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Simple Summary: This study provided an analysis of machine-learning algorithms and the ability to
predict 10-year survival after breast cancer surgery. The univariate analyses and the global sensitivity
analysis provided in this study are especially helpful. This represents a novel opportunity for
understanding the significance of a preoperative SF-36 PCS score, a preoperative SF-36 MCS score,
postoperative recurrence, and tumor stage in predicting 10-year survival after breast cancer surgery
and could lead to clinicians being better informed about the precision and efficacy of management
for these patients. These results encourage a broader international validation of language models in
clinical practice and emphasize that preoperative physical and mental functioning should always be
an integral part of cancer care. Future studies may investigate further refinements of the machine-
learning algorithms applied in this study and their potential for integration with other clinical
decision-making tools.

Abstract: Machine learning algorithms have proven to be effective for predicting survival after
surgery, but their use for predicting 10-year survival after breast cancer surgery has not yet been
discussed. This study compares the accuracy of predicting 10-year survival after breast cancer surgery
in the following five models: a deep neural network (DNN), K nearest neighbor (KNN), support
vector machine (SVM), naive Bayes classifier (NBC) and Cox regression (COX), and to optimize the
weighting of significant predictors. The subjects recruited for this study were breast cancer patients
who had received breast cancer surgery (ICD-9 cm 174–174.9) at one of three southern Taiwan medical
centers during the 3-year period from June 2007, to June 2010. The registry data for the patients
were randomly allocated to three datasets, one for training (n = 824), one for testing (n = 177), and
one for validation (n = 177). Prediction performance comparisons revealed that all performance
indices for the DNN model were significantly (p < 0.001) higher than in the other forecasting models.
Notably, the best predictor of 10-year survival after breast cancer surgery was the preoperative
Physical Component Summary score on the SF-36. The next best predictors were the preoperative
Mental Component Summary score on the SF-36, postoperative recurrence, and tumor stage. The
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deep-learning DNN model is the most clinically useful method to predict and to identify risk factors
for 10-year survival after breast cancer surgery. Future research should explore designs for two-level
or multi-level models that provide information on the contextual effects of the risk factors on breast
cancer survival.

Keywords: breast cancer surgery; 10-year survival; machine learning; deep neural network; performance

1. Introduction

Breast cancer is the most common cancer diagnosis worldwide and the second most
common cause of cancer-related death in women worldwide [1]. In the general population,
the rate of survival for breast cancer surgery is high, but various factors can reduce survival
substantially, including demographic and clinical characteristics, care quality, and quality of
life (QOL) before surgery [2]. Therefore, the ability to obtain accurate predictions of 10-year
survival after breast cancer surgery can improve the efficacy of healthcare institutions in
allocating, coordinating, and expending limited healthcare resources for treating these
patients.

Researchers have developed various models for predicting breast cancer surgery
outcomes, but proposed models for predicting survival 10 years after breast cancer surgery
consistently reveal three major weaknesses. First, the accuracy of recently proposed models
for predicting breast cancer surgery survival is consistently inferior to that of conventional
models [3,4]; second, health insurance claims data is the most commonly used input data
for the proposed forecasting models is, which have limited real-time availability in the
typical clinical scenario [5,6]; and third, most proposed models do not consider factors
that have well established associations with breast cancer survival, e.g., demographic and
clinical characteristics, care quality, and QOL before surgery [7,8]. Statistical machine
learning and deep learning algorithms have been found to have diverse applications in the
medical field [4–9]. For example, these methods can be used to account for specific clinical
and genetic characteristics of the individual patient with a given disease, by improving the
accuracy of identifying and ranking risk factors for death from the disease. The continuing
accumulation of detailed real-world medical data in the current “information age” and
advances in machine learning technologies are providing researchers and practitioners
with the ability to generate models that consider numerous predictors in breast cancer
mortality risk stratification. The related studies are summarised in Table 1.

Table 1. Related work summary.

Authors (Years) Study Sample (Data) Forecasting Models

Moncada-Torres
et al., (2021) [4]

36,658 non-metastatic breast
cancer patients from the
Netherlands Cancer Registry
(NCR) dataset

Random survival forests (RF),
survival support vector machines
(SVM), extreme gradient boosting
(XGBoost), and Cox proportional
hazards (CPH)

Kuruc et al.,
(2021) [5]

RNA-seq data from the Cancer
Genome Atlas (TCGA)

Deep neural networks (DNN),
Cox proportional hazards (CPH)

Wang et al.,
(2021) [6]

1137 patients with IB-IIA stage
non-small cell lung cancer (China)
and compared generalization
performance on the Surveillance,
Epidemiology, and End Results
Program (SEER) dataset

Deep neural networks (DNN),
Cox proportional hazards (CPH),
SurvNet
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Table 1. Cont.

Authors (Years) Study Sample (Data) Forecasting Models

Bhambhvani,
et al., (2021) [7]

277 patients with genitourinary
rhabdomyosarcoma from the
Surveillance, Epidemiology, and
End Results Program (SEER)
dataset

Deep neural networks (DNN),
Cox proportional hazards (CPH)

Hou et al.,
(2020) [8]

7127 breast cancer cases and 7127
matched healthy controls (China)

Extreme gradient boosting
(XGBoost), random forest (RF),
deep neural network (DNN),
logistic regression (LR)

The primary aim of this study was to compare five forecasting models in terms of
their accuracy in predicting survival within the 10 years following surgery for breast
cancer. The five forecasting models include deep neural networks (DNN), K nearest
neighbor (KNN), support vector machine (SVM), naive Bayes classifier (NBC) and Cox
regression (COX). The secondary aim was to identify significant predictors of survival in the
10 years following breast cancer surgery. The model performance comparison results and
the identification of significant predictors of survival have two potential applications, as
healthcare administrators and researchers can use the results not only to develop, evaluate,
and improve healthcare policies but also to improve healthcare decision making.

2. Materials and Methods
2.1. Design of Study and Participants

The participants in this prospective cohort study were interviewed using structured
questionnaires. The inclusion criteria were a primary diagnostic code for breast cancer
(ICD-9 cm 174–174.9) and documentation of breast cancer surgery received at one of three
medical centers located in southern Taiwan in the period from June 2007, to June 2010.
The following four inclusion criteria were also applied: (1) a record of only one previous
breast cancer surgery; (2) a record of breast conservation surgery, modified reconstructive
mastectomy, or mastectomy with reconstruction; (3) a clear consciousness and fluency in
Chinese or Taiwanese; and (4) consent to be interviewed by the researchers. Four exclusion
criteria were applied: (1) the presence of a benign tumor; (2) re-recurrence; (3) cognitive
impairment; and (4) refusal to participate. After the application of the above criteria, 1178
of the remaining patients who consented to participate in writing and who completed the
SF-36 survey before surgery were enrolled in the study. Figure 1 presents a flowchart of the
procedure used to recruit the participants. The institutional review board at Kaohsiung
Medical University Hospital (KMUH-IRB-960186) approved the study protocol.

2.2. Five Forecasting Models

This study compared the forecasting performance in five models. The first forecasting
DNN model used is a simple multilayer perceptron, which contains 4 hidden layers. The
sizes of the first two layers were selected as 64 and 64 during hyperparameter tuning. Batch
normalization and dropout were also performed after the first two hidden layers [10,11].
Batch normalization was performed to normalize the output that passed into the next layer,
as it helps to reduce the covariance shifts of the hidden values. Dropout is used after batch
normalization for further regularization. The activation function used for all layers is the
Rectified Linear Unit (ReLU). The ReLU function is defined as y = max (0, x), a non-linear
function that allows the model to capture more complex relationships. The final activation
of the output uses a sigmoid function to produce values between 0 and 1. Additionally,
the optimal hyperparameters and architecture for the deep learning DNN model were
obtained through grid-search in a hyperparameter search and the number of epochs were
decided through the tuning process described in Table 2. The second forecasting model
used in this study was the KNN algorithm, in which variables are classified according to
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the closest training data in the feature space [12]. To perform a majority vote on outcomes
of the points that are k-nearest to the new sample, the KNN model uses a simple data
mining algorithm, an instance-based learning method. The third forecasting model used in
this study was SVM, which is a supervised algorithm that divides the feature space into
hyperplanes according to the target classes [13]. The SVM also uses kernel functions to
discriminate between nonlinearly separable classes. The fourth model was NBC, which
assumes that the presence of a particular feature in a class is unrelated to the presence
of any other feature [14]. That is, each feature is considered to be an independent and
equal contributor to the outcome. The fifth forecasting model was the COX model, which
is essentially a proportional hazards regression model. The COX model is a widely used
statistical tool in medical research for predicting patient survival, i.e., for investigating
whether patient survival is associated with one or more variables [15].
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Table 2. Parameters for classification models.

Parameters Deep Neural Networks

No. of hidden layers 4
No. of neuron in each hidden layers (64, 64, 128, 256)

Activation functions in each layer Rectified linear unit (ReLU) in hidden layers
and sigmoid on output layer

Loss function Binary cross entropy

Optimizer Adaptive moments estimation (Adam) with
0.001 learning rate

No. of Epochs 100

Dropout layers for regularization 20% dropout layer after second hidden layer
and 10% after third hidden layers

2.3. Potential Predictors

Patient data retrieved from patient medical records included demographic charac-
teristics (years of age, years of education, current residence with other family members,
marital status, body mass index, Charlson comorbidity index, size of tumor, stage of tu-
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mor, use of tobacco, use of alcohol, and history of breast cancer), clinical characteristics
(surgery type, American Society of Anesthesiologists score, chemotherapy, radiotherapy,
and hormonal therapy), care quality (length of hospital stay after surgery, rehospitalization
within 30 following after surgery, cancer recurrence, survival, and reconstructive surgery),
and preoperative QOL (preoperative SF-36 Physical Component Summary (PCS) score and
Mental Component Summary (MCS) score). This study used the Chinese version of the
SF-36. The Chinese version is well-validated and is commonly used in both clinical practice
and research [16]. To assess the overall physical functioning and mental functioning in the
study population in comparison with the general population of Taiwan, norm-based scor-
ing methods were used to calculate SF-36 PCS and MCS scores. A procedure for converting
the SF-36 PCS scores and MCS scores was performed to obtain the mean of 50, and standard
deviations of 10 in comparison with a “normal” group of breast cancer surgery patients
drawn from a nationwide population [17]. Multivariate analyses were performed with
the potential predictors as independent variables and survival 10 years after breast cancer
surgery was used as the dependent variable. Additionally, several data pre-processing
methods were conducted in preparation of the development of the prognostic models.
Missing data creates difficulties for the development of machine-learning models. As the
10-year survival after breast cancer surgery was an outcome of the study, patients with
missing data on 10-year survival were excluded when developing the machine-learning
models for that outcome.

2.4. Statistical Analysis

The individual patient who had received surgery for breast cancer was used as a
unit of analysis. The four steps of the statistical analysis in this study were as follows.
First, the 1178 cases in the overall database were randomized into a dataset of training
(824 cases) for use in model development, a dataset of testing (177 cases) for use in internal
validation, and a dataset of validating (177 cases) for use in external validation. Next,
the independent variables (significant predictors) and the dependent variable (10-year
survival) were fitted to the forecasting models. After model training, model outputs were
collected for each testing dataset. The second step of the statistical analysis was performing
univariate Cox regression analyses to identify significant (p < 0.05) predictors of 10-year
survival. To compare the study characteristics between the training dataset and the testing
dataset, a one-way analysis of variance was used to determine the statistical significance
of continuous variables, and a Fisher exact analysis was used to determine the statistical
significance of categorical variables (p < 0.05). The third step of the statistical analysis
consisted of comparing 1000 pairs of forecasting models with 95% confidence intervals in
terms of their accuracy in predicting survival in the 10 years following breast cancer surgery.
An independent t test was used to determine whether performance indices significantly
differed between each pair of models. Model performance was compared in terms of
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
accuracy, and area under the receiver operating characteristics (AUROC) curve. In the
last step of the statistical analysis, we performed a global sensitivity analysis to identify
variables that were significant predictors of survival. The global sensitivity analysis was
employed to identify the most influential parameters, and the input variables against the
output variable was expressed as the ratio of the network error (sum of squared residuals).
If a variable had a variable sensitivity ratio (VSR) that was equal to or lower than 1, the
variable was assumed to diminish performance and was removed.

The scikit-learn 0.21.2 function in Python (v3.7.6; Python Software Foundation, Wilm-
ington, DE, USA) was used to run the deep-learning DNN and other machine learning
models, and the Cox proportional hazard model was computed with the Lifelines v0.22.2
function in Python v3.7.6 and double-checked with JMP10.0 (SAS Institute Inc., Cary,
NC, USA). All statistical tests were two-sided; a p value of less than 0.05 was considered
statistically significant.
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3. Results
3.1. Study Characteristics

Table 3 shows that the mean age of the patients who had undergone surgery for
breast cancer was 52.2 years (standard deviation, 11.1 years). The tumor stage in the
largest proportion (37.4%) of patients was tumor stage II. Most of the breast cancer patients
(881 patients, 74.8%) had survived 10 years after surgery. Table 4 presents the univariate
Cox regression analysis results, which reveals that 10-year survival after breast cancer
surgery was significantly associated with the demographic and clinical characteristics of
the patient, the quality of care received in the 10 years following surgery, and with QOL
before surgery (i.e., preoperative SF-36 PCS and MCS scores) (p < 0.05). Therefore, these
predictors were included in the forecasting models.

Table 3. Characteristics of patients who had received breast cancer surgery at selected institutions
(N = 1178).

Variables N (%) Mean ± SD

Demographic characteristics
Age, years 52.2 ± 11.1

Education, years 10.2 ± 3.8
Current residence with family

member(s) 1127 (95.7%)

Married 1038 (88.1%)
Body mass index, kg/m2 24.5 ± 4.6

Charlson Comorbidity Index, score 1.0 ± 1.4
Tumor size 2.4 ± 1.8

Tumor stage
0 80 (6.8%)
I 354 (30.1%)
II 441 (37.4%)
III 303 (25.7%)

Smoker 55 (4.7%)
Drinker 29 (2.5%)

Breast cancer history 150 (12.7%)
Clinical characteristics

Surgery
BCS 154 (13.1%)

MRM 297 (25.2%)
Mastectomy with reconstruction 727 (61.7%)

ASA score 2.0 ± 0.4
Chemotherapy 788 (66.9%)
Radiotherapy 675 (57.3%)

Hormonal therapy 717 (60.9%)
Quality of care

Postoperative length of stay, days 2.9 ± 4.7
Readmission in 30 days 283 (24.0%)

Recurrence 219 (18.6%)
Survival 881 (74.8%)

Reconstruction 125 (10.6%)
Preoperative quality of life

Preoperative SF36 PCS score 56.0 ± 7.6
Preoperative SF36 MCS score 48.8 ± 16.2

Abbreviation: BCS, breast conserving surgery; MRM, modified radical mastectomy; ASA, American Society of
Anesthesiologists; PCS, physical component summary; MCS, mental component summary.
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Table 4. Univariate Cox regression analysis of associations between demographic/clinical character-
istics of breast cancer patients and survival 10 years after surgery (N = 1178).

Variables HR p Value

Demographic characteristics
Age, years 0.98 <0.001

Education, years 0.90 <0.001
Current residence with family member(s)

(no vs. yes) 0.33 <0.001

Marital status (unmarried vs. married) 0.57 <0.001
Body mass index, kg/m2 0.96 <0.001

Charlson Comorbidity Index, score 0.81 0.001
Tumor size, cm 0.83 <0.001

Tumor stage
I vs. 0 0.04 0.001
II vs. 0 0.17 <0.001

≥III vs. 0 0.22 <0.001
Smoker (no vs. yes) 1.36 0.043
Drinker (no vs. yes) 2.09 0.037

Breast cancer history (no vs. yes) 2.70 0.001
Clinical characteristics

Surgery type
MRM vs. BCS 0.49 0.001

Mastectomy with reconstruction vs. BCS 0.35 <0.001
ASA score 0.35 <0.001

Chemotherapy (no vs. yes) 0.46 <0.001
Radiotherapy (no vs. yes) 0.39 <0.001

Hormonal therapy (no vs. yes) 0.29 <0.001
Quality of care

Postoperative length of stay, days 0.71 <0.001
Readmission in 30 days (no vs. yes) 3.26 <0.001

Recurrence (no vs. yes) 2.17 0.002
Postoperative reconstruction (no vs. yes) 0.39 0.005

Preoperative quality of life
Preoperative SF36 PCS score 1.02 <0.001
Preoperative SF36 MCS score 1.03 <0.001

Abbreviation: HR, hazards ratio; BCS, breast conserving surgery; MRM, modified radical mastectomy; ASA,
American Society of Anesthesiologists; PCS, physical component summary; MCS, mental component summary.

3.2. Comparison of Forecasting Models

As Table 5 indicates, the dataset of training and the dataset of testing did not signifi-
cantly differ in study characteristics, including 10-year survival after breast cancer surgery;
therefore, samples were compared between the two datasets to increase the reliability of the
validation results. The data in Figure 2 also indicate that the DNN model compared to KNN,
SVM, NBC, COX models had a significantly (p < 0.001) higher sensitivity (97.18%, 47.37%,
73.24%, 41.41%, 78.87%, respectively), specificity (98.12%, 92.31%, 96.71%, 90.00%, 73.29%,
respectively), PPV (94.52%, 69.23%, 88.14%, 100.00%, 21.37%, respectively), NPV (99.05%,
82.76%, 91.56%, 75.27%, 31.82%, respectively), prediction accuracy (97.89%, 80.28%, 90.85%,
75.35%, 22.18%, respectively), and AUROC (99.70%, 70.00%, 85.00%, 50.00%, 41.10%, re-
spectively) values. Similar results were also observed in the dataset for testing and dataset
for validating simultaneously.
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Table 5. Demographic and clinical characteristics of breast cancer surgery patients in training dataset
versus testing dataset.

Variables Training Dataset
(n = 824)

Testing Dataset
(n = 177) p Value

Demographic characteristics
Age, years 52.7 ± 10.6 52.5 ± 13.1 0.148

Education, years 10.1 ± 3.8 10.6 ± 4.0 0.174
Current residence with family

member(s) 787 (95.5%) 168 (94.9%) 0.900

Married 722 (87.6%) 159 (89.8%) 0.598
Body mass index, kg/m2 24.7 ± 5.1 24.0 ± 3.8 0.481

Charlson Comorbidity Index,
score 1.0 ± 1.4 1.0 ± 1.3 0.570

Tumor size, cm 2.4 ± 1.9 2.4 ± 1.4 0.344
Tumor stage 0.690

0 67 (8.1%) 7 (3.9%)
I 251 (30.5%) 57 (32.5%)
II 305 (37.0%) 67 (37.7%)

≥III 201 (24.4%) 46 (25.9%)
Smoker 35 (4.2%) 12 (6.5%) 0.425
Drinker 18 (2.2%) 5 (2.6%) 0.711

Breast cancer history 74 (9.0%) 18 (10.4%) 0.755
Clinical characteristics

Surgery type 0.492
BCS 118 (14.3%) 21 (11.7%)

MRM 199 (24.1%) 55 (31.2%)
Mastectomy with reconstruction 507 (61.6%) 101 (57.1%)

ASA score 2.0 ± 0.4 2.0 ± 0.3 0.676
Chemotherapy 550 (66.7%) 124 (70.1%) 0.572
Radiotherapy 473 (57.4%) 108 (61.0%) 0.565

Hormonal therapy 496 (60.2%) 113 (63.6%) 0.582
Quality of care

Postoperative length of stay,
days 2.7 ± 1.9 2.9 ± 1.5 0.711

Readmission in 30 days 185 (22.4%) 48 (27.2%) 0.357
Recurrence 138 (16.8%) 48 (27.2%) 0.067

Postoperative reconstruction
Survival

74 (9.0%)
616 (74.8%)

18 (10.4%)
133 (75.3%)

0.564
0.846

Preoperative quality of life
Preoperative SF36 PCS score 56.0 ± 7.6 54.1 ± 6.6 0.758
Preoperative SF36 MCS score 48.4 ± 18.5 49.6 ± 4.2 0.863

Abbreviation: BCS, breast conserving surgery; MRM, modified radical mastectomy; ASA, American Society of
Anesthesiologists; PCS, physical component summary; MCS, mental component summary.
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Figure 2. Machine learning model comparison in terms of performance indices with 95% confi-
dence intervals for predicting 10-year survival after breast cancer surgery. (A) Dataset for train-
ing. All p values < 0.001. (B) Dataset for testing. All p values < 0.001. (C) Dataset for validating.
All p values < 0.001. Abbreviation: DNN, deep neural networks; KNN, k-nearest neighbor; SVM,
support vector machine; NBC, naïve Bayesian classifier; PPV, positive predictive value; NPV, negative
predictive value; AUROC, area under the receiver-operating characteristic curve.

3.3. Significant Predictors in the DNN Model

To identify the best predictors of survival, the training dataset was used to calculate
VSRs for the DNN model. Figure 3 presents the global sensitivity analysis results. As a
predictor of 10-year survival after breast cancer surgery, the preoperative SF-36 PCS score
had the highest VSR (6.61), followed by the preoperative SF-36 MCS score (VSR = 5.18),
postoperative recurrence (VSR = 3.05), and tumor stage (VSR = 1.58). All predictors in
the DNN models had VSR values of higher than 1. Therefore, all variables improved the
prediction performance of the DNN model.

3.4. Sensitivity Analysis

A further 177 validating datasets were used to verify the predictive accuracy in the
five models. Figure 2 compares the performance indices obtained in the external validation
of the models. With regard to predicting survival in the 10 years following breast cancer
surgery, all performance indices for the DNN model were again superior to those for the
other forecasting models (p < 0.001).



Biology 2022, 11, 47 10 of 16

Biology 2022, 11, x FOR PEER REVIEW 10 of 17 
 

 

Figure 2. Machine learning model comparison in terms of performance indices with 95% confidence 
intervals for predicting 10-year survival after breast cancer surgery. (A) Dataset for training. All p 
values < 0.001. (B) Dataset for testing. All p values < 0.001. (C) Dataset for validating. All p values < 
0.001. Abbreviation: DNN, deep neural networks; KNN, k-nearest neighbor; SVM, support vector 
machine; NBC, naïve Bayesian classifier; PPV, positive predictive value; NPV, negative predictive 
value; AUROC, area under the receiver-operating characteristic curve. 

3.3. Significant Predictors in the DNN Model 
To identify the best predictors of survival, the training dataset was used to calculate 

VSRs for the DNN model. Figure 3 presents the global sensitivity analysis results. As a 
predictor of 10-year survival after breast cancer surgery, the preoperative SF-36 PCS score 
had the highest VSR (6.61), followed by the preoperative SF-36 MCS score (VSR = 5.18), 
postoperative recurrence (VSR = 3.05), and tumor stage (VSR = 1.58). All predictors in the 
DNN models had VSR values of higher than 1. Therefore, all variables improved the pre-
diction performance of the DNN model. 

 
Figure 3. Global sensitivity analysis of deep neural network model in predicting 10-year survival 
after breast cancer surgery (N = 824). Abbreviation: VSR, variable sensitivity ratio; ASA, American 
Society of Anesthesiologists; PCS, physical component summary; MCS, mental component sum-
mary. 

3.4. Sensitivity Analysis 
A further 177 validating datasets were used to verify the predictive accuracy in the 

five models. Figure 2 compares the performance indices obtained in the external valida-
tion of the models. With regard to predicting survival in the 10 years following breast 
cancer surgery, all performance indices for the DNN model were again superior to those 
for the other forecasting models (p < 0.001). 

Figure 3. Global sensitivity analysis of deep neural network model in predicting 10-year survival
after breast cancer surgery (N = 824). Abbreviation: VSR, variable sensitivity ratio; ASA, American
Society of Anesthesiologists; PCS, physical component summary; MCS, mental component summary.

4. Discussion

This study provided an analysis of machine learning algorithms and the ability to
predict 10-year survival after breast cancer surgery, and the univariate analyses and the
global sensitivity analysis were especially helpful. This represents a novel opportunity
for understanding the significance of preoperative SF-36 PCS score, preoperative SF-36
MCS score, postoperative recurrence, and the tumor stage in predicting 10-year survival
after breast cancer surgery and could lead to clinicians being better informed regarding
the precision and efficacy of management for these patients. Furthermore, according
to our recent comprehensive review of the literature on machine learning, this study is
apparently the first to report the results of a performance comparison in machine learning
algorithms for predicting survival in the 10 years following breast cancer surgery. The
prediction performance of the deep-learning DNN model was clearly superior when all
five forecasting models were constructed using the same set of clinical inputs. Our survival
analysis results can be considered to be relatively reliable because the predictions were
based on prospective, longitudinal, and long-term (10-year) data obtained from multiple
medical institutions. Compared to the prediction models discussed in previous works,
in which predictions were based on a dataset for a single medical center [4–6], the use of
data from several institutions in our study provides a relatively more accurate and reliable
estimate of survival after breast cancer surgery. Additionally, the data used in this study
were registry data compiled from data for several institutions. In comparison with the use
of data for a single institution, the use of registry data in this study improved accuracy
in depicting breast cancer surgery treatment for a large population [4–6,18]. Another
advantage of using registry data was that the potential effects of a bias resulting from the
referral of patients or the bias resulting from the practices of a single high-volume surgeon
or a single high-volume institution were minimized [18].
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This study had several notable strengths. First, this study is, to the best of our
knowledge, the first to compare the performance of machine learning algorithms, including
regression-based method, in predicting survival in the 10 years following surgery in a large
general population of patients who had received surgery for breast cancer. In contrast with
other machine learning tools proposed for prognostic use in oncology, this study performed
model training using data for all patients treated at oncology or hematology/oncology
clinics. That is, all patients were included regardless of whether they had received cancer-
directed therapy [5,7,8]. Another strength of this study is that the forecasting models and
machine learning algorithms in this study included a higher number of predictors compared
to those reported in the literature, and data for all of the included predictors were typically
available in real time and in structured formats from medical recorder databases [6–8].
Therefore, in the general oncology setting, model training can be performed more efficiently
in the proposed forecasting models compared to previous machine-learning algorithms. A
final strength of this prospective longitudinal cohort study is that patients were followed
up over a 10-year period, which is longer than the follow up performed in previous works.
The long follow-up period was essential, because, in the typical clinical setting, most of the
patients that the model classified as high-risk patients would receive counseling in terms
end-of-life preferences. Despite the above strengths of this study, the findings should be
interpreted cautiously because the gradient-boosting model that was used in this study
was an older version with a less robust feature selection and hyperparameter optimization
compared to recently developed models.

Compared to the other models, the superior forecasting performance of the DNN
model and other advantages resulting from its unique characteristics are well established in
the literature and are well supported by comprehensive statistical analyses and comparisons
in previous works [19–21]. One advantage of the DNN model is its ability to process
incomplete or noisy inputs more appropriately and more accurately compared to other
models when no missing data occurs in the dataset. Another advantage is that linear
and non-linear DNN models, which have many potential applications in analyzing data
contained in large-scale medical databases, are easy to construct as long as the input data
are highly correlated, even if they are not normally distributed. Predicting prognosis is
only one of many potential applications of DNN models in clinical research. The model
proposed in this study can also be extended to predicting outcomes of treatments other
than for breast cancer surgery.

This study performed a global sensitivity analysis of the weights of significant pre-
dictors of 10-year survival in patients who had received breast cancer surgery. The best
predictor of survival was the SF-36 PCS score, and the next best predictor was SF-36 MCS
score. This finding supports earlier reports that SF-36 PCS and MCS scores are the best
predictors of breast cancer surgery outcomes. Specifically, PCS and MCS scores are better
outcome predictors in comparison with cost of treatment, QOL, hospital readmission, com-
plications, and overall post-surgery survival [22–24]. In a recent prospective cohort study,
Chiu et al. performed a longitudinal analysis studying the effect of preoperative QOL on
minimal clinically important differences (MCIDs) and survival in patients who had received
surgical resection of hepatocellular carcinoma [24]. The authors reported that preoperative
SF-36 PCS and MCS scores were significant independent predictors of MCIDs and survival
after resection (p < 0.001). The most suitable explanation is that patients who already have
high QOL scores before surgery has less potential to achieve QOL improvements large
enough to meet MCID criteria. Another possible explanation is that the high subjectivity of
the QOL score as a measure of physical and emotional impacts of cancer or its treatment
makes it a less reliable measure compared to traditionally applied measures, which are
relatively more objective. Regarding the use of QOL scores as predictors of cancer survival,
Quinten et al. performed a meta-analysis of patient data from a selection of 30 randomized
controlled trials to investigate whether baseline QOL is a prognostic predictor of cancer
survival [25]. Their meta-analysis, which included data for 10,108 patients with cancer
at 11 different sites, revealed that baseline QOL is, in addition to biological measures, a
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significant independent predictor of survival in the general population of cancer patients.
Currently, preoperative SF-36 PCS and MCS scores are well recognized as useful outcome
predictors in patients who have undergone cancer surgery. For investigators, the use
of these scores provides a more comprehensive depiction of the potential outcomes of a
proposed (palliative) treatment, including potential negative outcomes such as reduction
in functional status and reduction in overall QOL. Thus, in addition to considering clinical
outcomes, future randomized controlled trials should consider QOL as a standard outcome
measure. Stratifying patients by baseline QOL in future trials would increase the homo-
geneity of treatment groups, which would then improve the reliability of the results and
simplify the interpretation of the results.

This study revealed a significant negative association between the recurrence of cancer
after breast cancer surgery and 10-year survival after surgery. During the study period,
219 patients (18.6%) suffered postoperative recurrence, and the regular surveillance for
cancer recurrence is known to be an independent protective factor in cancer survival [26,27].
A patient who undergoes regular surveillance has an improved likelihood of receiving
treatment that has curative potential at or near the time of cancer recurrence, which then
improves survival. For example, a recent multicenter clinical trial of a large population of
patients with hepatitis B virus-related hepatocellular carcinoma reported that cancer recur-
rence within less than 2 years following curative resection was independently associated
with 10-year survival. Curative treatment for the first recurrence of cancer suffered by the
patient was identified as another independent protective factor in 10-year survival was [28].
For an improved long-term survival rate of patients who require surgical treatment for
cancer, regular surveillance for cancer recurrence after surgery is essential. Therefore,
clinicians should aim to provide their patients with sufficient information regarding recur-
rence, including rate of recurrence, signs and symptoms of recurrence, and practices and
interventions for reducing recurrence risk. Additionally, patients are more likely to comply
with the scheduled follow up and surveillance procedures if they clearly understand the
underlying rationale for such procedures.

The importance of a surveillance program for early diagnosis of cancer recurrence
was well established in a recent retrospective study by Lee et al. The authors analyzed
patterns of recurrence in patients who had received curative hepatectomy for hepatocellular
carcinoma and discussed the implications of recurrence patterns for postoperative surveil-
lance [29]. The authors concluded that, in patients who underwent curative hepatectomy
for hepatocellular carcinoma, recurrence was very common; therefore, the early diagnosis
of hepatocellular carcinoma recurrence and early curative retreatment can improve survival
in these patients. After surgery, breast cancer patients are vulnerable to various cancer-
related comorbidities that can contribute to poor outcomes of surgery, e.g., postoperative
complications, extended hospital stay, short survival, and high cost of treatment.

Finally, surveillance is important for detecting cancer at an early stage, the point at
which the widest range of treatment options is still available and when the chances of
survival and recovery are relatively high. For example, Chou et al. reported that survival
after cancer surgery decreases as tumor stage increases [30]. Our global sensitivity analysis
also indicated that postoperative 10-year survival tends to decrease in patients with late-
stage tumors, which is consistent with other studies [30,31].

For a further validation of the significant association observed between risk factors and
10-year survival after breast cancer surgery, Table 6 lists selected studies that have identified
risk factors for poor survival after breast cancer surgery [24,30,32–36]. As in these previous
works, our study demonstrated that the preoperative SF-36 PCS score, preoperative SF-36
MCS score, postoperative recurrence, and tumor stage are significantly associated with
10-year survival after breast cancer surgery (p < 0.05).
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Table 6. Mortality risk factors after breast cancer surgery: factors reported in selected studies.

Authors (Country) No. of Subjects Measures Findings

Chiu et al., 2019
(Taiwan) [24]

369 patients with
hepatocellular carcinoma

Functional Assessment of
Cancer Therapy-Hepatobiliary
(FACT-Hep) and the SF-36

1. Overall postoperative survival
was significantly associated with
preoperative SF-36 physical
component summary score (hazard
ratio, HR = 1.05, p < 0.001) and
preoperative SF-36 mental
component summary score
(HR = 1.03, p < 0.001).
2. Overall postoperative survival
was significantly associated with
preoperative FACT g total score
(HR = 1.07, p < 0.001) and
preoperative FACT-Hep total score
(HR = 1.10, p < 0.001).

Quinten et al., 2014 [32]

11 different cancer sites
pooled from 30 EORTC
randomized controlled trials
were selected for this study
(7417 cancer patients)

European Organisation for
Research and Treatment of
Cancer 30-Item Core Quality
of Life Questionnaire
(EORTC-QLQ-C30)

Overall postoperative survival was
significantly associated with
preoperative EORTC-QLQ-C30
physical functioning (HR = 0.86,
p = 0.0119), emotional functioning
(HR = 1.13, p = 0.002), global health
status (HR = 0.92, p = 0.017), and
nausea and vomiting (HR = 1.17, p
= 0.002).

Heijl et al., 2010
(Netherlands) [33]

220 patients with potentially
curable esophageal
adenocarcinoma

Medical Outcome Study Short
Form-20 (SF-20) and
Rotterdam Symptom
Checklist (RSCL)

1. Overall postoperative survival
was significantly associated with
preoperative SF-20 physical
symptom scale (HR = 0.67,
p = 0.021) and endosonographic
T-stage (HR = 0.05, p = 0.003).
2. Disease-free postoperative
survival was significantly
associated with preoperative SF-20
physical symptom scale (HR = 0.64,
p = 0.024) and endosonographic
T-stage (HR = 0.03, p < 0.001).

Chen et al., 2020
(China) [34]

149 patients with gastric
cancer

Overall postoperative survival was
significantly associated with early
recurrence during the study period
(p = 0.011).

Huh et al., 2013
(South Korea) [35]

1159 patients with colorectal
cancer

Overall postoperative survival was
significantly associated with early
postoperative recurrence (HR =
2.42, p < 0.001) and tumor stage (HR
= 2.38, p < 0.001).

Knight et al.,
2021 [36]

15,958 patients with colorectal
and gastric cancer from 428
hospitals in 82 countries

Overall postoperative survival was
significantly associated with cancer
stage (odds ratio = 1.80, p = 0.036).

Chou et al., 2016
(Taiwan) [30]

8425 patients over 70 years
old with solid cancer

3-month postoperative survival was
significantly associated with tumor
stage (II, III, IV vs. I)
(HR = 1.66~4.23, p < 0.001).

This prospective observational study investigated the survival outcomes in a cohort
of breast cancer patients who had undergone breast cancer surgery at one of several
healthcare institutions in Taiwan. The deep-learning DNN model developed in this study
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accurately identified factors significantly associated with survival within 10 years after
surgery. However, the proposed forecasting model has many possible clinical applications
other than prediction of survival after surgery. For example, one potential application by
healthcare institutions is in evaluating the effectiveness of medical treatment, which is
essential not only for maintaining and improving the quality of healthcare, but also for
reducing healthcare costs and for the efficient allocation of limited healthcare resources.
Since the proposed DNN model demonstrated satisfactory accuracy in predicting survival
in the 10 years following a breast-cancer-surgery procedure, performed in one of the
participating institutions, healthcare administrators at other institutions can use the model
to demonstrate the need for prompt and appropriate postsurgical treatment. Broader
potential applications of the model in Taiwan and elsewhere include the development and
promotion of public healthcare policies as well as the development of decision-support
systems, which would ultimately contribute to improved health and outcomes, not only
in breast cancer surgery patients, but in all cancer patients. Although the results of this
study indicate that the DNN model has a strong potential application in the healthcare
field, further studies are needed to determine the true clinical relevance of the DNN model,
and to clarify its practical clinical applications in predicting prognosis and in optimizing
medical management for breast cancer patients after surgery.

Since the results of this study were derived through an analysis of a large database,
some limitations should be considered when interpreting the results and applying them
in practice. First, our study revealed the numbers of modified radical mastectomy or
mastectomy with reconstruction being higher than that of breast-conserving therapy, which
is contradictory to the prevalence in the USA and Europe. The process of making a
treatment decision is complicated and involves many factors influencing patients’ choice
of surgery type, and therefore requires further study. Second, the comparisons made in
this study do not consider post-surgery complications that are known to be associated with
poor survival after breast cancer surgery. Third, although the datasets used include several
variables, it lacks some of the key variables for predicting 10 year survival. These include
the intrinsic subtype, pathological factors, multi-gene assay, etc. Fourth, the comparisons
were limited to individual DNN, KNN, SVM, NBC and COX models. Future works may
consider using an alternative study design that compares a balanced sample of preoperative
SF-36 PCS or MCS scores at the first level and then randomly selects breast cancer patients
at the second level. Multilevel modeling may also be useful for detecting the interactive
effects of patient characteristics, clinical characteristics, quality of care and preoperative
QOL in breast cancer patients who suffer recurrence. Finally, further studies are needed to
compare performance among different combinations of forecasting models, particularly
in analysis of medical data. Despite the limitations acknowledged above, the robustness
and statistical significance of the results obtained in this study support the validity of its
conclusions.

5. Conclusions

The results of the model-performance comparisons in this study support our conclu-
sion that the deep-learning DNN model is the most clinically useful method in predicting
survival in the 10 years following surgery for breast cancer. For breast cancer patients who
are candidates for breast cancer surgery or have already received surgery, the survival
predictors identified in this study can be used to educate patients in terms of the likely
course of recovery after surgery and other health outcomes. The results of the current
study further suggest that 10-year survival among women with breast cancer surgery could
be enhanced by targeted interventions aimed at increasing patients’ overall physical and
mental functioning. The implications of these findings can be profound, as surgeons and
patients can be equipped with a method to predict 10-year survival after surgery. The cur-
rent study suggests that cancer survival may be improved through preoperative physical
and mental functioning, and that there is always time for such methods to be implemented.
These results encourage a broader international validation of language models in clinical
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practice and emphasize that preoperative physical and mental functioning should always
be an integral part of cancer care. Future studies may investigate further refinements of
the machine-learning algorithms applied in this study and their potential integration with
other clinical decision-making tools. Hybrid methods may provide additional data that
can be used to improve the prediction of survival after breast cancer surgery. Such data
could also be vital for developing, promoting, and improving healthcare policies related to
post-surgery treatment of breast cancer patients. Additionally, future research can explore
designs for two-level or multi-level models that provide information on the contextual
effects of preoperative SF-36 PCS and MCS scores on breast cancer survival.
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