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Abstract: The spread of multidrug-resistant Gram-negative bacteria, which is associated with the
distribution of beta-lactamase genes and class 1 and 2 integrons, is a global problem. In this study, in
the Moscow neurosurgery intensive care unit (neuro-ICU), the high prevalence of the above-stated
genes was found to be associated with intestinal and tracheal carriage. Seven-point prevalence
surveys, which included 60 patients in the neuro-ICU, were conducted weekly in the period from
Oct. to Nov. 2019. A total of 293 clinical samples were analyzed, including 146 rectal and 147 tracheal
swabs; 344 Gram-negative bacteria isolates were collected. Beta-lactamase genes (n = 837) were
detected in the isolates, including beta-lactamase blaTEM (n = 162), blaSHV (n = 145), cephalosporinase
blaCTX–M (n = 228), carbapenemase blaNDM (n = 44), blaKPC (n = 25), blaOXA–48 (n = 126), blaOXA–51–like

(n = 54), blaOXA–40-like (n = 43), blaOXA–23-like (n = 8), and blaVIM (n = 2), as well as class 1 (n = 189) and
class 2 (n = 12) integrons. One extensively drug-resistant Klebsiella pneumoniae strain (sequence type
ST39 and capsular type K23), simultaneously carried beta-lactamase genes, blaSHV–40 and blaTEM–1B,
three carbapenemase genes, blaNDM, blaKPC, and blaOXA–48, the cephalosporinase gene blaCTX–M,
and two class 1 integrons. Before this study, such heavily armed strains have not been reported,
suggesting the ongoing evolution of antibiotic resistance.

Keywords: rectal and tracheal carriage; carbapenemase genes; class 1 and 2 integrons; neurosurgery;
intensive care unit; Gram-negative bacteria; Klebsiella pneumoniae; Escherichia coli; Acinetobacter bau-
mannii; Pseudomonas aeruginosa

1. Introduction

Antimicrobial resistance is one of the most serious threats to global health care [1,2].
In the last two decades, an increased number of infections caused by multidrug-resistant
Gram-negative bacteria (MDR-GNB) have been reported [3,4]. As a result, increases in
morbidity and mortality rates have been observed, as well as a rise in health care costs [5].
Carbapenems were the most effective antibiotic therapy for infections caused by MDR-GNB
until the increased prevalence of carbapenem resistance was described in clinical settings [6].
The widespread dissemination of carbapenem-resistant Gram-negative bacteria (CR-GNB)
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is associated with carbapenemase genes in several functional classes (class A (blaKPC), class
B (blaNDM and blaVIM), and class D (blaOXA-48)) and the decreasing efficacy of carbapenem.
In the case of CR-GNB, only some “second-line” drugs, such as polymyxins, tigecycline,
and fosfomycin, and some “last resort” antibiotics, such as aztreonam/avibactam, cef-
tazidime/avibactam, meropenem/vaborbactam, and imipenem/relebactam, have demon-
strated their effectiveness in some cases [7–9]. CR-GNB, including Klebsiella pneumoniae,
Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, pose a significant
public health threat [10]. These bacteria are members of the ESKAPE group of pathogens
(Enterobacter spp., Staphylococcus aureus, Klebsiella spp., Acinetobacter baumannii, Pseudomonas
aeruginosa, and Enterococcus spp.); this group notoriously causes the most health-care-
associated infections and carries patterns of antimicrobial resistance [11,12]. The risk of
CR-GNB acquisition has increased four-fold with carbapenem exposure, and new meta-
analyses have confirmed excess mortality associated with such bacteria [3]. The trend
toward an increase in the resistance of Gram-negative species among the ESKAPE group
is of great concern, while it has been shown that the resistance of Gram-positive bacteria
remains almost the same [13].

Recently, the asymptomatic carriage of CR-GNB and carbapenem resistance genes
(CRGs) has been described in hospitalized patients as well as in healthy people in many
countries [14–18]. The colonization of CR-GNB and CRGs has led to the development of
nosocomial infections, an increase in the bloodstream infections, and a four-fold increase in
mortality rate [3,19]. It has been suggested that a solution to this problem could be based
on compliance with infection control measures such as reducing contacts between patients
in the ICU and the utilization of the one-patient–one-nurse approach, rapid diagnostic
techniques, and optimization treatment schemes [20–23]. To our knowledge, in Russia, little
is known about the MDR-GNB and CRG colonization rates in hospitalized patients or in the
wider community. Over the past 15 years, several single and multicenter microbiological
surveillance studies regarding MDR-GNB hospital-acquired infections have been conducted
in the Russian Federation [24–29]. These studies only contained descriptive reports and
did not highlight the mechanisms of antimicrobial resistance or the colonization of patients
via MDR-GNB and CRGs. Recently, the fecal carriage of Klebsiella pneumoniae ST23 was
described in healthy persons in Russia [30].

Previous studies have shown that surgical antibiotic prophylaxis, commonly used
in surgical hospitals, can influence the landscape of clinical isolates and their resistomes;
therefore, prophylaxis protocols must be regularly reviewed on the basis of epidemiological
surveys estimating patients’ colonization, especially by multidrug-resistant bacteria [31].
Screening for asymptomatic CR-GNB colonization and implementing contact precautions
will reduce patient-to-patient transmission [23].

In order to provide possible future interventions for clinically rational antibiotic usage,
in this study, our aim was to evaluate the rate of the rectal and tracheal carriage of MDR-
GNB and CRGs in patients in the Moscow neuro-ICU. The novelty in our research is the
description of “heavily armed” CR-GNB strains that were not reported prior to this study.
The results of this study should alert clinicians to the existence of asymptomatic antibiotic
resistance, which is latently present in ICU patients and could be the reason for novel
outbreaks of hospital-acquired infections in the future.

2. Results
2.1. Patient’s Information

All of the patients (n = 60) in the Moscow neuro-ICU were involved in seven-point
prevalence surveys in the period from Oct. to Nov. 2019, and each study included
16–24 patients because some patients were admitted to the ICU and then discharged. There
were no inclusion or exclusion criteria (Table 1).

Before the study, the patients had been in the neuro-ICU for varying lengths of stay:
1–10 days (n = 45), 11–30 days (n = 6), 31–81 days (n = 7), and 1131 days (n = 1). Therefore,
27 patients were involved in a single survey, 12 patients in 2, 10 patients in 3, 3 patients in 4,
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2 patients in 5, 1 patient in 6, and 5 patients in 7 surveys. The median age of the patients was
53.8 years (ranging from 14 to 73 years old), and the sex ratio (male/female) of the patients
was 1.07 (31/29). Most patients (n = 28) received carbapenem therapy before/during the
surveys, few patients (n = 15) received cephalosporins with/no β-lactamase inhibitors
followed by the patients, and the remaining patients (n = 17) were not treated with beta-
lactams. Half of the patients (n = 30) had symptoms of gastrointestinal dysfunction (n = 13)
and infection of the respiratory system (n = 21), and both symptoms were identified in
four patients. Six patients died during this period; the mortality rate was estimated to be
10%. A total of 34 patients were discharged from the neuro-ICU before the end of the study
(Figure 1).

2.2. Antimicrobial Resistance Genes Detected in Clinical Samples

DNA was extracted from 293 clinical samples, including 146 rectal swabs (r.s.) and
147 tracheal swabs (t.s.). Among the 119 positive antimicrobial resistance (AMR) gene
specimens, a total of 357 beta-lactamase genes were detected in DNA samples, including 116
blaTEM, 79 blaCTX–M, 45 blaSHV, 37 blaOXA–48, 32 blaKPC, 39 blaNDM, and 9 blaVIM. Additionally,
62 integrase genes were identified, including 41 genes belonging to class 1 and 21 genes
belonging to class 2 integrase. Most patients carried beta-lactamase genes, blaTEM (n = 47),
blaSHV (n = 19), and blaCTX-M (n = 20), and carbapenemase genes, blaNDM (n = 14), blaOXA-48
(n = 13), blaVIM (n = 7), and blaKPC (n = 10). Additionally, class 1 integrons were detected in
17 patients, and class 2 integrons were detected in 8 patients. Notably, ten patients (namely,
4, 5, 6, 8, 12, 15, 20, 31, 36, and 39) simultaneously carried carbapenemase genes in the
trachea and rectum specimens (Figure 1).

Fourteen patients carried carbapenemase genes throughout the study period. Three
patients did not have carbapenemase genes at the beginning of the study, but later, they
became positive for blaOXA-48+blaNDM+blaKPC, blaOXA-48+blaVIM, and blaVIM+blaNDM genes,
respectively. In contrast, three patients lost carbapenemase genes during their time in
the ICU, and they were not detected at the end of the study. Interestingly, eleven clinical
samples of seven patients simultaneously carried three carbapenemase genes, blaNDM,
blaKPC, and blaOXA-48, the cephalosporinase gene, blaCTX-M, and class 1 integrons. A
combination of CRGs were also detected: blaNDM+blaKPC was detected in two patients;
blaKPC+blaOXA-48 in two patients; blaVIM+blaOXA-48 in one patient; and blaVIM+blaNDM in one
patient. The CRG combination blaOXA-48+blaNDM+blaKPC was detected in seven patients.
The blaOXA-48+blaNDM+blaKPC CRGs were detected in six patients. Thus, 33 (11%) of the 293
samples were positive for two or more CRGs (Table 2).

Table 1. Patient’s information.

Item

Dates of Point-Prevalence Surveys/Number of Patients Per Survey

18 October
2019

24 October
2019

31 October
2019

07 October
2019

14 October
2019

21 November
2019

29 November
2019

Total patients 22 16 23 17 23 21 24

Respiratory infection 8 6 6 6 5 2 6

Gastrointestinal
dysfunction 4 2 4 2 1 0 1

Carbapenem therapy 13 10 13 13 15 14 13

Cephalosporins
with/no β-lactamase

inhibitors therapy
3 1 5 2 2 5 7

Admission to the ICU 22 2 8 2 11 8 7

Fatal outcome 0 0 0 0 2 1 3

Discharged 0 8 1 8 3 9 1
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detected in 4 (12%) rectal and 6 (19%) tracheal samples. It should be noted that the number 
of CRGs in the r.s. was two times higher compared to the number in the t.s. The asymp-
tomatic rectal carriage of CRGs was estimated to be present in 17% of the patients, and the 
asymptomatic tracheal carriage of CRGs was estimated to be present in 18% of the patients 
(Figure 2).r. 

Figure 1. Timeline of beta-lactamase and integron gene detection in rectal and tracheal clinical
samples collected from patients in neuro-ICU in October–November of 2019.

In total, 65 (22%) of the 293 clinical samples were positive for CRGs. The blaOXA-48
gene was detected in 18 (53%) of the 34 CRG-positive r.s. and in 19 (61%) of 31 positive t.s.;
the blaNDM gene was detected in 22 (64%) rectal and 17 (55%) tracheal samples; the blaKPC
gene was detected in 17 (50%) rectal and 15 (48%) tracheal samples; and the blaVIM gene
was detected in 4 (12%) rectal and 6 (19%) tracheal samples. It should be noted that the
number of CRGs in the r.s. was two times higher compared to the number in the t.s. The
asymptomatic rectal carriage of CRGs was estimated to be present in 17% of the patients,
and the asymptomatic tracheal carriage of CRGs was estimated to be present in 18% of the
patients (Figure 2).r.
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Table 2. Trends in the content of resistance genes in patients.

Trends in Carbapenemase Gene Content Patients

Patients carried carbapenemase genes both in r.s. and t.s. simultaneously 4, 5, 6, 8, 12, 15, 20, 31, 36, 39

Patients positive on carbapenemase genes during the study 3, 5, 6, 8, 9, 11, 13, 14, 20, 38, 44, 50, 54, 57

Patients became positive for carbapenemase genes during the study 7, 36, 39

Patients became negative for carbapenemase genes during the study 15, 31, 52

Patients positive on blaNDM+blaKPC+ blaOXA-48+blaCTX-M+int1 r.s. 3, 4, 6, 8, 11,12, 15
t.s. 4, 6, 7, 8, 12, 15

Patients positive on blaNDM+blaKPC
r.s. 6
t.s. 57

Patients positive on blaKPC+blaOXA-48
r.s. 8, 20
t.s. 20

Patients positive on blaVIM+blaOXA-48 r.s. 36

Patients positive on blaVIM+blaNDM t.s. 36

Patients positive on blaOXA-48+blaNDM+blaKPC
r.s. 4, 6, 8, 12, 11, 15
t.s. 4, 6, 7, 8, 12, 15

Note: r.s.—rectal swab, t.s.—tracheal swab.
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Figure 2. The prevalence of antimicrobial resistance (AMR) genes (n = 419) detected in clinical samples
collected from the patients in neuro-ICU: R—rectal swabs, T—tracheal swabs, red color—carbapenem
resistance genes.

2.3. Bacterial Isolates and Asymptomatic Carriage

A total of 344 Gram-negative bacterial isolates were collected from the patients. Over-
all, 183 isolates were collected from the rectal swabs (r.s.), and 161 isolates were collected
from the tracheal swabs (t.s.). Klebsiella pneumoniae was the most prevalent bacterium
(n = 75 r.s.; n = 68 t.s.), followed by Escherichia coli (n = 38 r.s.; n = 23 t.s.), Acinetobacter
baumannii (n = 21 r.s.; n = 32 t.s.), Pseudomonas aeruginosa (n = 24 r.s.; n = 18 t.s.), and
Enterobacter spp. (n = 8 r.s.; n = 3 t.s.). Less common bacteria included Stenotrophomonas mal-
tophilia (n = 1 r.s.; n = 8 t.s.), Proteus mirabilis (n = 5 r.s.; n = 2 t.s.), Citrobacter spp. (n = 4 r.s.;
n = 2 t.s.), Morganella morganii (n = 3 r.s.; n = 0 t.s.), Klebsiella oxytoca (n = 1 r.s.; n = 1 t.s.),
Klebsiella aerogenes (n = 1 r.s.; n = 1 t.s.), Klebsiella variicola (n = 1 r.s.; n = 0 t.s.), Serratia
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marcescens (n = 0 r.s.; n = 1 t.s.), Hafnia alvei (n = 0 r.s.; n = 1 t.s.), Providencia stuartii (n = 1 r.s.;
n = 0 t.s.), and Burkholderia gladioli (n = 0 r.s.; n = 1 t.s.) (Figure 3).
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Figure 3. Rate of Gram-negative bacterial isolates on species (n = 344) in the strains in the study collection.

All of the bacterial isolates were collected from 55 patients, while no GNB organisms
were found in samples from 5 patients (namely 14, 16, 27, 40, and 60). Bacterial isolates
were only collected from the r.s. in six patients (namely 5, 17, 24, 25, 30, and 56), and they
were only collected from the t.s. in three patients (namely 33, 51, and 54). The number of
isolates collected from one patient varied significantly: 1–10 isolates were obtained from
46 patients, 11–20 isolates were obtained from 6 patients, and 21–30 isolates were obtained
from 3 patients.

The majority of isolates (78%) were collected from the patients without clinical man-
ifestation: 141/183 isolates from the r.s. and 126/161 isolates from the t.s. The isolates
were identified as K. pneumoniae (43%), E. coli (18%), A. baumannii (14%), and P. aeruginosa
(13%) and other species, B. gladioli, Citrobacter spp., Enterobacter spp., H. alvei, K. aerogenes,
K. oxytoca, K. variicola, M. morganii, P. mirabilis, P. stuartii, S. maltophilia, and S. marcescens
(12%). The isolates obtained from the patients with gastrointestinal dysfunction and/or res-
piratory infection were identified as K. pneumoniae (38%), A. baumannii (21%), E. coli (16%),
and P. aeruginosa (8%) and other species, Citrobacter spp., Enterobacter spp., M. morganii,
P. mirabilis, and S. maltophilia (17%).

Interestingly, among the isolates obtained from the patients without clinical manifesta-
tion, A. baumannii was found twice as often in the tracheal swabs compared with the rectal
swabs. Moreover, among isolates obtained from the patients without clinical manifestation,
E. coli was more prevalent in the rectal swabs compared with tracheal swabs (Figure 4).

2.4. Antibacterial Resistance Phenotypes and Genotypes

Most isolates (n = 311, 95%) were resistant to beta-lactams, 169 isolates (52%) were resis-
tant to aminoglycosides, 155 isolates (47%) were resistant to fluoroquinolones, 154 isolates
(47%) were resistant to chloramphenicol, 26 isolates (34%) were resistant to tetracyclines,
and 5 isolates (2%) were resistant to sulfonamides. According to Magiorakos et al. [32],
7 isolates (2%) were attributed to the S category (susceptible), 120 isolates (36%) were
attributed to the R category (resistant to at least one agent in <3 antimicrobial functional
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groups), and 200 isolates (62%) were attributed to the MDR category (resistant to at least
one agent in ≥3 antimicrobial functional groups) (Figure 5).
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A high rate of MDR isolates was associated with the number of the resistance genes
in bacterial isolates. A total of 718 beta-lactamase genes were detected in the isolates,
including blaCTX-M (n = 212), blaTEM-1 (n = 156), blaSHV (n = 140), blaNDM (n = 43), blaOXA-48
(n = 37), blaKPC (n = 25), blaOXA-58-like (n = 53), blaOXA-23-like (n = 41), blaOXA-40-like (n = 9),
and blaVIM-2 (n = 2). Moreover, 262 integrons were detected, including class 1 (n = 248) and
class 2 integrons (n = 14).

The isolates susceptible to all antimicrobials (S-category) were identified as S. mal-
tophilia (100%); the isolates resistant to at least one agent in <3 antimicrobial functional
groups (R-category) were identified as E. coli (50%), A. baumannii (17%), Enterobacter spp.
(12%), Citrobacter spp. (7%), K. pneumoniae (5%), M. morgannii (2%), S. maltophilia (2%),
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B. gladioli (1%), H. alvei (1%), K. oxytoca (1%), P. mirabilis (1%), and S. marcescens (1%); iso-
lates of the MDR phenotype were attributed to K. pneumoniae (54%), P. aeruginosa (17%),
E. coli (6%), P. mirabilis (2%), A. baumannii (19%), K. aerogenes (1%), E. cloacae (0.5%), and
K. variicola (0.5%).

It should be noted that 87% (n = 299) of the total bacterial isolates were members of the
ESKAPE group, which encompasses the most important antimicrobial-resistant bacterial
pathogens. A total of 161 carbapenem-resistant isolates were identified from 38 patients.
K. pneumoniae was the most common bacterium (40%), followed by A. baumannii (34%) and
P. aeruginosa (22%). Carbapenem-resistant (CR) A. baumannii was the most frequent (100%
isolates), followed by P. aeruginosa (78% isolates), K. pneumoniae (41% isolates), and E. coli
(2% isolates). Among the carbapenemase genes, blaNDM was the most common gene (40%),
followed by the blaOXA-48 (32%), blaKPC (26%), and blaVIM-2 (2%) genes.

2.5. Resistomes of K. pneumoniae Clinical Isolates

K. pneumoniae isolates were obtained from 39 (65%) patients, including 28 patients who
simultaneously carried K. pneumoniae in both r.s. and t.s. MDR phenotypes were identified
in 98% of K. pneumoniae isolates. Eight patients (namely 6, 11, 31, 35, 37, 57, 58, and 59) simul-
taneously carried isolates of K. pneumoniae in r.s. and t.s. throughout the observation period,
nine patients (namely 2, 9, 10, 13, 15, 29, 32, 34, and 56) carried isolates of K. pneumoniae in
r.s., and three patients (namely 1, 10, and 55) carried isolates of K. pneumoniae in t.s. A total
of 145 beta-lactamase genes were detected in the K. pneumoniae genomes, including blaSHV
(n = 143), blaCTX-M (n = 142), blaTEM (n = 97), blaNDM (n = 44), blaOXA-48 (n = 37), and blaKPC
(n = 26); class 1 (n = 93) and class 2 (n = 7) integrons. The prevalence of K. pneumoniae resis-
tomes combining several genes was detected: blaCTX-M+blaOXA-48 (n = 10); blaCTX-M+blaNDM
(n = 18); blaCTX-M+blaOXA-48+blaKPC (n = 5); and blaCTX-M+blaOXA-48+blaKPC+blaNDM (n = 18).
The gene combination of blaCTX-M+blaOXA-48 was detected in K. pneumoniae isolates col-
lected from four patients; blaCTX-M+blaNDM was detected in K. pneumoniae isolates collected
from seven patients; blaCTX-M+blaKPC+blaOXA-48 was detected in K. pneumoniae isolates
collected from two patients. A novel gene combination that was first identified in this study,
blaCTX-M+blaOXA-48+blaKPC+blaNDM, was detected in K. pneumoniae isolates collected from
six patients (namely, 3, 4, 7, 8, 11, and 12) (Figure 6).

The latter resistomes were verified using whole-genome sequencing. Genetic determi-
nants coding resistance to aminoglycoside, fosfomycin, chloramphenicol, quinolone, sul-
fonamide, trimethoprim, and macrolide were identified (Supplementary Material Table S1).

2.6. Resistomes of E. coli Clinical Isolates

E. coli isolates were obtained from 36 (60%) patients, including 9 patients (namely
23, 39, 42, 43, 44, 46, 48, 49, and 52) who simultaneously carried E. coli in both r.s. and t.s.
MDR phenotypes were identified for 26% of the E. coli isolates. A total of 82 beta-lactamase
genes were detected in the E. coli genomes including blaCTX-M (n = 48), blaTEM-1 (n = 33),
and blaNDM (n = 1); and class 1 integrons (n = 21). The prevalence of E. coli resistomes
combining several genes was detected: blaCTX-M+int1 (n = 19) and blaNDM+int1 (n = 1). The
gene combination of blaCTX-M+int1 was detected in E. coli isolates collected from 13 patients
(namely 5, 8, 9, 19, 20, 21, 22, 23, 37, 39, 45, 48, and 49); and blaNDM+int1 was detected in
E. coli isolates collected from 1 patient (namely 23) (Figure 7).

2.7. Resistomes of A. baumannii Clinical Isolates

A. baumannii isolates were obtained from 20 (33%) patients, including 8 patients
(namely 1, 4, 8, 10, 15, 22, 34, and 49) who simultaneously carried A. baumannii in
both r.s. and t.s. MDR phenotypes were identified in 85% of the A. baumannii isolates.
In total, 135 beta-lactamase genes were detected in the A. baumannii genomes, includ-
ing blaTEM (n = 21), blaCTX-M (n = 9), blaOXA-51-like (n = 54), blaOXA-40-like (n = 43), and
blaOXA-23-like (n = 8); and class 1 integrons (n = 36). The following A. baumannii resis-
tomes combining several genes were the most prevalent: blaOXA-40-like+blaOXA-51-like+int1
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(n = 23) was collected from 11 patients (namely, 2, 8, 15, 19, 20, 21, 22, 34, 37, 47 and
55). The gene combination of blaOXA-40-like+blaOXA-51-like was detected in 10 A. baumannii
isolates collected from four patients (namely 4, 19, 20, and 34); the gene combination of
blaOXA-23-like+blaOXA-51-like was detected in 7 isolates from four patients (namely 1, 12, 32,
and 49); the gene combination of blaCTX-M+blaOXA-40-like+blaOXA-51-like+int1 was detected
in 6 isolates from 5 patients (namely 18, 19, 20, 21, and 22). The following gene combina-
tions were rare: blaOXA-51-like+int1 was detected in three isolates collected from two patients
(namely 9 and 10), blaOXA-40-like+blaOXA-51-like was detected in two isolates from two patients
(namely 1 and 46), and blaCTX-M+blaOXA-23-like+blaOXA-51-like was detected in one isolate
from one patient (namely 1) (Figure 8).
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2.8. Resistomes of P. aeruginosa Clinical Isolates

P. aeruginosa isolates were obtained from 14 (23%) patients, including four patients
(namely 1, 2, 3, and 32) who simultaneously carried P. aeruginosa in both r.s. and t.s. MDR
phenotypes were identified for 100% of P. aeruginosa isolates. A total of five beta-lactamase
genes, including three blaCTX–M genes and two blaVIM carbapenemase genes, and 32 class 1
integrons were detected in the P. aeruginosa genomes. The gene combination of blaCTX-M+int1
was detected in three isolates collected from three patients (namely 2, 3, and 20); blaVIM+int1
was detected in two isolates collected from one patient (namely 34) (Figure 9).
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3. Discussion

In this study, we estimated the carriage of antimicrobial resistance genes in clinical sam-
ples (rectal and tracheal swabs) from 60 patients hospitalized in the neuro-ICU in October-
November 2019 with seven-point prevalence surveys. The following beta-lactamase genes
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were identified in clinical samples: blaTEM (47/60), blaSHV (19/60), and blaCTX-M (20/60);
carbapenemase genes (CRGs): blaNDM (14/60), blaOXA-48 (13/60), blaVIM (7/60), and blaKPC
(10/60); and class 1 and 2 integrons: int1 (17/60) and int2 (8/60). The following com-
binations of two CRGs, which occurred simultaneously, were detected: blaNDM+blaKPC,
blaKPC+blaOXA-48, blaVIM+blaNDM, and blaVIM+blaOXA-48. Moreover, the combination of three
CRGs, blaOXA-48+blaNDM+blaKPC, was detected in seven patients. These data are consistent
with the findings of the report of Alqahtani et al.; 2021 [33].

Clinical isolates of Gram-negative ESKAPE pathogens (n = 299) were collected from the
rectal and tracheal samples, including K. pneumoniae (n = 143), E. coli (n = 61), A. baumannii
(n = 53), and P. aeruginosa (n = 42). Multi-drug resistant (MDR) phenotypes were identified
in 100% of P. aeruginosa, 98% of K. pneumoniae, 85% of A. baumannii, and 26% of E. coli
samples. Carbapenem-resistant (CR) A. baumannii was the most common (100% isolates),
followed by P. aeruginosa (78% isolates), K. pneumoniae (41% isolates), and E. coli (2% isolates).
It should be noted that most clinical isolates were collected from patients who did not
have clinical symptoms; the asymptotical bacterial carriage rate was estimated as 78%.
This rate is not too different from the carriage rate reported in an article from Israel in
2013 [34]. Similarly, CR K. pneumoniae was the most frequently detected bacteria in Spain
and China as an asymptomatic carrier among patients in ICUs [35,36]. In contrast, E. coli
was the most prevalent agent followed by K. pneumoniae in ICUs in Tunisia, Spain, and
India [37–39]. The most prevalent A. baumannii CRGs in our research were blaOXA-51-like
(100%) and blaOXA-40-like (79%), which were different from the most prevalent CRGs in
Egypt and Pakistan: blaOXA-23-like (78–87%) and blaNDM (22–66%) [40–42]. In our study, the
carriage rate of CRGs in P. aeruginosa (two blaVIM-positive isolates in one patient) was lower
compared to the index reported in studies from Uganda, Saudi Arabia, and Egypt (29–50%
blaVIM-positive isolates) [40,43,44].

Among the carbapenemase genes, blaOXA-like genes were most commonly identified
in the study (77%), including blaOXA-48 (42%), blaOXA-51-like (18%), blaOXA-40-like (14%), and
blaOXA-23-like (3%), followed by blaNDM (14%), blaKPC (8%), and blaVIM-2 (1%) genes. The
most frequent CRGs in our study were blaNDM and blaOXA-like, which is consistent with
reports from China and India [9,39]. K. pneumoniae, the most prevalent pathogen in this
study, carried the CRGs blaNDM (31% isolates), blaOXA-48 (26% isolates), and blaKPC (18% iso-
lates), which differed from the data reported in a study from China: blaNDM (25% isolates),
blaOXA-48 (not detected), and blaKPC (79% isolates) [45]. A significant rate of A. baumannii-
associated CRGs was found in our study: blaOXA-51-like (100% isolates), blaOXA-40-like (81%
isolates), and blaOXA-23-like (15% isolates). Surprisingly, these rates were different from the
data from Poland: 67% of A. baumannii isolates carried blaOXA-40-like genes, and 33% of
isolates carried blaOXA-23-like genes [46]. CRGs were rare in E. coli isolates: only one blaNDM
gene was identified in one (2%) isolate, in contrast to the results of a Chinese study: 79%
of isolates carried the blaNDM gene, and 2% of isolates carried the blaKPC gene [45]. The
carbapenemase gene, blaVIM, was detected in 5% of P. aeruginosa isolates in our study, in
contrast to higher rate of 25% in a study from Pakistan [47].

In our study, the rate of class 1 and 2 integrons’ carriage in MDR-GNB isolated
from patients in the neuro-ICU was 76%. These data were somewhat different from
reports from France and Uganda (53 and 81%, respectively) [16,48]. Class 1 integrons
were more prevalent (n = 248) than class 2 integrons (n = 14) in the isolates in this study.
Similar proportions were described in previously published studies from Spain, Iran, and
Tunisia [48–50]. In this study, the rate of class 1 integrons among CR isolates was 73%,
while in reports from Iran, this index was higher (86–95%) [51,52]. In our study, class 1
integrons were detected in 76% of MDR P. aeruginosa, 70% of MDR K. pneumoniae, 68% of
MDR A. baumannii, and 34% MDR of E. coli. These data are consistent with the findings of
reports from Iran and Australia [52–54].

In total, the asymptomatic rectal and tracheal carriage of CRGs was found in 17 and
18% of patients, respectively; the rectal and tracheal carriage of class 1 and 2 integrons
was found in 23 and 15% of patients, respectively. Such patients may be considered as a
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potential source of AMR gene transmission in the ICU. Moreover, according to some reports,
colonization with MDR potential pathogens and CRGs’ carriage may be a prerequisite for
the development of nosocomial infections [34].

Thus, this study highlighted the asymptomatic carriage of carbapenemase genes and
the prevalence of potential nosocomial pathogens in the intestine and in the trachea of
patients in the neuro-ICU. This is important for clinicians, because it will help them to
improve the strategies used for hospital infection control and choose optimal antimicrobial
therapies. The novelty of this study is the description of CR-GNB strains that simultane-
ously carry three carbapenemase genes, blaOXA-48+blaNDM+blaKPC. The limitation of our
study was that its single-center nature meant it was impossible to generalize the results.
Although the study provided information about the patients regarding prior antibiotic
therapy and their length of hospitalization before the study, it did not reveal the importance
of these aspects in explaining the reasons for the persistence of resistance genes.

4. Materials and Methods
4.1. Bioethical Requirements

In this study, we anonymized the data of patients in the ICU. According to the Re-
quirements of the Russian Federation Bioethical Committee, each patient signed informed
consent to treatment and laboratory examination. The study was a retrospective observa-
tional study. The Burdenko National Medical Research Center of Neurosurgery Review
Board approved the study and granted a consent waiver status. Approval Code: #11/2018.
Approval Date: 1 November 2018.

4.2. Study Design

Seven point-prevalence surveys were conducted weekly among all of the neuro-ICU
patients in the period from 18 October 2019 to 29 November 2019. Two clinical samples
(rectal and tracheal swabs) were collected from each patient on each survey date. The
presence of antimicrobial resistance genes was detected in every clinical sample using real-
time PCR (RT-PCR), Gram-negative bacteria were isolated from the samples (Figure 10).

4.3. DNA Extraction and AMR Gene Detection in Clinical Samples

Total DNA from clinical samples was extracted using an AmpliPrime DNA-sorb-B
reagent kit (InterLabService, Moscow, Russia) in accordance with the manual from the
manufacturer. Real-time PCR with specific primers was performed with the obtained DNA
preparations to detect beta-lactamase genes—blaTEM, blaSHV, blaCTX-M, blaOXA-48, blaNDM,
blaVIM, and blaKPC—and class 1 and 2 integrons, as described previously [55].

4.4. Isolation and Identification of Gram-Negative Bacteria

Gram-negative bacteria were collected from clinical samples through growth in Luria–
Bertani (LB) broth (Difco, Sparks, MD, USA) at 37 ◦C for 18 h and the isolation of single
bacterial colonies on Lactose TTC agar with Tergitol-7 (SRCAMB, Obolensk, Russia) and
50 mg/L ampicillin (Thermo Fisher Scientific, Waltham, MA, USA). Bacterial identification
was conducted using a MALDI-TOF Biotyper instrument (Bruker, Karlsruhe, Germany).
The following ATCC reference strains were used as controls: Escherichia coli ATCC 25922,
Pseudomonas aeruginosa ATCC 27853, and Klebsiella pneumoniae ATCC 700603. Bacterial
isolates were stored in 15% glycerol at −80 ◦C.

4.5. Susceptibility to Antimicrobials

The minimal inhibitory concentrations (MICs) of antimicrobials belonging to six
functional groups: beta-lactams (ampicillin, amoxicillin/clavulanic acid, cefotaxime, cef-
tazidime, and meropenem), tetracyclines (tigecycline), fluoroquinolones (ciprofloxacin),
phenicols (chloramphenicol), aminoglycosides (gentamicin), and sulfonamides (trimethoprim-
sulfamethoxazole) were determined via the dilution in agar method using Mueller–Hinton
agar (Merck, Darmstadt, Germany) according to the Clinical and Laboratory Standards In-
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stitute (CLSI) guidelines, performance standards for antimicrobial susceptibility testing [56].
The results were interpreted according to the European Committee on Antimicrobial Sus-
ceptibility Testing. Break-point tables were used for the interpretation of MICs and zone
diameters, Version 12.0, 2022 (http://www.eucast.org, accessed on 8 June 2022). Escherichia
coli strains ATCC 25922 and ATCC 35218 were used for quality control. The criterion for
defining multi-drug resistant (MDR) isolates was non-susceptibility to ≥1 agent in ≥3
antimicrobial categories; extensively drug-resistant (XDR) isolates were non-susceptible to
≥1 agent in all but ≤2 categories [32].
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The prevalence of bacterial species and antimicrobial resistance phenotypes was
calculated using Microsoft Excel v. 1909.

4.6. DNA Extraction and PCR Detection of the Resistance Genes in Clinical Isolates

Bacterial thermolysates were used as DNA templates for amplification [57]. Beta-
lactamase genes, blaSHV, blaCTX-M, blaTEM, blaOXA-48, blaKPC, blaVIM, and blaNDM, and class 1
and 2 integrons were detected via PCR using previously described specific primers [57–64].
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4.7. Whole-Genome Sequencing

The whole-genome sequencing of the isolates was performed using a Nextera DNA Li-
brary Preparation Kit and MiSeq Reagent Kit v3 (300 cycles) on an Illumina MiSeq platform.
Reads without quality filtering were de novo assembled using Unicycler v 0.4.7 [65] with
default parameters. The annotation was performed using the NCBI Prokaryotic Genome
Annotation Pipeline [66]. Multilocus sequence typing (MLST) and the identification of
antibiotic resistance genes, virulence genes, plasmids, and restriction–modification sys-
tems were conducted using the web resource of the Center for Genomic Epidemiology
(http://www.genomicepidemiology.org/, accessed on 22 April 2022) and the BIGSDB
database (https://bigsdb.pasteur.fr/klebsiella/klebsiella.html, accessed on 22 April 2022).

5. Conclusions

The current study focused on the carriage of MDR and ESKAPE Gram-negative
bacteria and antimicrobial resistance genes in patients in the neurosurgery-ICU in Moscow
in October–November 2019. In total, 55 out of 60 patients harbored significant antimicrobial
resistance mechanisms in the neuro-ICU, which implies that infection control measures
(contact precautions, etc.) are of critical importance to avoid the spread of resistance. The
inappropriate use of antimicrobials should be reduced through antimicrobial stewardship
interventions to reduce the effects of antimicrobial resistance gene selection in patients. It
was shown that the asymptomatic rectal and tracheal carriage of carbapenem resistance
genes was estimated to occur in 17 and 18% of patients, respectively. These patients were a
potential source of the transmission of these genes in the ICU. The obtained data indicate
the importance of monitoring the asymptomatic carriage of antimicrobial resistance genes,
especially carbapenem resistance genes and integrons, and preventing the transmission of
such genes within ICUs.

Supplementary Materials: The following supporting information can be downloaded at: https://
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