation (O’Connor and Chen, 2013).
RhoA also participates in the formation of phagocytic cups mediated by
αMβ2 and opsonized particles, whereas β2 integrin controls its activa-
tion and recruitment (Wiedemann et al., 2006).

In various cancers, aberrant expression of RhoA plays a role in
oncogenic signaling. When cooperating with JAK/STAT3 and NF-κB, it
facilitates survival, proliferation, and circumvents apoptosis
(O’Halloran et al., 2014; Jaffe and Hall, 2005). Comprehending the
frequency and impact of genetic variation is crucial for identifying the
detrimental associations of RhoA, as they offer insight into an in-
dividual’s genetic predisposition to diseases, drug responses, and other
phenotypic traits.

Single nucleotide polymorphisms (SNPs) represent the most common
type of genetic variation in humans (Collins et al., 1998), with
approximately 0.1% of the human genome consisting of unique variants
that result from random mutations (Forsberg et al., 2000). SNPs are
point mutations in DNA sequence that can be classified into two cate-
gories: synonymous SNPs which do not alter the sequence of amino acid,
whereas non-synonymous SNPs (nsSNPs) encoding modified proteins
may cause structural or functional abnormalities (Lander, 1996; Dobson
et al., 2006). As RhoA plays a crucial regulatory role in the downstream
signaling cascade, nsSNPs within its coding region may negatively
impact these functions (Wheeler and Ridley, 2004; Thumkeo et al.,
2013). It has been found that hereditary genetic disorders, including
various autoimmune diseases, are caused by about half of the genetic
variation resulting from nsSNPs (Yue and Moult, 2006; Chasman and
Adams, 2001; Cargill et al., 1999; Begovich et al., 2004).

Studies conducted in recent years have established a strong corre-
lation between nsSNPs and the function of RhoA in the case of specific
types of malignancies whereas G17V mutation causes functional loss of
over fifty percent of angioimmunoblastic T cell lymphomas (Palomero
et al., 2014). Regarding the changes in the effector domain of RhoA,
Y42C mutant has been reported to contribute to 20% of diffuse-type
gastric cancer (Wang et al., 2014; Kakiuchi et al., 2014). Also, high
expression of RhoA in the corpus cavernosum (CC) contributes to
RhoA-mediated Ca2+ sensitization and the flaccid state of CC (Wang
et al., 2002).

Over the years, numerous computational tools have been developed
with the aim of screening, mapping, and postulating the impacts of both
functional and deleterious SNPs of targeted genes. However, no previous
computational study had investigated the functional impacts of nsSNPs
on the RhoA protein using molecular docking and molecular dynamics
(MD) simulation. Our objective was to identify the most harmful SNPs,

focusing on highly conserved regions within the RhoA gene and to
explore their consequences on the RhoA protein through the application
of different in silico tools. We also sought to assess the functional effects
of identified nsSNPs on the interaction between RhoA and PLD1 by MD
simulation, aiming to comprehensively confirm and validate the adverse
impacts of these deleterious SNPs on the structure and function of the
RhoA protein.

2. Methods and materials

2.1. Collection of datasets from various databases

The raw data of the RhoA gene, comprising its SNP rsIDs, chromo-
somal location, protein accession number, and residue alteration, was
sourced from the dbSNP database of NCBI (https://www.ncbi.nlm.nih.
gov/projects/SNP/). Missense variants of the SNP rsIDs were extracted
for further screening. Subsequently, protein sequence data of RhoA was
collected from the UniProtKB database (http://www.uniprot.org
/uniprot/). Overall, a thorough approach was adopted to ensure
comprehensive and accurate information on the RhoA gene was
gathered.

2.2. Identification of most deleterious SNPs

To identify the highly significant deleterious SNPs from the dbSNP
database, a comprehensive bioinformatics approach was applied, uti-
lizing eight different tools. The initial screening was done by SIFT
(Sorting Intolerant from Tolerant) algorithm followed by assessments
with seven additional tools, which include PolyPhen-2 (Polymorphism
Phenotyping v2), SNAP2 (Screening for Non-Acceptable Poly-
morphism), PROVEAN (Protein Variation Effect Analyzer), CADD
(Combined Annotation Dependent Depletion), PhD-SNP (Predictor of
human Deleterious Single Nucleotide Polymorphisms), PredictSNP2,
and SNPs&GO.

SIFT (https://sift.bii.a-star.edu.sg/) helps to identify and differen-
tiate the amino acid substitutions in the functionally important and
neutral domains. The feature of sequence homology and physical
properties of the amino acids of this tool calculated the probability
scores of deleterious (with a score below 0.05) and tolerated (with a
score above 0.05) amino acid substitutions, considering their positions
and types (Kumar et al., 2009). Furthermore, to predict the effects of
amino acid substitutions on protein structure and function through
physical and comparative analysis, Polyphen-2 (http://genetics.bwh.
harvard.edu/pph2/) considers a range of factors, including the physi-
ochemical properties of the amino acid residues, evolutionary pattern,
and the known functional sites of the protein. This tool provides feed-
back as a score ranging from 0.0 (neutral) to 1.0 (deleterious) (Adzhubei
et al., 2010). SNAP-2 (https://www.rostlab.org/services/SNAP/) is a
classifier developed using a machine learning technique known as a
‘neural network’ to distinguish the deleterious SNPs from the neutral
ones, allowing for a more nuanced assessment of the potential impact of
amino acid substitutions on protein function. The result presents a
robust prediction ranging from ‘strongly neutral (− 100)’ to ‘strongly
effective (+100)’ (Hecht et al., 2015). PROVEAN (http://provean.jcvi.
org/index.php) utilizes a sequence homology-based approach to pre-
dict the functional impact of changes in the amino acid sequence of a
protein, including SNPs. This tool generates a score that distinguishes
deleterious variants from neutral ones: variants with a PROVEAN score
at or below a predefined threshold of 2.5 are predicted to have a dele-
terious effect, while those with a score above the threshold are predicted
to have a neutral effect, providing a cutoff for interpretation of results
(Choi and Chan, 2015). The integrative framework known as CADD (htt
ps://cadd.gs.washington.edu/) scores human single nucleotide variants
and short insertions and deletions by contrasting variants that have
survived natural selection against simulated mutations. It accomplishes
this by incorporating over 60 genomic features into a single metric.
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Here, a C score ≥10 indicates that the amino acid substitution is among
the 10% most deleterious substitutions, while a score ≥20 predicts it to
be within the 1% most deleterious. Potentially pathogenic variants are
assumed to be at a score of 15 (Rentzsch et al., 2019). As this assumption
is arbitrary, other tools are used to validate this prediction. PhD-SNP
(https://snps.biofold.org/phd-snp/phd-snp.html) employs evolutionary
information to investigate the effect of polymorphism on protein func-
tion. It differentiates SNPs associated with diseases from benign point
mutations through the Support Vector Machine (SVM) method. A score
>0.5 is indicated to be pathogenic, while a score below this threshold is
predicted to be benign (Capriotti et al., 2006). PredictSNP2 (https://los
chmidt.chemi.muni.cz/predictsnp2/) is a consensus classifier that in-
tegrates the six best-performing methods to achieve a more robust and
reliable output of the deleterious SNPs. It generates a score that falls
within the continuous interval of < − 1, +1>, with values in the interval
(<-1,0>) indicating a neutral effect, and values in the interval (0, +1>)
suggesting a potentially deleterious effect (Bendl et al., 2016).
SNPs&GO (https://snps-and-go.biocomp.unibo.it/snps-and-go/) eval-
uates the pathogenicity of amino acid substitutions based on protein
functional annotation. The potential effect of SNPs on protein-coding
transcripts or structures is calculated into a score, with higher scores
indicating more deleterious effects (Capriotti et al., 2013).

2.3. Identification of the position of missense SNPs in the domain of RhoA

To map the missense SNPs on the conserved domains of RhoA,
InterPro (https://www.ebi.ac.uk/interpro/) tool was used (Hunter
et al., 2009). Protein sequence in FASTA format was inserted as a query.
This tool can utilize databases containing protein families, domains, and
functional sites to identify the functional characterization of a protein
through the recognition of motifs and domains.

2.4. Analyzing the effect of the nsSNPs on protein stability

The mutation causes changes in protein stability, and to predict these
impacts, I-Mutant 3.0 (http://gpcr.biocomp.unibo.it/~emidio/I-Mut
ant3.0/I-MutantDDG_Help.html) was employed that is based on the
database of ProTherm, which is currently the most comprehensive
database of experimental data on protein mutations (Capriotti et al.,
2005). This web-based server’s reliability index (RI) feature provides
values ranging from 0 to 10, with higher values indicating greater
reliability.

2.5. Identification of missense SNPs in evolutionarily conserved regions of
RhoA

The presence of missense SNPs on highly conserved regions of amino
acid residues within RhoA indicates the possibility of significant alter-
ation to the expression of RhoA. Identification of such conserved posi-
tions was carried out by the ConSurfweb server (https://consurf.tau.ac.
il/consurf_index.php) which determines the rate of the conservation of
amino acid positions (Ashkenazy et al., 2010). This server employs
phylogenetic relation analysis using the homologous sequences to find
these conserved regions. The Bayesian method classifies conservation
scores into three categories: variable, intermediate, and conserved, with
scores of 1–4, 5–6, and 7–9, respectively. The prediction of conserved
patterns and structural and functional amino acids, as well as the
determination of a conservation score and coloring scheme, was
accomplished by inputting the protein FASTA sequence of RhoA.
High-risk missense SNPs of RhoA were used for further analyses.

2.6. Prediction of the structural effect of missense SNPs on RhoA protein

In order to evaluate the impact of missense SNPs on RhoA protein
structure, two sophisticated and distinct tools were used, including
HOPE (https://www3.cmbi.umcn.nl/hope/) and Missense 3D (htt

p://missense3d.bc.ic.ac.uk/missense3d/) (Venselaar et al., 2010;
Khanna et al., 2021). HOPE is a web server that identifies the structural
effects of the point mutations in a protein sequence. P61586 (UniProt ID
of RhoA) and the filtered SNPs were used individually as the input.
HOPE utilizes a range of data sources, including WHAT IF Web,
distributed annotation system (DAS) servers, and UniProt database to
observe the impact of substitution on the 3D structure of the RhoA
protein. Missense 3D detects structural changes of the RhoA due to
amino acid substitution, leading to the characterization of missense
variants by coordinating the 3D structure of proteins collected from
experimental models stored in the RCSB database. Swiss-PDB Viewer
(v4.1.0) (https://spdbv.vital-it.ch/) is a stand-alone software associated
with missense 3D, was used to generate mutated models of the proteins
for the corresponding amino acid substitutions (Waterhouse et al.,
2018). With the help of the Mutation Tool, a feature of Swiss-PDB
Viewer, which is a rotamer library of mutated models, can be
browsed, and the best rotamer of the mutated model can be selected. The
comparison between wild-type and mutated protein structure was
analyzed through TM-align (https://seq2fun.dcmb.med.umich.edu//
TM-align/). When the protein structure alignment algorithm runs, it
computes the template modeling score (TM-score) and RMSD of both
models. TM-score ranges from 0 to 1, where a better match between the
structures is indicated by a higher value. The distance between the alpha
carbon backbone of the model is measured by the RMSD, and a higher
value means that there is greater variation in their structure (Zhang and
Skolnick, 2005).

2.7. 3D protein modeling of missense SNPs

To generate a complete 3D model of the mutated protein, Alpha-
Fold3 was used. AlphaFold3 uses a neural networking approach that
produces an experimentally close or near resolution of protein structure,
as it has revolutionized protein structure prediction for their accuracy
and reliability (Abramson et al., 2024).

The resulting 3D protein models were then validated through the
PROCHECK tool which performs the Ramachandran plot analysis for
accuracy and quality. The geometry of individual residue compared to
that of the entire structure is examined by this tool (Laskowski et al.,
1993, 1996). The overall model quality is validated by ERRAT based on
the statistical relationship of nonbonded interactions between various
types of atoms, using typical atomic interactions (Morris et al., 1992;
Laskowski et al., 2012). The high standard resolution of structure gives
ERRAT score of around 95% or more and for lower resolutions (2.5–3 A)
the average overall quality factor is around 91% (Zobayer and Aowlad
Hossain, 2018).

2.8. Identification of RhoA interacting proteins

The study of protein-protein interactions provides understanding of
how a particular protein interacts with other proteins in various bio-
logical pathways, and what the nature of this interaction is. Proteins that
have direct interaction with RhoA protein were identified by employing
the STRING (https://string-db.org/) tool, and the interrelationships
between them were ascertained (Snel et al., 2000; Szklarczyk et al.,
2021, 2023). To evaluate the functional impact, certain key proteins
were chosen using the KEGG pathway (https://www.genome.
jp/kegg/pathway.html), and further analysis was conducted to deter-
mine whether their interaction with RhoA protein was altered by the
effect of missense SNPs (Kanehisa and Goto, 2000; Ogata et al., 1999;
Kanehisa et al., 2017).

2.9. Molecular docking approach to observe the functional effect

Protein-ligand-protein docking analysis was performed to observe
the functional effect of this PLD1 activation. The structure of the PLD1
protein was obtained from the RCSB PDB database (https://www.rcsb.
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org/) (PDB ID: 1FTN) (Berman et al., 2000). The 3D structure of the
I86N and G17E point mutation was also obtained using AlphaFold3 to
observe the changes in the interaction with PLD1. The structure of the
GDP molecule was collected from PubChem (https://pubchem.ncbi.
nlm.nih.gov/) (PubChem CID: 5957) and optimization of its energy
was done using Avogadro software (Kim et al., 2023; Hanwell et al.,
2012). Proteins and ligand structure preparation and visualization were
analyzed using Biovia Discovery Studio. The molecular docking of the
RhoA-GDP-PLD1 complex was performed using the HADDOCK (High
Ambiguity Driven protein-protein Docking) web server (https://wenmr.
science.uu.nl/haddock2.4/), which is an information-driven flexible
docking approach for modeling biomolecular complexes (Honorato
et al., 2021; Van Zundert et al., 2016). All default parameters of
HADDOCK were used during the submission of the input data. The
active site of PLD1 and RhoA was selected based on a previous study to
enhance the accuracy of the docking analysis (Bowling et al., 2020). The
docking result and the binding interaction between protein-ligand and
receptor proteins were visualized and analyzed by UCSF ChimeraX and
PyMol visualization tool (Pettersen et al., 2021; Goddard et al., 2018).

2.10. Molecular dynamics simulation analysis

2.10.1. Preparation of simulation system
The GROMACS-2023 version in the Ubuntu 24.04.1 LTS system was

utilized in conducting molecular dynamics simulations of protein-
ligand-protein docking complexes in this study (Van Der Spoel et al.,
2005; Abraham et al., 2015). The most updated version of the
Charm36-jul2021 force field, widely used for biomolecules, was
employed (Brooks et al., 2009; Croitoru et al., 2021). The
RhoA-GDP-PLD1, a biomolecular complex, was the subject of the study.
In this study, the recommended TIP3P_CHARM CHARM-modified TIP3P
water model was utilized (Harrach and Drossel, 2014). A cubic-type box
system was defined with a box diameter of 13.605 nm and a center of
7.083 7.083 7.083 nm. The system consisted of 374,507 atoms in 119,
245 residues and had a total volume of 3800.27 nm3 and a density of
997.133 g/L. The acid dissociation constant value (pKa) for amino acids
was also calculated using Ewald summation. To neutralize the charge of
the positively charged system, 10 CLA ions were added in place of 10
random solvent molecules using the “genion” tool, and the pH was set to
7. During the equilibration period, the system temperature was raised
from 0 K to 300 K. A stable conformation was obtained by performing
energy minimization using the steepest descent method for 5000 steps.
The energy-minimized systems were then subjected to equilibration for
200 ps in both NPT (constant number of particles, pressure, and tem-
perature) and NVT (constant number of particles, volume, and tem-
perature) ensembles. MD simulation was carried out for 250 ns using the
particle-mesh Ewald (PME) method to describe short-range electrostatic
interactions within a cut-off distance of 1.2 nm. Throughout the simu-
lation, constant pressure and Berendsen thermostat were sustained, and
a multiple timestep algorithm was employed to establish a time step
interval of 2.00 fs (Essmann et al., 1998).

2.10.2. Trajectory analysis of MD simulations
Structural trajectories were calculated for Protein-Ligand-Protein

systems using the trjconv tool. The proteins and GDP molecule within
the cubical box were recentered using the trjconv tool of GROMACS.
Values such as van der Waals interaction, electrostatic energy, and
interaction energy were calculated using the gmx energy tool of GRO-
MACS. Finally, the structural changes of the native and mutant proteins
were calculated through RMSD, RMSF, Rg, and SASA analysis using the
“gmx rms”, “gmx rmsf”, “gmx gyrate” and “gmx sasa” tools. The binding
free energy of the complexes was determined using the Molecular Me-
chanics Generalized Born Surface Area (MMGBSA) and Molecular Me-
chanics Poisson Boltzmann Surface Area (MMPBSA) approaches using
the MMPBSA. py module, analyzing 1000 snapshots taken from the final
5 ns of the NPT-MD trajectories (Miller et al., 2012). In standard

MM/PBSA, the binding free energy (ΔGbind) between the proteins is
calculated as (Genheden and Ryde, 2015; Sun et al., 2018; Rastelli et al.,
2010)

ΔGbind = ΔH − TΔS ≈ ΔEMM + ΔGsol – TΔS (1)

ΔEMM = ΔEele + ΔEvdw (2)

ΔGsol = ΔGPB + ΔGSA (3)

The binding free energy (ΔGbind) of the complexes can be broken
down into three components including, gas-phase interaction energy
(ΔEMM), desolvation free energy (ΔGsol), and conformational entropy
(− TΔS). The gas-phase interaction energy (ΔEMM) consists of electro-
static (ΔEele) and van der Waals (ΔEvdw) terms. The desolvation free
energy (ΔGsol) is composed of nonpolar (ΔGSA) and polar (ΔGPB) con-
tributions. The nonpolar contribution (ΔGSA) is calculated using the
solvent accessible surface area (SASA), with ΔGSA = γ⋅ SASA + b, where
γ is the surface tension (2.27 kJ mol− 1 nm− 2) and b is a constant (3.85 kJ
mol− 1). The polar contribution is evaluated using the Pois-
son− Boltzmann (PB) model. The conformational entropy (− TΔS) is
calculated by a computationally efficient interaction entropy method.
The electrostatic energy (ΔEele) between proteins is calculated using the
following equation:

ΔEeleif =
∑

i

∑

j

qiqj
4π∈0∈inrij

(4)

Where qi represents the charge of atom i in one protein, qj denotes the
charge of atom j in the other protein, rij is the distance between these
atoms, ϵ0 is the dielectric constant in a vacuum, and ϵin is the relative
dielectric constant of the solute (proteins), usually set to 2.0 unless
otherwise specified (Levin, 2002).

2.10.3. Statistical analysis
All the corresponding plots were generated using the XMGRACE and

GnuPlot tools (Turner et al., 2005; Williams and Kelley, 2011). The
statistical analysis of the MD trajectories was performed using GraphPad
Prism v 8.0 (GraphPad Software, San Diego, CA, USA) software. Un-
paired two-tailed Student’s t-tests were performed, and p values of
<0.0001 were considered highly significant for comparing the simula-
tion results.

3. Results

3.1. Retrieval of SNPs

A total of 23,790 SNPs of the human RhoA gene were retrieved from
the NCBI dbSNP database (see Fig. 1). Among them, 22,791 SNPs were
found to be located in the intronic region, while 207 SNPs were iden-
tified as missense, and 150 SNPs were synonymous. Fig. 2(a) indicates
that most SNPs are located in the intronic region (95.8%), followed by
others (3.76%), then missense SNPs (0.87%) and coding synonymous
SNPs (0.63%). Further analysis was carried out on 207 nsSNPs, as they
result in altered amino acids due to changes in the coding region.

3.2. Identification of the most deleterious SNPs

SNPs of the RhoA retrieved from the dbSNP database were subjected
to a comprehensive in silico analysis through a variety of tools such as
SIFT, Polyphen-2, SNAP2, PROVEAN, Predict SNP, SNP&GO, and PhD-
SNP. Initial screening output obtained by SIFT demonstrated the 65
nsSNPs as either tolerated or deleterious while remaining SNPs out of
207 remained undetected. Among these 65 nsSNPs, SIFT classified 16
nsSNPs as deleterious. To validate the SIFT filtering, the other 8
computational algorithms described above were employed, resulting in
the identification of 9 nsSNPs that were predicted to have the most
deleterious effects, as shown in Table 1. Out of 8 computational tools,
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CADD predicted the maximum number of deleterious SNPs, which was
55 followed by SNAP2, with a count of 36, as shown in Fig. 2(b).

3.3. Identification of nsSNPs in the domain of RhoA

A domain identification tool named InterPro was used to predict the
domains and active sites of a protein through the functional analysis of
protein families. It predicted one functional domain of RhoA, which is
the Small GTP Binding Domain (5–159) and revealed that 8 out of 9

nsSNPs are positioned in this domain. An illustrated physical mapping of
these SNPs in Fig. 3(a) shows that G17E is positioned in the p-loop.
Besides, E40K and Y42S are positioned in the switch 1 and A61T and
Y66H in the switch 2. Positions of these SNPs are marked into a 3D
protein cartoon structure as shown in Fig. 3(b).

3.4. Analyzing the effect of the nsSNPs on protein stability

The structural stability of the protein is essential for the functioning

Fig. 1. Schematic representation of the most deleterious SNP identification of RhoA gene and their subsequent effect analysis.

Fig. 2. In silico-based identification of deleterious SNPs in the RhoA gene. (a) A circular diagram highlighting the various types of SNPs in RhoA. (b) The total
number of missense SNPs and predicted deleterious SNPs by various algorithms are described in the bar plot.
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of a protein. I-Mutant 3.0 was used to predict the extent of alteration in
structural stability in terms of RI and free energy change value (ΔΔG).
This tool revealed that structural stability is reduced for each of the 9
deleterious nsSNPs. It also predicted that I86N point mutation causes a
maximum decrease in structural stability and ΔΔG value is − 2.19 kcal/
mol. Y42S, Y66H, I151T, and V9G polymorphisms also cause higher
structural instability as shown in Supplementary Table 1. A statistical
comparison among 9 SNPs has been shown in Fig. 4(a).

3.5. Evolutionary conservation analysis

ConSurf web server was used to determine the conservancy of amino
acids of native RhoA protein. The putative functional and structural
amino acids are recognized, and their evolutionary conservation profile
is identified by the ConSurf server using the Bayesian method. The re-
sults revealed structural and functional residues of the 9 high-risk
nsSNPs of RhoA protein using evolutionary conservation and solvent
accessibility. This tool predicted that Y66, I86, and I151 residues are
exposed, whereas the Y42 residue is buried. On the other hand, residues
E40, G17, and A61 are highly conserved, functional and exposed, while
F171 and V9 are highly conserved, structural, and buried as illustrated
in Fig. 4(b).

3.6. Prediction of structural effects

The effect of amino acid substitution on the physical and chemical
properties, hydrophobicity, spatial structure, and function of the protein

was revealed by HOPE, shown in Table 2. The mutant residues E40K,
A61T, G17E, F171L, and I86N were reported to be larger than the wild-
type, while the mutant residues Y42S, Y66H, I151T, and V9G were
smaller than the wild-type, according to the result of HOPE. Further-
more, the hydrophobicity of the mutant residues A61T, G17E, I86N,
I151T, and V9G was found to be decreased. When there is a difference in
hydrophobicity and size between wild-type and mutant residues, it can
disrupt hydrogen bonds with nearby residues, affecting the protein
structure.

The appearance of a disallowed phi/psi alert by the G17E substitu-
tion was revealed by the Missense3D tool. The phi/psi angles were
determined to be in the favored region for the wild-type residue but in
the outlier region for the mutant residue. This substitution also resulted
in the replacement of the originally located glycine in a bending cur-
vature, as shown in Fig. 5(a). The I86N substitute replaced a buried
hydrophobic residue (ILE, RSA 0.0%) with a hydrophilic residue (ASN,
RSA 0.0%) as shown in Fig. 5(b). No structural damage was predicted by
this tool for other substitutions. After energy minimization, the total
energy of the wild-type structure was found to be − 3.13 × 105 kcal
mol− 1. Following energy minimization, the total energy of G17E (− 3.22
× 105 kcal mol− 1) and I86N (− 3.18 × 105 kcal mol− 1) were significantly
decreased, as demonstrated by molecular dynamic simulation results.

Structural comparison between wild-type and mutants through the
TM align reveals the total Root mean square deviation (RMSD) value
with the superimposed native protein was determined to be 0.23 Å for
mutant G17E and 0.16 Å for mutant I86N. Thus, G17E mutant displayed
greater deviation.

Table 1
List of 9 deleterious nsSNPs in RhoA gene, as identified by eight different in silico tools.

SNP IDs AA Changes SIFT CADD PROVEAN PolyPhen 2 SNAP2 SNP & GO PredictSNP PhdSNP

rs1057519951 E40K Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs1057519954 Y42S Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs1553631976 Y66H Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs1575647051 A61T Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs11552761 G17E Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs112304179 F171L Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs1381401434 I86N Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs1465894043 I151T Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease
rs1575653732 V9G Damaging Deleterious Deleterious Probably Damaging Effect Disease Effect Disease

Fig. 3. In the human RhoA crystal structure, the structural domains and motifs present in RhoA are highlighted in a representative three-dimensional structure (a),
and the identified variant position for 8 nsSNPs is labeled in a cartoon representation (b).
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Fig. 4. Effect of structural stability and evolutionary conservation analysis of protein residues (a) The effects of nsSNPs on protein stability predicted by I-MUTANT
3.0 based on structural stability in terms of RI and free energy change value (DDG) are plotted. ConSurf results are highlighted in red (b) and revealed that 5 out of 9
nsSNPs are highly conserved which is plotted in (c).
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Table 2
The effect of amino acid substitution on the physical and chemical properties,
hydrophobicity, spatial structure, and function of protein predicted by Project
Hope.

Mutations Changes
of size

Changes
of charge

Changes of
hydrophobicity

Interpretation

E40K M > W Negative
> Positive

 The mutation occurs
within a segment of
residues annotated in
UniProt as an effector
region motif. The
differences in amino
acid properties are
likely to disrupt the
motif and impair its
function. The
mutation at this
position introduces a
larger residue, which
can disrupt multimeric
interactions. The
mutant residue is near
a highly conserved
position. Mutation of
this residue, which is
located on the
protein’s surface, can
disrupt interactions
with other molecules
or protein subunits.

Y42S M < W   At position 59, the
wild-type residue
forms a hydrogen
bond with Aspartic
Acid. Due to the size
difference between the
wild-type and mutant
residue, the mutant
residue cannot form
the same hydrogen
bond as the original
wild-type residue. The
mutation occurs
within a segment of
residues annotated in
UniProt as an effector
region motif. The
differences in amino
acid properties are
likely to disrupt the
motif and impair its
function. The
mutation is close to a
highly conserved
position.

Y66H M < W  Decreased Both the wild-type and
mutant residues have
different
hydrophilicity. The
mutation will
eliminate
hydrophobic
interactions in the
protein’s core.

A61T M > W  Decreased The 3D structure
reveals that the
residue of the wild-
type protein interacts
with a ligand labeled
GSP. The difference in
properties between
the wild-type and the
mutant can readily
result in the loss of
ligand interactions.
Because ligand
binding is frequently

Table 2 (continued )

Mutations Changes
of size

Changes
of charge

Changes of
hydrophobicity

Interpretation

essential to the
protein’s function, this
mutation may impair
this function. These
differences in
properties between
the wild-type and
mutant residues can
readily result in the
loss of interactions
with the nucleotide
(“GTP”). This can
directly affect the
protein’s function.

G17E M > W Neutral >
Negative

Decreased The residue of the
wild-type is glycine,
which is the most
flexible of all residues.
This flexibility may be
required for the
protein to perform its
function. The
mutation of this wild-
type’s residue is
glycine; glycine can
render this function
ineffective. The
mutated residue is not
in contact with a
metal; however, one of
the adjacent residues
is in contact with a
metal and may be
impacted by the
mutation in its
vicinity. The 3D
structure reveals that
the residue of the wild-
type protein interacts
with a ligand labeled
GSP. The difference in
properties between
the wild-type and the
mutant can readily
result in the loss of
ligand interactions.
Because ligand
binding is frequently
essential to the
protein’s function, this
mutation may impair
this function. These
differences in
properties between
the wild-type and
mutant residues can
readily result in the
loss of interactions
with the nucleotide
(“GTP”). This can
directly affect the
protein’s function.

F171L M > W   Only this type of
residue was detected
at this position.
Mutation of a residue
that is 100%
conserved is typically
detrimental to the
protein. The mutant
residue is more
diminutive than its
wild-type counterpart.
The mutation will
result in a vacant

(continued on next page)

M. Hasan et al. Current Research in Structural Biology 8 (2024) 100159 

8 



3.7. 3D protein modeling of missense SNPs

AlphaFold3 is an automated system that provides structure pre-
dictions with near-experimental precision. The outputs include three
distinct confidence metrics with 3D structures. The first metric is a per-
residue confidence metric termed predicted Local Distance Difference
Test (pLDDT). It colors residues based on the region’s precision, with
confidence scores ranging from 0 to 100. A pLDDT greater than 90
predicts with high accuracy and is suitable for predicting vital infor-
mation such as the correct domain. A pLDDT between 70 and 90 pro-
vides a decent prediction of the backbone. The regions between pLDDT
50 and pLDDT 70 must be approached with caution. AlphaFold3 pre-
dicts that pLDDT50 will be unstructured and have a ribbon-like
appearance when isolated. Consequently, this prediction yields the
loops and domains depicted in Fig. 6. The models of the predicted

proteins have very high confidence score across lion’s share of the
structures, making the structures highly reliable.

Predicted Aligned Error (PAE) is another metric that evaluates the
confidence in the relative position of the pair residues. The output is an
interactive 2D graphic with the expected position error represented in
residue x and the true structure aligned on residue y. The lower the
score, the more certain AlphaFold3 is that these residues are packed
together in a structure as seen in Fig. 6. PAE plot with most of the region
with dark green color predicts the model as accurate. The last metric is
predicted template modeling (pTM) value, which confirms the accuracy
of the folds of the models with a score higher than 0.5.

The stereochemical quality of the generated 3D protein was evalu-
ated by PROCHECK which examines various factors such as the overall
G-factor, chi1-chi2 plots, phi-psi angles, and sidechain parameters,
while ERRAT validated the quality of the model based on non-bonding
interactions in proteins. Based on these criteria, the generated struc-
tures were found to be acceptable, leading to further analysis. The G17E
and I86N mutant protein structures had 88.8% and 90.3% of their
Ramachandran plot residues in the most favored region and ERRAT
quality factor of 90.553 and 92.442, respectively, as shown in Fig. 7(a)
and (b).

3.8. Identification of RhoA interacting proteins

STRING discloses the interaction of RhoA with 10 distinct proteins,
as shown in Fig. 8. These proteins are Phospholipase D1 (PLD1), Protein
kinase N1 (PKN1), A-kinase anchor protein 13 (AKAP13), Rho guanine
nucleotide exchange factor 2 (ARHGEF2), Rho guanine nucleotide ex-
change factor 11 (ARHGEF11), Rho-associated coiled-coil containing
protein kinase 2 (ROCK2), Anillin actin-binding protein (ANLN), Rho
GDP Dissociation Inhibitor Alpha (ARHGDIA), Rho GTPase-activating
protein 1 (ARHGAP1), Receptor tyrosine kinases (RTKN). RhoA in-
teracts with ROCK2 in the leukocyte trans-endothelial migration
pathway, wnt signaling pathway, oxytocin signaling pathway, axon
guidance, adherens junction, tight junction, and platelet activation
pathway, according to the KEGG pathways database. The effect of RhoA
mutations on PLD1 activation at the RhoA-PLD1 binding interface has
been investigated further in this study.

3.9. Molecular docking analysis

Protein-ligand-protein docking analysis demonstrated that the
mutant RhoA-GDP complex binds to the PLD1 in a deviated way
compared to the native RhoA-GDP complex. HADDOCK generated the

Table 2 (continued )

Mutations Changes
of size

Changes
of charge

Changes of
hydrophobicity

Interpretation

space in the protein’s
core.

I86N M > W  Decreased The residue of the
wild-type was
concealed in the
center of the protein.
The mutant residue’s
size makes it likely to
not fit.

I151T M < W  Decreased Both the wild-type and
mutant residues have
different
hydrophobicity. The
mutation will
eliminate
hydrophobic
interactions in the
protein’s core.

V9G M < W  Decreased This position is
changed to glycine by
the mutation. Glycine
is extremely flexible
and can disrupt the
protein’s required
rigidity at this
position. The mutation
will eliminate
hydrophobic
interactions in the
protein’s core.

Fig. 5. Structural alteration of the wild-type residue by the mutant G17E (a) and I86N (b) illustrated by Missense 3D. The wild-type residue is presented as cyan, and
the mutant residue is shown in red.
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top 10 clusters as a result. The top cluster is the most reliable according
to HADDOCK, as its Z-score indicates the deviation from the mean in
terms of score (with a more negative value being an indicator of better
result). Top structures were taken to analyze the binding energy of the
protein complex using the Prodigy web server shown in Supplementary
Fig. 1A(a), B(a), and C(a). The binding affinity (ΔG) and dissociation
constant (Kd) predicted values for wild-type RhoA and PLD1 are − 8.3
kcal/mol and 7.5 × E− 07 M respectively at 25.0 ◦C, which differ from
those of other point mutations. The binding affinity (ΔG) and dissocia-
tion constant (Kd) predicted values for G17E and PLD1 are − 9.0 kcal/
mol and 2.3 × E− 07 M respectively at 25.0 ◦C. For I86N the binding
affinity (ΔG) and dissociation constant (Kd) predicted values are − 7.4
kcal/mol and 3.9 × E− 06 M, respectively at 25.0 ◦C. Visualization of the
protein-protein interaction was done using the PyMol visualization
package. Interacting residues of wild-type RhoA and PLD1,
Asp67–Lys559 and Glu97-Phe577, form H-bond. Conversely, interacting
residues of mutated RhoA and PLD1 are different from the wild-type

shown in Supplementary Figure 1 A(b), B(b), and C(b). Interactions
between wild-type RhoA-GDP-PLD1 complex residues may have
changed due to the structural changes caused by point mutation. Mo-
lecular dynamics simulation analysis was performed using these docking
complexes to understand more of this functional alteration.

3.10. Molecular dynamics simulation analysis

To investigate the deviation of wild-type and mutant proteins in
physiological environments, 250 ns MD simulations were performed.
Root Mean Square Deviation (RMSD) values between RhoA and PLD1
were calculated. RMSD values of the wild-type RhoA and mutants G17E
and I86N differ significantly. The average RMSD values of mutated
G17E (mean ± SD, 1.226 ± 0.1740 nm (Rep 1), 1.073 ± 0.09216 nm
(Rep 2)) and I86N (mean ± SD, 0.9692 ± 0.09268 nm (Rep 1), 1.003 ±

0.1541 nm (Rep 2)) are greater than the wild-type RhoA (mean ± SD,
0.8597 ± 0.08096 nm (Rep 1), 0.7540 ± 0.07110 nm (Rep 2)), see Fig. 9

Fig. 6. 3D protein modeling with AlphaFold3. AlphaFold3 predicted mutated structure of RhoA (a) G17E, and (b) I86N. The lower pLDDT score (the orange and
yellow region) indicates disordered region. Both models here have very high and confidence scores across lion’s share of the structures, making the structures highly
reliable. The lower the PAE value, the better defined the residue’s relative position is assumed to be, however when the color changes to light green from dark green,
the PAE score rises, and their relative positions are anticipated with less confidence. The predicted template modeling (pTM) score for G17E is 0.89 and for I86N is
0.9. A score above 0.5 predicts that the folds of the model is possibly similar to the true structure.
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(a). Throughout the simulation time, the value of RMSD for the mutant
G17E fluctuated largely in ~0.45 nm range in both replication which
indicates the interaction instability between RhoA and PLD1.

In addition, RMSF (Root-Mean-Square Fluctuation) value analysis
reveals that residues in the C terminal region fluctuate significantly
differently between wild-type and mutant structures after 250ns MD

simulation. The mean ± SD RMSF values, as compared to wild-type
(0.2481 ± 0.2180 nm), were found significantly higher in G17E
(0.6245 ± 0.1932 nm) and I86N (0.5153 ± 0.1961 nm) variants in
replication 1. Whereas in replication 2, the values are 0.1991 ± 0.0532
nm, 0.3144 ± 0.0805 nm, and 0.3362 ± 0.0632 nm for the wild-type,
G17E, and I86N, respectively, as shown in Fig. 9(b). The RMSF plot

Fig. 7. Predicted structure validation. Ramachandran and ERRAT plots were generated using SAVES server for the mutated RhoA proteins G17E and I86N. The
number of residues in the most favored regions are 150 (88.8%) for G17E and 152 (90.5%) for I86N, with no residues found in the disallowed regions in both cases.
The overall quality factor for the RhoA G17E and I86N in the ERRAT plot is 90.553 and 92.442, respectively.
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also indicates that residues 11–27, 78–100 and 112–130 are more
flexible than the remaining residues in the wild-type protein. Entire
mutated G17E and I86N proteins exhibit flexibility (Fig. 9(b)).
Furthermore, in the mutant G17E, the fluctuation of residues (11–27) in
the C-terminal flanking tail is greater, with values ranging from 0.4928
to 0.6753 nm, and in the mutant I86N, the fluctuation of residues
(78–100) with values ranging from 0.4587 to 0.7173 nm, when
compared to that of the native type residues (115–135) ranging from
0.1342 to 0.3851 nm.

The Rg (radius of gyration) study of wild-type and mutant structures
(Fig. 9(c)) revealed that the G17E and I86N mutants had greater Mean
± SD of Rg values (3.950 ± 0.07629 nm) and (3.917 ± 0.02298 nm)
during the simulation time scale as compared to the wild-type RhoA
(3.886 ± 0.01696 nm) in replication 1. Similar type of Rg values trends
is also showed in second replication. As a result, mutant G17E and I86N
may have greater flexibility. Mutant G17E appeared to vary its Rg value
following the start of the simulation to 30ns, while Mutant I86N
appeared to deviate throughout the simulation, which could be the
explanation for its partial protein folding.

According to Fig. 9(d), the analysis of solvent-accessible surface area
(SASA) indicated that the mutants G17E and I86N had statistically
significantly higher SASA values (648.7 ± 13.29 nm2 and 654.8 ±

10.84 nm2 respectively) than the wild-type (638.6 ± 13.35 nm2) in
replication 1. Though the curves in replication 2 showed less fluctuation
than replication 1, the deviation pattern from wild type remained
similar. Since a higher SASA value indicates protein expansion, it is
possible to conclude that the wild-type protein is more stable than the
G17E and I86N mutant proteins. The reason for a greater change in the
SASA value of G17E and I86N compared to the wild-type may be due to
the effect of amino acid substitution on the size and other properties of
the protein surface.

3.11. SNPs disrupts the interaction network between RhoA and PLD1

The binding free energy GB computed using MMGBSA and PB
through the MMPBSA protocols has distinguished the affinities of
WILD_PLD1, G17E_PLD1, and I86N_PLD1, as shown in Table 3.
WILD_PLD1 exhibits a ΔGB of − 70.41 kcal/mol, whereas G17E_PLD1 and
I86N_PLD1 have a ΔGB of − 46.12 kcal/mol and 58.66 kcal/mol,
respectively. The energy difference between the complexes is more

distinct in MMGBSA calculations, with ΔPB values of − 81.53 kcal/mol
for WILD_PLD1, -65.65 kcal/mol for G17E_PLD1, and similarly, − 68.34
kcal/mol for I86N_PLD1. In all three complexes, the favorable contri-
butions to binding stemmed from van der Waals (vdW) forces and the
nonpolar segment of the solvation free energy, contrasting with the
unfavorable total electrostatic contributions (EEL + EGB and EEL + EPB).
Point mutations due to SNPs at residues G17E and I86N disrupted all
binding energy components, with a greater loss in vdW interactions, as
shown in Table 3.

The interaction free energy (IE) of residues was determined by
breaking down the binding free energy into van der Waals (vdW) forces,
non-polar contributions to solvation free energy (NP), and the combined
effects of electrostatic interactions (EEL) and electrostatic contributions
to solvation free energy (GB). This per residue decomposition analysis
was conducted to identify key residues involved in binding affinity,
focusing on residues within a 4 Å proximity between RhoA and GDP, as
well as RhoA and PLD1. In addition, different interaction patterns of
RhoA complexed with GDP and PLD1 were observed as illustrated in
Fig. 10. The residues of WILD RhoA from helix 5 (H-5), coil 2 (C-2), and
coil 11 (C-11) maintained close contact with the GDP molecules,
exhibiting interaction energies of 38.32 kcal/mol, 17.08 kcal/mol, and
43.82 kcal/mol, respectively. Whereas residues of C-2 and C-3 are in
close proximity to GDP molecules for G17E mutated protein with
interaction energies of 42.34 kcal/mol and 22 kcal/mol, respectively.
For I86N C-2, C-3 and H-1 are in close contact with GDP with a binding
energy of 33 kcal/mol, 19 kcal/mol and 16 kcal/mol, respectively.
Overall, the involvement of the residues in RhoA-GDP interaction are
different in Wild-type and mutated proteins as shown in Fig. 11.

Among the wild RhoA residues in close contact, C-2, C-4, and H-3
significantly contribute to binding affinity by interacting favorably with
PLD1 via ASP-13, GLY-14, ALA-15, GLU-64, and ALA-94, with interac-
tion energies of 12.55 kcal/mol (A15-S1060), 7.31 kcal/mol (G14-
V1061), 21.47 kcal/mol (N94-K556), 14.7 (E64-K559) and 15.64 kcal/
mol (D13-K553). The number of interacting residues altered and
reduced in case of G17E and I86N point mutation as shown in Fig. 11(e
and f), respectively. Apart from energetic profile, single point mutation
G17E has dynamically changed the conformation of the RhoA as C-2 was
observed to have moved further away from the PLD. Interacting residues
and their binding patterns alteration are also more clearly represented in
the last frame of the 250 ns simulation, see Fig. 11.

4. Discussion

Single base pair variation, among the various types of polymorphism
in the genome contributes significantly to the development and pro-
gression of different types of diseases, including cancer. When this
alteration of base pair occurs within a protein coding sequence, it may
lead to disrupted function of that protein. Moreover, in silico analysis of
deleterious SNPs from huge datasets has been increasingly important in
recent years due to the occurrence of damaging SNPs in many oncogenes
(George Priya Doss et al., 2013; Kamaraj et al., 2013). Therefore, it is
important to identify the effects of deleterious SNPs of every crucial gene
and their association with various diseases. As the RhoA protein is
involved in the regulation of diverse cellular functions, its altered
function can be found in various pathological processes including
tumorigenesis, autoimmune disease, and atherosclerosis. Specifically,
aberrant expression of this protein has been found in several cancers,
such as lung, breast, liver, head, and neck cancer, also in colorectal,
ovarian, and testicular carcinomas (Vega and Ridley, 2008; Wiedemann
et al., 2006; Wang et al., 2002; Shimokawa et al., 2016; Sakata-Yana-
gimoto et al., 2014). Furthermore, according to the C-Bioportal data-
base, the G17E mutant of RhoA has been previously associated with
breast cancer. The structural and functional properties of RhoA protein
can be affected by the changes in the amino acid sequence in the form of
SNPs at the genomic level. In this regard, this study intended to find the
most deleterious SNPs and their impact on the structure and function of

Fig. 8. The STRING web server generates proteins that interact with RhoA
proteins in various biological pathways.
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RhoA protein through multiple computational tools (including SIFT,
PolyPhen 2, SNAP 2, PROVEAN, CADD, PhD-SNP, Predict SNP2,
SNPs&GO). These tools utilized their individual prediction scores to give
an integrated result of 9 highly deleterious SNPs from 23,790 SNPs
extracted from the dbSNP database. Although, many previous studies
have used few tools to evaluate the SNPs, for the comprehensive analysis
and filtration of the SNPs according to their harmful impact we used a
wide range of tools (Saih et al., 2021; Mustafa et al., 2020).

Proteins have structural and functional units called domains that
help them perform a specific function (Basu et al., 2009). The InterPro
tool helped to determine whether the nsSNPs have occupied any of the
functionally important domains of the protein. Previously, a computa-
tional study of high-risk SNPs in the human CHK2 gene responsible for
hereditary breast cancer predicted the position of nsSNPs in different
protein domains (Badgujar et al., 2019). Our study revealed the presence
of 8 out of these 9 nsSNPs in the small GTP binding domain, showing the

Fig. 9. Molecular dynamics analysis of wild-type and mutant (G17E and I86N) RhoA proteins. The Root Mean Square Deviation (RMSD), Root Mean Square
Fluctuation (RMSF), Radius of Gyration (Rg), and Solvent Accessible Surface Area (SASA) plots are shown for two replicates. (Top left) RMSD plots reveal stability
differences among wild-type, G17E, and I86N mutants over 250 ns, with G17E showing higher deviation, indicating reduced stability. (Top right) RMSF plots
highlight residue flexibility, with G17E and I86N showing more fluctuation, particularly around residues 60–90 and 180–193. (Bottom left) Rg plots display the
compactness of the proteins, with G17E being more expanded. (Bottom right) SASA plots indicate solvent exposure, with the G17E mutant showing the largest
surface area, further suggesting a looser structure. Statistical significance is indicated with asterisks.
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possibility of disruption of its binding to GTP/GDP. Thus, a deleterious
mutation in the domain could significantly impair the function of pro-
tein in signal transduction.

Alterations in protein stability can lead to changes in their structure,
which, in turn, may distort their function and interactions with other
biological molecules (Shoichet et al., 1995; Marquet et al., 2022).
I-Mutant predicts the consequence of the presence of these nsSNPs on
the stability of the protein, providing valuable insights into the potential
consequences of genetic mutation on protein structure and function.
Previously, to screen and evaluate the deleterious SNPs in the APOE
gene of Alzheimer’s disease, a study used the I-Mutant tool (Masoodi
et al., 2012). In the present study, the results of the assessment with
I-Mutant demonstrated that all the 9 nsSNPs have been associated with
decreased protein stability, which can lead to degradation or misfolding
of the protein. This may, in turn, lead to loss of protein function in
interaction with other molecules within the biological system.

Conserved regions of amino acids of a protein are paramount for the
function of the protein, and any missense mutation in this region in-
terrupts the function of the protein. Prior studies have shown the sig-
nificance of evolutionary information in detecting mutations related to
the disease (Zaidem et al., 2019). ConSurf helped us to assess the degree
of conservation of the amino acids throughout the evolution. A recent
study used ConSurf to identify the conserved SNPs of the NRP1 gene
associated with SARS-COV-2 (Özkan Oktay et al., 2023). Our study
showed that five nsSNPs (V9G, G17E E40K, A61T, F171L) are found in
the highly conserved regions. Interestingly, E40K and A61T are located
on the G2 and G3 motifs of the GTP-binding domain respectively. These
two motifs are present in switch 1 and switch 2 and cause conforma-
tional change after binding to the GTP/GDP. Thus, mutations in these
regions will prevent the switches from altering their conformation,
which in turn hampers the proper functioning of this domain by inhib-
iting RhoA’s ability to switch between its active and inactive states.

When mutations are introduced in the protein, charge-mass and
other physiochemical properties of the amino acids could be modified
that could lead to a change in the structure of the protein. Therefore, a
detailed analysis of these changes is crucial for understanding the
functional impact of genetic variation on protein activity. To this end,
Project HOPE and Missense 3D were used to investigate the impact of
these nsSNPs on the structure. A previous study characterized both
coding and non-coding SNPs in the human Dectin-1 gene, identifying
those with a high risk of pathogenicity associated with fungal infections.
To predict the structural impact of these SNPs, the study utilized these
two tools (Al-nakhle and Khateb, 2023). In our study, Y66H, A61T,
G17E, I86N, and I151T mutations were observed to reduce hydropho-
bicity. Mutation at position 40, which replaces glycine with lysine, alters
charge and may disrupt interactions with neighboring residues due to its
surface location. This larger lysine variant may interfere with in-
teractions with other biomolecules. Furthermore, the substitution of
tyrosine with serine at position 42 could disrupt hydrogen bonding.
G17E introduces a negative charge, potentially causing repulsion with

Table 3
The binding affinities derived from MMGBSA and MMPBSA for RhoA wild-type
and mutant (G17E and I86N) PLD1 complexes were computed. EEL represents
the molecular mechanics electrostatic energy, vdW refers to van der Waals en-
ergy, while the polar and non-polar terms are captured by EGB/EPB (electrostatic
solvation) and ESURF/ENPOLAR (non-polar solvation) for MMGBSA and
MMPBSA, respectively. These components highlight the energetic contributions
that distinguish the binding interactions among the wild-type and mutated
complexes.

ΔEbinding (kcal/mol) WILD G17E I86N

vdW − 237.22 − 227.81 − 231.25
EEL − 146.01 − 135.82 − 140.05
EGB 287.86 223.04 246.74
ΔGB − 70.41 − 46.12 − 58.66
ESURF − 11.11 − 9.78 − 9.23
EPB 280 227 234
ΔPB − 81.53 − 65.65 − 68.34
ENPOLAR − 24.73 − 20.45 − 21.77

Fig. 10. Interaction free energy analysis of (a, b, c) Wild-type RhoA, G17E, and I86N mutant residues interacting with GDP, and (d, e, f) Wild-type RhoA, G17E, and
I86N mutant residues interacting with PLD1 within a 4 Å binding vicinity. The left panels show the comparison of interaction free energy components (vdW, NP, EEL
+ GB) for RhoA-GDP complexes, and the right panels display the same for RhoA-PLD1 complexes after 250 ns of molecular dynamics simulations. The most sig-
nificant residues contributing to the binding free energy in both complexes are highlighted in yellow within the structural representations.
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nearby residues and affecting interactions with other biomolecules.
The amino acid sequences of the mutated proteins were transformed

into 3D structure using AlphaFold3 (which is AI-based). AlphaFold3 was
previously used to predict the structure of STK19 protein (Li et al.,
2024). In this study, the Alphafold3 predicted 3D structures of mutant
RhoA. The predicted models were highly accurate with pLDDT, PAE plot
and pTM score proving the predicted structures to be close to the ac-
curate structure. G17E and I86N mutant protein structures exhibited
88.8% and 90.3% of their residues in the most favored regions in
Ramachandran plot, respectively, with overall quality factors of 90.553
and 92.442 in ERRAT plot.

Proteins that interact with RhoA were identified employing the
widely used tool STRING, and their interrelationships were determined
to gain insight into underlying protein-protein interactions. In a previ-
ous study, the STRING database was used to perform protein-protein
interaction (PPI) network analysis of the selected SNP-containing gene
with prognostic value in gastric cancer (Li et al., 2021). PPI information
was obtained from the STRING database in this study. Additionally, to
assess the functional impact of these interactions, ten key proteins

involved in signaling pathways intersecting with RhoA were selected
using the KEGG pathway database. As we screened for the proteins that
interact with RhoA, we came across various proteins including PLD1
protein (shown in Fig. 8) which has function in a wide variety of cellular
processes (Huang and Frohman, 2007).

PLD is a protein that has been investigated thoroughly over the years
and has shown crucial role in the regulation of cell survival, intracellular
membrane vesicle trafficking, and cell proliferation (Cockcroft and De
Matteis, 2001). However, alteration of this protein and its product
phosphatidic acid (PA) has been involved in a wide range of diseases
such as inflammation, diabetes, phagocytosis, and also involved in
metastatic spread of cancer. Among the two isoforms of PLD (PLD1 and
PLD2), PLD1 is regulated by the RhoA. The ADP-ribosylation factor
(ARF) and protein kinase C (PKC) and RhoA act synergistically to acti-
vate the PLD1 (Du et al., 2000; Hammond et al., 1997). Any alteration in
any of the regulatory proteins may have implications for the defective
activity of the PLD1. However, the level of impact because of the
alteration of a specific regulatory protein such as RhoA and its degree of
harmfulness in specific tissue is yet to be discovered.

Fig. 11. Structural representation of interactions between wild-type and mutant (G17E and I86N) RhoA proteins with GDP and PLD1. Panels (a), (b), and (c) show
the detailed interactions of key residues within the binding sites of wild-type, G17E, and I86N RhoA with GDP (left) and PLD1 (right), respectively. Significant
residues involved in the interactions are labeled, and hydrogen bonds are shown as yellow dashed lines. The surface representation highlights the interaction
interface between RhoA (cyan) and PLD1 (blue), with zoomed-in views emphasizing critical residues contributing to the binding between these proteins.
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In order to observe the functional anomalies of mutated RhoA,
protein-ligand-protein docking analysis was performed, and the acti-
vation of PLD1 by a GTP-dependent RhoA family protein was investi-
gated in this study. The PLD1 binds to the mutant RhoA-GDP complex
structures slightly differently than the native RhoA-GDP structure, as
demonstrated by protein-ligand-protein docking analysis. Studies have
shown that mutant protein has reduced binding affinity when compared
to the wild-type (Havranek and Islam, 2021). The binding affinity and
dissociation constant predicted values for G17E and I86N with PLD1 are
different at 25.0 ◦C than wild-type RhoA and PLD1. The docked
protein-protein interaction was visualized using the PyMol visualization
package, showing different interacting residues between wild-type and
mutated RhoA-GDP-PLD1 complex structures (Supplementary Fig. 1),
potentially due to structural changes caused by point mutation.

Previous research has shown that activated PLD1 is responsible for
enhancing cell survival when confronted with apoptotic signals (Kiss
et al., 1999). Another study has demonstrated the crucial role of PLD1 in
facilitating the insulin-stimulated GLUT4 fusion with the plasma mem-
brane, which, in turn, enhances glucose uptake (Huang et al., 2005).
Furthermore, in pancreatic β-cells, PLD1 plays a role in mediating in-
sulin secretion in response to glucose stimulation. These observations
suggest that impaired PLD1 function could potentially be linked to Type
II diabetes (Hughes et al., 2004). Interestingly, PLD1 is located within a
recognized genomic region associated with Type II diabetes, although
the specific disease-related gene within this locus has yet to be identified
(Huang and Frohman, 2007). Phospholipase D1 inhibition is linked to
upregulation of ICAT, which blocks colorectal cancer growth when
hyperactivated by Wnt/β-Catenin and PI3K/Akt signaling (Kang et al.,
2017). Inhibition of phospholipase D1 induces immunogenic cell death
and potentiates cancer immunotherapy in colorectal cancer (Hwang
et al., 2022).

A molecular dynamics analysis uncovered nsSNPs-induced fluctua-
tions within the kinase, regulatory, and C-terminal regions. Further-
more, the observed RMSD, RMSF, and Rg values suggest instability in
the mutant protein structures (Abid et al., 2023). Previously, one study
using simulation has shown that mutation in KRAS4B protein disrupts its
interaction with GTP, which ultimately hampers its activity in molecular
switching (Chen et al., 2024). In this study, molecular dynamics simu-
lations of 250 ns compared native and mutant protein structures using
RMSD, RMSF, Rg, and SASA. Mutants G17E and I86N exhibited signif-
icantly higher RMSD values compared to wild-type RhoA, indicating
structural deviation (Fig. 9(a)). RMSF analysis revealed notable differ-
ences in C-terminal fluctuation. Mutant G17E has higher Rg and SASA
values, signifying increased flexibility and protein expansion. Addi-
tionally, the mutants displayed distinct GDP binding positions, sug-
gesting reduced stability due to amino acid substitutions. As a result,
there are altered interaction properties between mutant RhoA and PLD1,
which may hamper the proper activation of PLD1. The binding free
energy analysis reveals that the wild-type RhoA-PLD1 complex has the
strongest affinity, while G17E and I86N mutants show significantly
reduced binding energies. Point mutations in G17E and I86N disrupt van
der Waals interactions and overall binding patterns, leading to altered
conformations and fewer interacting residues. In this study, our
computational method anticipates that the identified nsSNPs may be
responsible for the improper activation of the PLD1 protein, potentially
contributing to various diseases such as diabetes, cancer, and neuro-
logical disorders.

5. Conclusion

The human RhoA protein, a Rho family small GTPase, is involved in
the regulation of cytoskeleton organization, cell adhesion, cell motility,
and gene transcription. Very recently, its impaired function has linked to
cancer, cardiovascular, and neurological illnesses. However, this study
presents the first comprehensive analysis to map and predict the impact
of the most deleterious point mutations which regulate the fate of RhoA,

with the validation of molecular dynamics simulation. We reported
G17E and I86N as damaging nsSNPs that affect RhoA protein structure
and function. In comparison to the structure of the native protein, our
molecular dynamics simulation approach revealed a change in the de-
gree of structural deviation in mutant proteins. These mutants exhibit
significant variations in the RhoA-GDP-PLD1 complex interaction,
which could result in disruption of the activation of the PLD1 protein,
thereby impeding cell signaling and membrane trafficking and
contributing to the development of numerous diseases. Previously, no
other study predicted that the G17E and I86N mutants are linked to any
diseases. As a result, it is likely that predisposition to these unreported
nsSNPs may cause disease by altering protein activation or efficiency.
The outcomes of this study will help future genome association studies
to uncover harmful SNPs associated with specific cancer patients and
will be essential to develop personalized drugs.
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