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Abstract: A modern trend in traumatology, orthopedics, and implantology is the development of
materials and coatings with an amorphous–crystalline structure that exhibits excellent biocopatibility.
The structure and physico–chemical and biological properties of calcium phosphate (CaP) coatings
deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200,
250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4

and β-Ca2P2O7 were observed in the coatings using TEM and XRD. The increase in MAO voltage
resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg,
thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the
CaP coatings changed from −456 to −535 mV, while the zeta potential (ZP) decreased from −53
to −40 mV following an increase in the values of the MAO voltage. Numerous correlations of
physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes
of CaP coatings deposited at 200–250 V was strongly associated with elevated hTERT expression in
tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then
contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets
was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied
MAO voltage allowed the regulation of the physicochemical properties of amorphous–crystalline
CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological
mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible
role of negative ZP and Ca2+ as effectors of the biological effects of amorphous–crystalline CaP
coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability
for use in patients with chronic lymphoid malignancies.
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1. Introduction

Bioceramic materials based on calcium orthophosphates (CaPO4) are actively used in
biomaterials [1,2]. These calcium phosphate (CaP) biomaterials are the most suitable for
supporting processes of osseointegration and treatment of bone defects because their struc-
ture and chemical composition are similar to the mineral component of mammalian bones
and teeth [3,4]. Compounds such as hydroxyapatite (HA), tricalcium phosphate (TCP), octa-
calcium phosphate (OCP), and others take an active part in bone healing, bone replacement,
and reconstruction of bone defects [5,6]. However, the main disadvantages of bioceramic
materials are their unreliable mechanical properties and pronounced fragility [1,2]. This is
why metals are widely used as materials for creating structurally reliable orthopedic and
dental implants [7].

The surface of implants plays an essential role in the interaction with living tissue [7,8].
In some cases, fibrous tissue forms at the implant interface, which can lead to its loosening
and even loss. The modification of metal implants by coating deposition is one of the most
suitable and useful methods for improving their surface properties, such as in terms of
biocompatibility and biological activity, to intensify osteoinduction and angiogenesis and
prevent bacterial growth [8].

The latest trend in traumatology, orthopedics, and dental implantology is to develop
materials and coatings with amorphocrystalline structures such as bioglass and glass-
ceramics, which exhibit excellent biocompatibility, no cytotoxicity, and good mechanical
properties [7–12]. A unique combination of crystalline and amorphous phases and crystal
sizes and their distribution in an amorphous matrix allows regulation of the physicochemi-
cal and mechanical properties of materials and coatings [9–11]. Glass-ceramic materials
have significant capability to form a bone-like hydroxyapatite layer when interacting with
body fluid due to R-OH active groups forming on their surface [11–14]. Metal ions typically
present in a ceramic matrix can actively participate in metabolic processes of the human
body and influence enzymes to promote the formation of new bone tissue [12,13].

The synthesis of a coating on the metal surface can occur with the help of such methods
as electrophoretic deposition [7], pulsed laser deposition [8,12], sol–gel coatings [14], high-
frequency magnetron sputtering [15], and other methods. The plasma electrolytic oxidation
(PEO) or micro-arc oxidation (MAO) method is a flourishing, promising, and simple
method for surface treatment that allows generating ceramic-like coatings [13,16–19]. This
method makes it possible to obtain rough, porous coatings on implants with complex
shapes [20,21].

The formation of the coating in a micro-arc discharge is associated with the occurrence
of high-temperature processes in the zone of local micro-arc discharges under the influence
of an external high-voltage source [16]. The process of coating deposition occurs due to
oxidation of the metal substrate as well as due to the interaction of electrolyte components
with a metal substrate and with each other. As a result of high-temperature plasma-
chemical reactions, a ceramic-like layer is formed on the metal surface [18,19]. Due to
the high intensity and nonstationarity of micro-arc processes, the ceramic-like layer may
contain both an amorphous and crystalline phase. Previous studies have shown [20–22]
that ceramic coatings deposited by the MAO method in electrolytes containing HA or
β-TCP powder included amorphous calcium phosphates and crystalline phases such as
dicalcium phosphate anhydrous (DCPA, monetite), calcium pyrophosphate (CPP), and HA
and TCP in αor β forms. The amorphous calcium phosphates and monetite and α-TCP
can actively dissolve in the biological environment, stimulating biomineralization and the
formation of the HA layer [4,23,24].
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Da Rocha et al. [25] demonstrated that when hDPSCs contacted with monetite coat-
ing containing 5 mol% Sr, they exhibited the highest viability and proliferative activity
compared to the coatings with dicalcium phosphate dihydrous (DCPD, brushite) and HA.
On the other hand, the authors [26] describe hydroxyapatite and brushite coatings that
have high mechanical properties and corrosion resistance in combination with bioactivity.
Sasikumar et al. [27] reported biocompatible brushite coatings obtained on the surface of
magnesium alloys. DCPD coatings demonstrated super hydrophilic properties and high
biocompatibility as well as excellent corrosion resistance.

The surface properties of CaP coatings such as chemical composition, topography, zeta
potential, and hydrophilicity are significant since they determine the osteogenic properties
of the coatings [28–32]. Many studies have been conducted in recent years to identify
the reasons for bone reparation caused by biomaterials [33]. However, there is still no
clear understanding of the biological mechanisms involved in the bone formation process
stimulated by biomaterials. Osteoimmunology is a rapidly developing direction of scientific
research [34]. In this context, the immune cells are described as regulators of inflammation
and bone tissue regeneration switching [35] mediated, in part, by CaP materials [36,37].

CaPs are among the best grafts to repair and substitute damaged bone [38]. However,
there is still no clear evidence of which pathways are involved in the process of bone
regeneration caused by biomaterials in tumor patients. Little is known about the inter-
actions of CaP materials with leukemic immune cells. We have recently demonstrated
in vitro downregulation of morphofunctional reaction of human Jurkat T lymphoblast-like
leukemia-derived cell line (Jurkat T cells) and the possible role of negative surface charge
of micro-arc CaP coating on titanium (Ti) implants for the development of tumor cell hypo-
ergy [39]. Jurkat T cells change their electrostatic charge when the cells are activated with
microbeads coated with anti-CD3/CD28 antibodies [40]. In turn, cell activation triggers
a hyperergy of normal T lymphocytes [41] and leukemic Jurkat T cells to enhance their
motility and tissue infiltration [42].

Therefore, the aim of this investigation is to study the physico–chemical properties
(microstructure; phase composition; roughness, thickness, and mass; electrostatic and zeta
potentials) of CaP coatings on Ti plates prepared by MAO method at the different voltages
of 200–300 V in relation to the in vitro examination of morphofunctional behavior of tumor
Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodiesand contacted
with test CaP-coated samples.

2. Materials and Methods
2.1. Pretreatment and MAO Treatment Procedures

Commercial pure titanium (ASTM grade 2) plates (thickness, 1 mm; width, 10 mm,
length, 10 mm) (VSMPO-AVISMA Corp., Verkhnaya Salda, Russia) were used in this
study. The sample pretreatment procedures include polishing on silicon carbide paper
with a grade ranging to P2000, ultrasonic cleaning (Elmasonic S, Elma Schmidbauer GmbH,
Singen, Germany) in distilled water and ethanol for 10 min, and air-drying.

The Microarc-3.0 installation (ISPMS SB RAS, Tomsk, Russia) was used to carry out the
MAO process and consists of a pulsed DC power supply, titanium electrolytic bath as an
electrode (cathode), sample holder as the counterelectrode (anode), and PC for process con-
trol. In order to synthesize the CaP coatings, the electrolyte contained 5 wt.% nanosized HA
(Ca10(PO4)6(OH)2), 7 wt.% CaCO3, 27 wt.% H3PO4, and distilled water as a balance [43,44].
Stoichiometric HA powder consisting of aggregates of round-shaped nanocrystallites with
a size less than 50 nm was produced by solid-phase mechanochemical synthesis [45]. An
acidic suspension electrolyte (pH = 1–2) incorporating an undissolved nano-dispersed HA
was obtained. The MAO process was carried out in an anodic potentiostatic regime with
following parameters: pulse frequency of 50 Hz; pulse duration of 100 µs; time of 10 min;
and varied applied voltage of 200, 250, and 300 V [39,43,44].
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2.2. CaP Coating Characterization

Coating morphology and thickness were analyzed by scanning electron microscopy
(SEM, LEO EVO 50, Carl Zeiss, Oberkochen, Stuttgart, Germany). The thickness was
measured using SEM images of the coating cross-sections according to the ASTM E1382-9
standard protocol. Elemental composition was examined using electron dispersive X-
ray spectroscopy (EDX) on an INCA system (Oxford Instruments, High Wycombe, UK)
coupled to SEM. Coating microstructure was observed by transmission electron microscopy
(TEM, JEM 2100, JEOL, Tokyo, Japan), operating at 200 kV. A replica with the particles
removed from the CaP coating layer was studied by TEM. The SEM, TEM, and EDX studies
were conducted in the “Nanotech” Common Center for Collective Use (ISPMS SB RAS,
Tomsk, Russia).

Phase composition was identified by X-ray diffraction (XRD) in Bragg–Brentano
geometry using Shimadzu XRD-6000 equipment. XRD measurements were collected with
Cu Kα radiation (λ = 1.54 Å), operating at 40 kV and 30 mA in a 2θ range between 10◦ and
80◦, with a copper monochromator coupled and scan speed of 2.0◦/min. For the crystalline
phase indentation, the International Centre for Diffraction Data (ICDD) database was used
as a reference. The equipment was provided by the Tomsk Materials Science Center for
Collective Use (National Research Tomsk State University, Tomsk, Russia).

The integral electrical potential (EP) of the coatings was measured by the Eguchi
method (the method of lifting the electrode) [46] in the air at ambient conditions as in the
previous work [47].

The mass of the bare and coated samples was measured using a digital micro-analytical
balance (GR-202, A&D Company, Tokyo, Japan). Surface roughness indices were mea-
sured by a contact profilometer (Hommel-Etamic T1000 Basic, Jenoptik, Jena, Germany)
according to [48]. The traverse length and rate of the measured profile were 6 mm and
0.5 mm/s, respectively. Previously [20,47], it was shown that the definition of the average
roughness index Ra is sufficient to describe the surface roughness since it correlates directly
proportionally with other roughness parameters (Rz, Rmax, etc.).

The surface zeta potential (ZP) was determined with a SurPASS 3 electrokinetic surface
analyzer (Anton Paar GmbH, Graz, Austria) by measuring the streaming current and the
streaming potential in the Adjustable Gap Cell. In this experiment, two CaP coated samples
(thickness, 1 mm; width, 10 mm; length, 20 mm) were attached to the Adjustable Gap Cell
strictly parallel at a distance of 100 µm from each other. Such conditions are required to
measure the capillary streaming potential in the electrolyte. The 0.001 mol/L KCl with
pH~7 was used as the base electrolyte. The electrolyte pH varied from 5.4 to 8.0 by adding
different amounts of 0.05 mol/L NaOH to the base electrolyte.

2.3. Jurkat T Cell Culture

The Cell Bank of the Institute of Cytology (Institute of Cytology, Russian Academy
of Sciences, Saint Petersburg, Russia) provided the Jurkat T-cell culture. The medium is
based on αMEM (Sigma-Aldrich, St. Louis, MO, USA), supplemented with 10% inactivated
(for 30 min at 56 ◦C) fetal bovine serum (Sigma-Aldrich, St. Louis, MO, USA), 100 U/mL
penicillin/streptomycin (Sigma-Aldrich, St. Louis, MO, USA), and 0.3 mg/mL L-glutamine
(Sigma-Aldrich, St. Louis, MO, USA). Cell viability was assessed by flow cytometry
(FC) using annexin V-fluorescein isothiocyanate (FITC) (Abcam, Cambridge, UK) and
propidium iodide (PI, Sigma Aldrich, St. Louis, MO, USA) with the MACS Quant FL7
system (Miltenyi Biotec, Bergisch Gladbach, Germany) [36]. The initial viability of the cells
was 95%. αMEM was used, instead of RPMI-1640, as medium because the leukemic cell
culture had insufficient secretory activity in RPMI-1640 over 14 days (Table S1).

To produce cell activation, a 10 µL aliquot containing 2 × 106 of the anti-biotin
MACSiBead™ Magnetic T-cell Activation/Expansion/Expansion Kit particles (Miltenyi
Biotec, Bergisch Gladbach, Germany) loaded with antibodies to CD2, CD3, and CD28
antigens wad added once to the cell suspension. Anti-biotin MACSiBead™ particles
mimicked the stimulatory signal produced by antigen-presenting cells (APCs) and served
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as an activator for dormant T cells. The ratio between Jurkat T cells and the activating
particles was 1:2.

Ti substrate coated with CaP was added to each well of a 12-well flat-bottom plate
(Orange Scientific, Braine-l’Alleud, Belgium). When culturing the cells for 14 days, three
CaP-coated samples were used. For each group, samples were prepared at different applied
voltages. The test samples were not added to the control group. The cells were cultured
for 14 days at an air humidity of 95% and 5% CO2 at 37 ◦C. The medium in Jurkat T cells
culture was replaced every 3–4 days.

After culturing, cells were harvested to measure membrane antigen presentation,
apoptosis, necrosis, and hTERT gene expression. Spontaneous secretion induced by CaP
coating was measured in cell culture supernatants as described earlier [39].

The Local Ethics Committee of Innovation Park, Immanuel Kant Baltic Federal Uni-
versity, Kaliningrad, Russia approved manipulations with human cells in vitro (Permission
No. 2 from 6 March 2017).

2.4. Jurkat T Cell Viability and Immunophenotype Detection

After 14 days of cultivation, the viability of Jurkat T cells in vitro was assessed using a
MACS Quant flow cytometer (Miltenyi Biotec, Bergisch Gladbach, Germany). The cells
were incubated for 10 min in 195 µL binding buffer and 5 µL annexin V-FITC (Abcam,
Cambridge, MA, USA). Cells were washed and resuspended in 190 µL binding buffer and
10 µL PI solution (Abcam, Cambridge, MA, USA). The resulting mixture was analyzed by
FC. The percentage of living and dead (necrotic or apoptotic) cells was measured according
to the manufacturer’s protocol. Cell immunophenotype analysis was performed using
monoclonal antibodies (MAb) according to the manufacturer’s instructions.

MAb was labeled with violet blue (VioBlue), fluorescein (FITC), phycoerythrin (PE),
allophycocyanin (APC), or phycoerythrin cyanine 7 (PE-Cy7), as described elsewhere [39].
Before staining, Jurkat T cells were washed with phosphate-buffered saline (pH = 7.2).
Cells were incubated with a cocktail of monoclonal antibodies against CD45, CD3, CD8,
CD4, and CD25 (Abcam, Cambridge, UK) and CD45RA, CD45RO, CD95, and CD71 (e-
Bioscience, San Diego, CA, USA). The gating strategy and algorithm for cytometry of the
CD45+ CD3+ subpopulation were previously described [49].

The analysis of labeled MAb cells was performed using a MACS Quant flow cytometer
according to the manufacturer’s protocol (Miltenyi Biotec, Bergisch Gladbach, Germany).
Analysis of the FC results was performed using KALUZA software (Beckman Coulter, Brea,
CA, USA).

2.5. Gene Expression in Jurkat T Cells

Evaluation of the expression of differentiation genes (U2AF1L4, GFI1, and hnRNPLL)
and hTERT (human telomerase reverse transcriptase) by Jurkat T cells was assessed after
14 days of cultivation. Total RNA was isolated from samples using the RNA extract kit
(Eurogen, Moscow, Russia) following the manufacturer’s instructions. The resulting total
RNA (100 ng) was reverse transcribed into cDNA using reverse transcriptase MMLV
(Eurogen, Moscow, Russia) oligo(dT) 23 primer (20 µM) (Beagle, Moscow, Russia). For
clarity, Table 1 shows the oligonucleotide primers that were used (Beagle, Moscow, Russia).
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Table 1. Sequences of oligonucleotide primers used in the experiment.

hTERT (human telomerase reverse transcriptase)
hTERT_for5′-TGACACCTCACCTCACCCAC-3′

hTERT_rev5′-CACTGTCTTCCGCAAGTTCAC-3′

U2AF1L4 (U2 small nuclear RNA auxiliary factor 1 like 4)
U2AF1L4_for 5′-CTTCACAACAAGCCGACATTC-3′

U2AF1L4_rev 5′-CAAGGTTGTCGCACACATTC-3′

GFI1 (growth factor independent 1 transcriptional repressor)
GFI1_for5′-TGGAGCAGCACAAAGCC-3′

GFI1_rev 5′-GACAGTGTGGATGACCTCTTG-3′

HNRNPLL (heterogeneous nuclear ribonucleoprotein L)
HNRNPLL_for5′-CTCTCAATTCAGAATCCGCTTTATC-3′

HNRNPLL_rev 5′- CCATTGCTTGTATCCCATTTCTC-3′

RPLPO (large ribosomal protein)
RPLPO_for 5′-GGCGACCTGGAAGTCCAACT-3′

RPLPO_rev 5′-CCATCAGCACCACAGCCTTC-3′

hTERT_probe FAM-5′-ACCCTGGTCCGAGGTGTCCCTGAG-3′-BHQ-1
U2AF1L4_probe FAM-5′-CCAGGAGGTGTTCACAGAACTGCA-3′~BHQ-1
GFI1_probe FAM-5′-CGCAGGAACGGAGCTTTGACTGTA-3′~BHQ-1
HNRPLL_probe FAM-5′-TATGCAACCCTGTTGGCAAAGTGC-3′~BHQ-1
RPLPO_ probe Bgl635-5′-ATCTGCTGCATCTGCTTGGAGCCCA-3′-BHQ-2

According to the previously described scheme [50], the analysis of multiplex poly-
merase chain reaction (PCR) in triplicate was carried out. For this, special TaqMan probes
and primers at a concentration of 10 pM (Beagle, Moscow, Russia), as well as qPCRmixHS
reagents (Evrogen, Russia), were used. The work was carried out on a CFX96 qPCR instru-
ment (Bio-Rad, Hercules, California, CA, USA). The sizeable ribosomal protein (RPLPO)
gene was used as the reference gene.

The second derivative maximum method was used to analyze the PCR results. A
modified Pfaffl formula for different amplification efficiency was used to calculate the
relative expression levels of target genes. The ratio of the expression of the target gene to
the reference gene expression was taken as the basis for a relative quantification (relative
quantification), which is sufficient to study the physiological levels of gene expression.

2.6. Evaluation of Cell Secretion

Flow fluorimetry (FF) was performed to assess the secretome of activated T cells
during co-cultivation with the test materials. For this, an automated processing system
(Bio-Plex Protein Assay System, Bio-Rad, Hercules, CA, USA) and a cytokine analysis sys-
tem (Bio-Plex Pro Human Cytokine 27-Plex Panel, Bio-Rad, Hercules, CA, USA) were used.
This test system measures the concentration (pg/mL) of human cytokines and chemokines
such as tumor necrosis factor alpha (TNFα); basic fibroblast growth factor (FGFb); vas-
cular endothelial growth factor (VEGF); platelet growth factor (PDGF-BB); granulocyte-
macrophage colony-stimulating factor (GM-CSF); granulocyte colony-stimulating factor
(G-CSF); interleukins: (IL)-1β, IL-1Ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12,
IL-13, IL-15, IL-17; interferon gamma (IFN-γ); gamma-induced interferon protein 10 (IP-10;
chemokine 10 with motif CXC (CXCL10)); chemoattractant protein-1 of monocytes (MCP-
1; chemokine (motif CC) ligand 2 (CCL2)); inflammatory macrophage protein 1 alpha
(MIP-1α; CCL3); MIP-1β (CCL4); regulated upon activation, and normal T cell expressed
and secreted (RANTES; CCL5); and eotaxin [39]. All work was carried out following the
manufacturer’s instructions.

2.7. Statistical Analysis

Data analysis was carried out using the hypothesis testing methods and descrip-
tive statistics methods performed in the standard STATISTICA 13.3 software package for
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Windows. The following distribution parameters were calculated in the work: median
(Me) and 25% (Q1) and 75% (Q3) quartiles. The data normality was checked using the
Kolmogorov–Smirnov test. The nonparametric Mann–Whitney U test was used to assess
the statistical significance of differences. The relationship between the studied param-
eters was analyzed using Spearman’s rank correlations (rs) and regression (r) analysis.
Differences were considered statistically significant at a significance level of p < 0.05.

3. Results
3.1. Characterization of CaP Coatings

SEM images represent the surface and cross-sectional morphology of the MAO CaP
coatings deposited at the applied voltages of 200, 250, and 300 V (Figure 1). As can be
seen, the coatings are characterized by a complex hierarchical structure: numerous adjacent
pores and pore channels represent the internal morphology, and on the surface, there are
sphere-shaped structural elements (spheres) with internal pores and pores located in the
spaces between the spheres.

Figure 1. SEM images of the surface and cross-sectional CaP coatings deposited at 200 V (a), 250 V (b), and 300 V (c).

When the MAO voltage was increased from 200 to 300 V, the following morphological
transformations in the coatings were observed (Figure 1): the thickness increased from
50 to 105 µm; the spheres and pores increased in sizes, and the spheres were partially
destroyed; the plate-like crystals (up to 15 µm in length) were formed inside the destroyed
hemispheres on the coating surface; local macropores of 15–30 µm in size were formed
near the substrate inside the coatings. These morphological transformations in the coatings
inevitably led to an increase in average roughness (Ra) from 2.5 to 6.5 µm, in mass from 10
to 25 mg, and in the sizes of the structural elements (the average size of spheres was from
11.0 to 25.3 µm; the average size of pores was from 2.4 to 7.0 µm). The linear dependences
of these coating characteristics on the applied stress value were performed in our previous
work [39].

XRD studies showed that the CaP coatings formed at voltages of 200–250 V were
mainly in the X-ray amorphous state (Figure 2). The obvious region of diffuse scattering
from the quasi-amorphous phase in the range of 2θ = 20–38◦ and weak reflections from
a single Ti phase (ICDD #44-1294) of the substrate were observed in the corresponding
XRD patterns. On the other hand, XRD patterns of the coatings formed at higher voltages
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of 250–300 V included the region of diffuse scattering and reflections from the crystalline
phases of CaHPO4 (monetite; ICDD #09-0080) and β-Ca2P2O7 (ICDD #09-0346). With an
increase in the applied voltage from 250 to 300 V, the number of reflections from CaHPO4
and β-Ca2P2O7 phases and their intensity increased significantly. As a result, the volume
of the full crystalline phase in the coatings increased from 0 to 42 vol.%, while the volume
of the amorphous phase decreased from 100 to 58 vol.%. Thus, an increase in the MAO
voltage led to the coating structure transforming from the amorphous phase into the
amorphous and crystalline states. These XRD data are in good agreement with the SEM
results, indicating the plate-shaped monetite crystals on the surface of coating prepared at
300 V (Figure 1c).

Figure 2. XRD patterns of the MAO CaP coatings formed at 200, 250, and 300 V.

The TEM studies revealed that the MAO CaP coatings deposited at different voltages
had an amorphous–nanocrystalline microstructure. Bright field (BF) and dark field (DF)
TEM images with selected area electron diffraction (SAED) patterns for fragments of the
MAO coatings are shown in Figure 3. Both diffused halos from the amorphous phase and
weak point reflexes from crystalline phases were observed in SAED patterns (Figure 3b).
The interpretation of the SAED patterns revealed the same crystalline phases that were
observed in XRD patterns (Figure 2): β-Ca2P2O7 (ICDD #09-0346), CaHPO4 (ICDD #09-
0080) and TiO2 anatase (ICDD #21-1272). The nanosized crystallites of the CaHPO4 phase
in the reflex (112) along the boundaries of the coating particles are observed in the DF TEM
images (Figure 3c). Reflexes of TiO2 anatase observed on SAED (Figure 3b) correspond to
the oxide intermediate sublayer in the interface with the Ti substrate.
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Figure 3. BF TEM (a) and DF TEM (c) images and SAED pattern (b) of the particles of the MAO CaPcoatings. The area
where SAED was conducted is marked with a white circle (a). Nanocrystallites of the CaHPO4 phase in the reflex (112) are
marked with black arrows (c).

The Eguchi method showed that all the CaP coatings had negatively charged surfaces
with EP values in the range of −456 to −535 mV, depending on the value of the applied
MAO voltage (Figure 4a). A close linear dependence (r = 0.93; p < 0.0003; y = −302 − 0.77x)
of EP magnitude on applied voltage was estimated (not shown). As shown in Figure 1a,
the EP negative values increased with increasing MAO voltages. This effect can be due
to the increase in the coating surface roughness Ra from 2.5 to 6.5 µm, and, consequently,
the increase in the free surface area. As a result, there was an increase in the number of
negatively charged hydroxyl and phosphate groups on the coating surface.

Figure 4. Graphs of the coating surface EP and surface roughness Ra against the applied voltage (a); the coating surface ZP
and atomic Ca/P ratio against the applied voltage (b); the coating surface ZP against the electrolyte pH (c).

In this study, the surface ZP of the coatings and the EP have negative values. However,
these negative values were significantly lower than the EP values since they varied in the
range of −40 to −53mV (Figure 4b). This result is the opposite of the EP data (Figure 4a,b).
This may be attributed to the different mechanisms of EP and ZP formation. The studied
CaP coatings ZP varied in the range from −57 to −38 mV with an increase in pH from 5.4
to 8 units. All test samples had a negative charge at all pH values (Figure 4c). It can be
seen that the surface relief had a more significant effect on the electrostatic potential value
(Figure 4a), and the zeta potential was more influenced by the chemical composition of
the coating (Figure 4b). Significant neutralization of the surface negative ZP may result
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from the deposition of potassium cations and hydrogen protons from the KCl electrolyte to
the sample.

The coating formed at a low voltage of 200 V had a low Ca/P ratio of 0.3 and a ZP
value of −53 mV. The increase in the MAO voltage from 250 to 300 V led to powerful
discharges. The Ca2+ ions were involved in the process more intensively; thus, CaHPO4
and β-Ca2P2O7 crystalline phases were formed in the coatings (Figure 2); therefore, the
Ca/P ratio increased up to 0.6 (Figure 4b). As a result, the ZP value shifted to a less negative
region. It became −40mV, partly due to charge compensation by positive charged coatings
areas, perhaps because of Ca2+ precipitation from the solution. Thus, the coated sample
situated in an aqueous solution for ZP measurement did not lead to full compensation
of the coating charge. However, the ZP magnitude was statistically reduced on surfaces
prepared at an MAO voltage of 300 V in comparison to those prepared with 200–250 V
(Figure 4b).

Therefore, CaP coatings deposited at 300 V were distinct from all others, and an MAO
voltage of 200–250 V was used to prepare test samples for biological experiments.

3.2. In Vitro Cytological Properties of CaP Coatings
3.2.1. Viability and Immunophenotype of Activated Jurkat T Cells

Preactivation of Jurkat T cells with anti-CD2/CD3/CD28 antibodies that mimic the
stimulating signal produced by APCs led to a statistically increased viability of tumor-
derived cells after 14 days of culture (Table S2). The rough CaP-coated Ti samples enhanced
cell survival through significantly reducing the numbers of apoptotic and necrotic cells
compared with the control culture (Table S2).

The majority of viable CD45+CD3+ Jurkat T cells in the control culture expressed
the CD4+ (62%) and CD71+ (70%)profile of CD45RA+ naïve cells (not activated by the
antigen, 99%), with subsets of CD4+ T helpers expressing markers of early (approximately
28% of the CD25 subset) and late (39% of CD95+ cells) activation and apoptosis (Table S2).
Cell stimulation with anti-CD2/CD3/CD28 antibodies strongly augmented (p < 0.05) the
number of CD4+ cells (from 62.16% to 84.8%) and their CD71+ and CD95+ subsets (by 7.52%
and 32.32%, respectively). Thereby, the portion of CD4CD45RA+ naïve cells statistically
decreased, with the control. CaP-coating influence on an immunophenotype of activated
tumor cells was of little value, excluding a 1.8-fold drop in CD8+ cell proportion compared
with the control culture (Table S2).

Thus, CaP coating on the Ti sample promoted the in vitro survival of CD4+ subsets of
tumor-derived Jurkat T cells activated by anti-CD2/CD3/CD28 antibodies.

3.2.2. Secretion Capacity of Activated Jurkat T Cells

The spontaneous secretory activity in a 14-day control culture of naïve Jurkat T cells
was low (concentrations of 26 molecules less than 100 pg/mL, Table S3); simultaneously,
the VEGF median concentration (1735 pg/mL) was extremely high (more than 1 ng/mL)
according to [51].

Anti-CD2/CD3/CD28 antibodies modified the profile of biomolecules secreted by
Jurkat T cells. On the one hand, a 1.6–19-fold decrease in the concentrations of proinflamma-
tory cytokines (IL-6), growth factors (G-CSF), and chemokines (IL-8, eotaxin, MCP-1) was
observed. On the other hand, the levels of VEGF, IL-12, and MIP-1β increased 1.2–1.4 times
after 14 days of culture (Table S3).

The secretory spectrum of activated Jurkat T cells in the presence of CaP-coated Ti
substrates was similar to the cell culture without test samples. However, the secretion
of proinflammatory chemokines MIP-1α and MIP-1β was statistically higher than that in
both the control and activated cultures of tumor cells (Table S3). A close direct correlation
(rS = 0.81, p < 0.001, n = 12) between the Ra index of CaP surface and an increased MIP-1β
concentration was noted.

Thus, CaP coating on the Ti substrate maintained the proinflammatory capacity of
activated Jurkat T cells in the 14-day culture.
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3.2.3. hTERTExpression in Activated Jurkat T Cells Contacted with CaP-Coated
Ti Substrates

Tumor-derived Jurkat T cells preactivated with anti-CD2/CD3/CD28 antibodies and
contacted with the micro-arc CaP coating for 14 days showed a 4.5-fold upregulation in
hTERT expression compared with activated malignant cells cultured without test samples.

A decrease in the ZP magnitudes (Figure 4b) of negatively charged CaP coatings
deposited at 200–250 V was accompanied by elevated hTERT expression in Jurkat T cells
(r = 0.73; p < 0.03). Hence, the influence of ZP on transcription of the hTERTgene, which
regulates Jurkat T cell proliferation and survival [52], cannot be excluded.

The physical features of test samples (Ra index, thickness, and mass) closely correlated
(rS > 0.95; p < 0.001) with GFI1 gene expression.However, micro-arc CaP coatings prepared
at an MAO voltage of 200–250 V did not statistically affect the expression of these T cell
differentiation genes (GFI1, U2AF1L4, and HNRNPLL) (Table 2).

Table 2. Relative gene expression levels (fold) in Jurkat T cells preactivated with anti-CD2/CD3/CD28 antibodies and
collected from plastic after 14 days of in vitro coculture with the micro-arc CaP-coated titanium substrates, Me (Q1; Q3).

Parameters of Bilateral CaP Coating
on a Titanium Substrate, n = 3 a Relative Expression of Genes

Ra, µm Thickness, µm Weight, mg hTERT U2AF1L4 GFI1 HNRNPLL

3.1
(2.5; 4.7)

53.0
(39.5; 70.5)

14.5
(10.6; 19.1)

4.49 b

(1.80; 7.01)
−1.0

(−1.36; 4.11)
1.34

(−2.69; 1.57)
65.50

(−50.70; 168.39)
a n: the number of test samples; b p < 0.05 vs. control according to the Mann–Whitney U test; (−) sign means inhibition of relative gene
expression in comparison with a control cell culture (activated Jurkat T cells without CaP-coated substrates); expression of each gene was
measured in triplicate.

It is possible that CaP-coated Ti samples only enhanced preliminary stimulation of
14-day proliferative tumor cells with anti-CD2/CD3/CD28 antibodies.

4. Discussion

The complex, hierarchical (Figure 1), amorphous–crystalline (Figures 2 and 3) structure
of CaP coatings are associated with features of their synthesis using the MAO method.
MAO is a step-by-step process whereby coatings are formed layer by layer [43,53]. Such
layer-by-layer deposition, accompanied by a change in current (in our case) or voltage
over time, can lead to the formation of a hierarchy of microstructure, morphology, phase
composition, and elemental composition in the coatings. With an increase in MAO voltage,
the intensity of micro-arc discharges increases, and the amplitude and current density
increase. This leads to greater heating of the electrolyte and an increase in the deposition
rate of the coatings.

The structure of a substance synthesized from a melt has been known to depend on the
cooling rate. If the cooling rate is very high, the particles of the substance (atoms, molecules)
cannot form a thermodynamically stable crystalline state. In this case, an amorphous solid
is formed. Otherwise, under thermally stable conditions, the particles can organize a
structure with a two- or three-dimensional order and form a crystalline or semi-crystalline
solid [54]. In the MAO process, a coating is formed due to the action of short-lived micro-
discharges migrating over the surface of a metal substrate. During the rapid cooling of
the plasma in the micro-arc discharge channel, the substance is partially crystallized in the
form of compounds and partially formed in an amorphous and nanostructural state [13,16].

The XRD revealed that with an increase in MAO voltage, the amount of CaP crystalline
phases (CaHPO4, β-Ca2P2O7) increased from 0 to 42 vol.% and, consequently, the amount
of the amorphous phase decreased from 100 to 58 vol.% (Figure 2). These data are in a good
agreement with the TEM and SEM results. The micro-sized crystallites of monetite on the
surface of the coating deposited at 250–300 V were observed by the SEM (Figure 1b,c). In
addition, nanocrystallites of both CaHPO4 and β-Ca2P2O7were showed by TEM (Figure 3).
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Thus, the MAO CaP coatings have a complex polyphase composition including amorphous,
nanocrystalline, and microcrystalline states.

CaP materials in an amorphous state are thermodynamically unstable and easily trans-
form into a crystalline state. This determines their high biological activity and the ability to
stimulate biomineralization [55]. In addition, it was found that calcium orthophosphates
with the nanocrystalline structure stimulate a higher proliferative activity of various types
of cells since they have high surface energy and reactivity [56].

As mentioned above, MAO coatings with an amorphous–nanocrystalline structure
were formed under thermodynamically nonequilibrium conditions due to unsteady plasma–
chemical processes and rapid plasma cooling. In this case, there is a high probability of
uncompensated bonds and structural defects which determine the presence of a charge.

Studies of the coating EP revealed its high negative values in the range of −456 to
−535 mV. This can be the result of the anodic polarization of the Ti sample. The negative
ions contained in the electrolyte were most preferably attracted to the positive anode
(sample) and deposited in the coating. This is in good agreement with our previous
results of the infrared spectroscopy illustrated the intensive absorbance bands from the
phosphate and hydroxyl bonds in the CaP coatings [43]. In addition, previous studies
on the coating wettability showed that the polar component (responsible for strong polar
chemical bonds in the coatings, e.g., phosphate and hydroxyl bonds) prevailed significantly
over the dispersive component of the free surface energy [44].

Correlation analysis showed strong (rS > 0.8; p < 10−6; n = 30) direct relationships
(Figure 5) between technological (MAO voltage values), structural (Ra, mass, and thick-
ness), and elemental (Ca/P ratio) features of micro-arc CaP coatings on Ti plates. However,
structural and elemental indices did not closely influence the EP magnitudes (rS < 0.4;
p > 0.05; n = 24) of negatively charged CaP coatings. The conclusion that the EP does not
strongly depend on the structural and elemental properties of micro-arc CaP-coated Ti sam-
ples was formulated and partially supported by our previous results [47]. Conversely, the
ZP magnitudes of the negatively charged CaP coatings were related indirectly (rS > −0.76;
p < 0.004; n = 12) to the studied physicochemical indices (Figure 5) as well as the values of
MAO voltage (rS = −0.71; p < 0.01; n = 12).

Thus, the applied MAO voltage in the range of 200–300 V allowed regulation, to a
certain extent, of the physico-chemical and electrical properties of CaP-coated Ti substrates.
This may be a technological mechanism triggering the behavior of cells contacted with
micro-arc CaP coating.

It is well known that biomaterials acquire a surface electrical charge in liquids by
different processes such as ionization, ion adsorption, or ion dissolution [57]. Therefore, in
biological fluids, the charge state of biomaterials can change considerably. Mesenchymal
stem cells (MSCs) could be able to be recruited by an electric micro-environment through
galvanotaxis to the defect area and take part in the bone healing [58]. Zhang et al. [59]
demonstrated that a surface EP of approximately−77 mV generated by polarized nanocom-
posite PVDF-based membranes had a stimulating effect on in vitro MSC motility and
osteogenic differentiation as well as in vivo rapid bone regeneration leading to complete,
mature bone-structure formation. For reference, values of resting membrane potential vary
in healthy and cancer cells in the physiological range of −5 to −150 mV [60,61].

The negative sign of the EP and its high magnitude on micro-arc CaP-coated Ti substrates
have been recently proposed to be sensitive factors that can trigger the micro- and nanoscale os-
teoblastic differentiation and maturation of human MSCs [47] and hyperactivation-dependent
death of CD4+ Jurkat T cells [39].
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Figure 5. Strong relationships (rS > 0.75; n = 12–30) between the technological and physicochemical properties of micro-arc
CaP-coated Ti substrates. Positive and negative Spearman’s rank correlations are shown by red and blue circles, respectively.

The first question of our study was to investigate whether micro-arc CaP coatings
maintain their negative surface charge at high EP (−400–500 mV) in water, similar to un-
coated Ti specimens [62]. Usually, there is a reduction in the EP in electrolytes conditioned
by the electrokinetic interaction at the artificial surface and solution interface, forming a
double electric layer [63]. Indeed, our results showed an 8–13-fold decrease (compared
with the EP magnitudes) in the ZP values. At the same time, the CaP-coated samples
prepared at the different MAO voltages were immersed into KCl with NaOH solution
at pH = 7 (Figure 4a,b). However, full neutralization of negative surface charge was not
observed at pH values varying from 5.4 to 8 units (Figure 4c).

The prepared micro-arc CaP coatings contained Ca-deficient amorphous and crys-
talline CaHPO4 and β-Ca2P2O7 phases (Figures 2 and 3) and hadlow Ca/P atomic ratios
in the range of 0.3–0.6 (Figure 4b). Calcium phosphates with low Ca/P atomic ratios and
an excess amount of H2PO4 groups were negatively charged around pH 7.40 [64,65]. For
example, the negative sign of the ZP on monetite particles with grain sizes of 1–20 µm
immersed in 0.05 M sodium phosphate solution achieved a value of −45 mV [66]. Of note,
this value almost aligns with those of the tested CaP coatings (Figure 4c).

We recently demonstrated in vitro dissolution of the used micro-arc CaP coating [44]
accompanied by both ion (Ca2+ and PO4

3−) and CaP microcrystallite (possibly, monetite)
release [67]. The ever-increasing popularity of monetite as a biomaterial for biomedical
implants is explained by its better balance between resorption and new bone formation as
compared to other CaP phases. CaHPO4 particles are soluble in bodily fluids and promote
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additional ion elution, nucleation, and growth of bone apatite during the biomineralization.
Moreover, its biological (in vitro and in vivo) properties are discussed [68].

The ZP magnitude and sign of Ca-deficient CaP coatings are related to their EP as
well as ion exchange between the hydrated layer around the surface and net precipitation
of new material. A reverse of the negative charge of the ZP of CaP material occurs if the
immersion time exceeds 2 days at pH 7.0. This depends on proton, hydroxyl, calcium,
phosphate ion extraction, and changes in the electrical double layer surrounding a CaP
surface solution [64]. Similarly, negatively charged micro-arc CaP surfaces with a high Ra
index, Ca/P atomic ratio (Figure 4a,b), mass, and thickness of the coating deposited at 300 V
showed statistically lower ZP magnitudes (Figure 4c) than those received at 200–250 V.
Due to the more complex nature of ZP formation, the Ti substrates coated by CaPs at an
MAO voltage of 300 V were excluded from further experiments with cells.

Moreover, the high applied voltages (>250 V) strongly decreased (to below 12 MPa)
the adhesion strength of the micro-arc CaP coatings to the Ti-based substrate [43]. The
coating adhesion strength for medical devices must exceed the value of 15 MPa according
to ISO 13779-2:2018 Implants for Surgery—Hydroxyapatite—Part 2: Thermally Sprayed
Coatings of Hydroxyapatite.

The second item of our study was to estimate the in vitro effect of CaP-coated samples
on in vitro behavior of tumor-derived Jurkat T cells. We have previously described an
in vitro inhibiting action of micro-arc CaP-coated Ti samples on the resting (naïve) Jurkat T
cells and proposed the negative ZP and Ca2+ effectors of CaP roughness [39]. Values of ZP
less than −30 mV are considered strongly anionic and can influence cells [69]. Therefore,
the ZP of CaP ceramics is related to electrokinetic potentials known to cause a substantial
effect on the cell activities when applied exogenously [64].

In the current research, Jurkat T cells were activated by beads coated with a mi-
togenic mixture of anti-CD2/CD3/CD28 antibodies before 14-day in vitro contact with
CaP-coated specimens. This experimental model mimics a situation when leukemic im-
mune cells invade the bone marrow and other tissues and are exposed to the stimulating
signals produced by APCs. They reach the bone and/or implant surfaces in oncolog-
ical patients. In vitro simulation of cell–cell interaction of tumor T lymphoblasts with
APCs was accompanied by enhanced survival of CD4+, CD4+CD71+, and CD4+CD95+

subsets of CD45+CD3+ Jurkat T cells (Table S2) as well as a modified spectrum of the
produced biomolecules with a statistically significant increase in VEGF and MIP-1β (CCL4
chemokine) concentrations (Table S3) that promotes cancer cell proliferation and metasta-
sis [70,71]. CD95 activation can trigger a migration of tumoral cells [42] and invasion of
Jurkat line cells [72], displaying resistance to the CD95-mediated apoptotic signal. CD71
(transferrin receptor) recruitment was observed in response to mitogenic anti-CD3 and
CD28 antibodies, and CD71 involvement in forming the immunological synapses in Jurkat
T cell-APC contacts is proposed as an activating stimulus [73]. Moreover, IL-8 secretion de-
creased approximately six-fold (Table S3). IL-8 is an apoptosis-inducing factor for leukemic
cell lines (Jurkat, K562, HL-60, etc.) [74]; its close (99%) relationship with Jurkat T cell
necrosis in vitro is predicted in the case of CaP-based micro-arc coatings [75].

hTERT (human telomerase reverse transcriptase) possesses reverse transcription ac-
tivity and synthesizes the telomeric repeats on the human telomerase RNA template,
comprising the RNA template for the synthesis of DNA telomeres [52,76]. Telomerase ac-
tivity maintains the lifespan and immortalizes about 90% of malignant cells [77], including
Jurkat T cells [52].

Tumor-derived Jurkat T cells preactivated with anti-CD2/CD3/CD28 antibodies
strongly responded to the micro-arc CaP coating and showed a 4.5-fold upregulation
of hTERT gene expression after 14-day culture (Table 2). In turn, this underlined the
in vitro survival of CD4+ subsets of activated tumor-derived Jurkat T cells (Table S2) and
their proinflammatory secretion (Table S3) during 14-day contact with rough CaP coating
bearing a negative sign of ZP (Figure 4b,c). This was a little unexpected since we previously
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described a suppressing action of micro-arc rough CaP-coated and uncoated Ti substrates
on the in vitro lifespan of naïve Jurkat T cells [39,49].

Hence, the third critical question of our study was the possible mechanism underlying
the obtained effect. We showed close correlations between CaP coating features (Ra index,
thickness, mass, and the ZP value) (Figure 5) and molecular (gene and secretory) activities
of Jurkat T cells (see above). Understandably, there are at least three mediators, namely
the ZP, Ca flux, and micro- and nanoparticles released from micro-arc CaP coating which
can promote the in vitro survival of activated Jurkat T cells. However, the ZP value
mainly impacts tumor cells (via sedimentation and adherence) in direct contact with CaP
surfaces [49]; Ca2+ and CaP crystallites released during CaP biodegradation [67] may also
influence the suspension fraction of tumor-derived cells.

Extracellular Ca2+elevation has been shown to briefly provoke plasma membrane
depolarization (reduction) [78] and intracellular Ca2+augmentation [79]. Stimulation of the
T cell receptor (TCR) with CD3-specific antibodies led to increased intracellular free Ca2+

concentration in activated Jurkat cells. As a result, TCR functioning as a Ca2+-mobilizing
transmembrane receptor during T cell activation was concluded [80]. Simultaneously, an
increased cytoplasmic Ca2+ concentration neutralized negatively charged membranes in
the T cell activation zone of the TCR-CD3 complex to form an immunological synapse
and initiate or amplify TCR signaling microclusters in Jurkat cells [40]. TCR and CD3
ligands and Ca2+ ionophores behaved as interchangeable activating stimuli for Jurkat
cells [40,81]. Thereby, CD2CD3CD28-specific antibodies and extracellular calcium released
from micro-arc CaP coatings served as synergistic factors to stimulate Jurkat T cell behavior
in the presence of test samples.

Micro-arc CaP-coated Ti samples are moderately soluble (approximately 0.25 mM
per week) [67]. Additionally, extracellular Ca2+ levels at different pH values may regulate
the ZP negative charge due to increasing Ca/P atomic ratios of CaP coatings prepared at
200–250 V (Figure 1b,c) and ion redeposition (precipitation) on CaP surfaces [39]. This may
reverse the ZP sign during 14-day immersion in cell suspension as described by Ducheyne
et al. [64] for fluid solutions. Therefore, other physical–chemical irritants of micro-arc CaP
coatings (monetite crystallites, ZP) should be considered.

Details of the exact pathways underlying the synergistic enhancing effect of negatively
charged CaP surfaces (coatings and CaHPO4 particles) with anti-CD2CD3CD28 antibodies
on in vitro survival and hTERT expression in Jurkat T cells remain elusive. Jurkat cells bear
negative ZP on the cell surface caused by negatively charged membrane glycoproteins [82]
with the carboxyl groups of sialic acids [83]. Subsequently, trace amounts (0.01%) of Jurkat
E6.1 leukemic lymphoblasts uptake PEGylated polyglutamic acid capsules with a mean
size of 116 nm and negative zeta potential of −29 mV [84]. Moreover, Rahman et al. [85]
reported the in vitro cytotoxicity rather than the activating action of negatively charged
nanostructured lipid carriers on Jurkat cells after 72 h of treatment. Microbeads coated with
anti-CD3 and anti-CD28 antibodies causeless negatively charged membranes in the Jurkat
T cell stimulation zone (the immunological synapse) than in regions of the membrane
where the TCR is not activated [40]. Micro-arc CaP-coated Ti samples and monetite
crystallites possessed negative ZP values (Figure 4b) [66]. Therefore, the impact of their
direct activation on the immunological synapse of excited membranes of Jurkat T cells
could be excluded if there is not charge inversion caused by Ca2+ redeposition on artificial
surfaces from the solution.

According to obtained results and discussion, the ZP and transmembrane potential
(TMP) of Jurkat T cells may be targeted by the negative charge of CaP coatings and monetite
particles. Experimental findings of real connections are practically absent. In part, the ZP is
closely related to the TMP of leukocytes cultured in vitro, and the ZP value is affected by
the fixed charges outside the cell membrane [86]. However, the authors emphasized that
there was no general association between the changes in ZP and TMP. Indeed, Yao et al. [87]
proposed that a positive charge on nanoparticle surfaces induces membrane depolarization,
thus theoretically providing downstream intracellular events that activate macrophages.
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On the other hand, ZnO nanoparticles with a negative ZP (19 mV) exhibit interaction with
cell membrane proteins via hydrogen bond interaction with amino acid residues followed
by internalization and membrane depolarization [88].

Electric fields of magnitudes similar to those measured in vivo have been shown
to direct polarity in living cells and tissues. However, how cells sense EF signals and
reorganize the cytoskeleton, intracellular pH, and polarity machinery is poorly documented.
Electric fields may influence ion transport and/or membrane potential locally around the
cell [89]. The negatively charged ZP of the CaP surfaces is comparable to the TMP of
Jurkat cells and could perhaps enhance the membrane fluctuations of preliminary activated
tumor-derived cells, resulting in an intracellular [Ca2+] increase via different membrane
potential-regulating ion channels [90] and the change in the cation distribution in the
extracellular space [91]. Changes in the membrane potential, in turn, could indirectly
influence downstream cytoplasmic factors and gene transcription [92].

In summary, the primary data and possible pathways are presented in Figure 6.

Figure 6. Results and possible Jurkat T cell behavior pathways in conditions of 14-day in vitro costimulation with anti-
CD2/CD3/CD28 antibodies and rough micro-arc CaP-coated Ti substrates.

Of interest are the proposed implications of these findings. Bone marrow (BM) and the
endosteal surface of bone represent specific micro-environment territories (niches) that are
poised to maintain hematopoietic stem cells (HSCs), including lymphoid progenitors [93].
Endosteal (osteoblastic) microterritories encompass the bone matrix, the inner surface
that regulates the interconnections of MSCs, bone cells, and HSCs in the hierarchically
subdivided quiescent and activated niches [94].

In turn, healthy niches can provide an attractive milieu for leukemic cell colonization,
given the ability to provide signals that influence tumor cell survival [88] that are still niche
dependent. It is known that the niches maintain the survival of leukemic stem cells in a
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quiescent state [95]. Furthermore, tumor lymphoid cells can rearrange a micro-environment
towards their needs [96–98].

We propose that rough micro-arc CaP surfaces contain specialized artificial microter-
ritories (niches) that simulate the bone milieus for MSC differentiation into osteoblasts
and HSC regulation [99]. Based on our results, functional profiles (naïve or activated) of
leukemic Jurkat T lymphoblast-like cells allow them to use the cues produced by the niche
differently. The contact between APCs and tumor cells metastasizing the bone and marrow
tissues may dramatically replace quiescent signals by activating stimuli produced by niches
and, thus, promote further tumor growth progression.

5. Conclusions

Despite the limitations of the in vitro study, we found that rough CaP micro-arc
coatings with an amorphocrystalline structure generated negative EP values in air and
negative ZP in water solution. MAO method may be used as a technological tool to trigger
the behavior of cells through contact with micro-arc CaP coatings. There is an opinion
that negative values of EP and ZP should be carefully considered in biomaterial design,
and this concept may provide an innovative and well-suited strategy for regenerative
bone surgery [59]. Based on our data, a decrease in the ZP magnitudes of CaP coatings
deposited at 200–250 V was strongly associated with elevated hTERT expression in tumor-
derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and
then contacted in vitro with CaP-coated samples for 14 days. Thereafter, in vitro survival of
CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat
T cells. In this regard, micro-arc CaP coatings should be adequately tested to determine
their suitability for use in implants meant for patients with chronic lymphoid malignancies.
Future studies are necessary to confirm whether these results can be applied to actual
clinical situations in the orthopedic and dental fields.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ma14133693/s1. Table S1: Cytokine concentrations (pg/mL) in the supernatants of Jurkat
T cells cultured in the different mediums for 14 days; Me (Q1; Q3); Table S2: Viability and im-
munophenotype of CD45+CD3+ Jurkat T cells preactivated with anti-CD2/CD3/CD28 antibodies
and collected from plastic after 14 days of in vitro coculture with the CaP-coated Ti samples; Me (Q1;
Q3); Table S3: Cytokine concentrations (pg/mL) in the supernatants of Jurkat T cells preactivated
with anti-CD2/CD3/CD28 antibodies and cultured for 14 days in the presence of the CaP-coated Ti
samples; Me (Q1; Q3).
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