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Adipose tissue performs immunoregulatory functions in addition to fat storage. Various

T cells in different fat depots either help maintain metabolic homeostasis under healthy

conditions or contribute tometabolic disorders in pathological conditions such as obesity,

diabetes, cardiovascular diseases, or even cancer. These T cells play critical roles

in immunometabolism, which refers to the intersection of immunity and metabolism.

Numerous studies have examined the presence and changes of different T cell subsets,

including helper T cells, regulatory T cells, cytotoxic T cells, and natural killer T cells, in

adipose depots in health and diseases. In this review, we will discuss the adipose tissue

niches that influence the patterns and functions of T cell subsets and in turn the impact

of these T cells on cell- or body-based immunometabolism accounting for health and

obesity.

Keywords: T cell, adipose tissue, immunometabolism, obesity, insulin resistance

INTRODUCTION

Immunometabolism focuses on the interaction of immunity and metabolism, from metabolic
patterns of immune cells to metabolic homeostasis or disorders dominated by immune cells. The
former, as reviewed by Man et al. (1), is considered cellular immunometabolism, which includes the
intracellular metabolism of different immune cells or immune cells in different conditions, such as
macrophages or T cells during activation, polarization, proliferation, and differentiation. The latter
is tissue immunometabolism, which explores the impacts of immune cells on tissue and systemic
metabolism in various microenvironments (1–4). The immune system, which is influenced by
the metabolic status of the body, in turn produces substantial impacts on local and systemic
metabolic homeostasis or disorders. In recent years, the effects of immune responses on metabolic
abnormalities such as obesity, diabetes, and fatty liver disease have drawn great interest from
researchers, and emerging evidence has suggested that adipose tissue serves as an important inter-
section linking immunity with metabolism (4, 5). Besides its traditional function in fat storage,
adipose tissue is currently recognized as an endocrine organ (6–8). Importantly, accumulating data
have shown that adipose tissue contains a large number of immune cells, including macrophages,
eosinophils, innate lymphoid cells (ILCs), T cells, and B cells, which regulate immune homeostasis
and inflammation, subsequently influencing metabolism of adipose tissue and the whole body
(4, 5, 9–11). As the core component of adaptive immunity, T cells play indispensable roles in tissue
immunometabolism. Here, we review the distinct profiles of T cell subsets in specific adipose tissue
microenvironments and their influences on metabolic homeostasis or disorders.
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ADIPOSE TISSUE PROVIDES A STAGE
FOR THE INTERPLAY BETWEEN
IMMUNITY AND METABOLISM

There are two types of adipose tissue in mammals, white adipose
tissue (WAT) for energy storage in the form of fat (triglyceride)
and brown adipose tissue (BAT) for energy dissipation through
thermogenesis. WAT is widely distributed throughout the body
including subcutaneous adipose tissue (SAT) underneath the skin
and intra-abdominal fat depots known as visceral adipose tissue
(VAT) (12–14). Human SAT predominantly exists in the areas
of abdomen, leg, and buttock, whereas VAT is mainly around
omentum, mesenterium, and perirenal areas (12, 14). The initial
link between WAT and immune function was demonstrated in
several studies that revealed an association of obesity with WAT
inflammation (15). Hotamisligil and colleagues demonstrated
that the proinflammatory cytokine tumor necrosis factor (TNF)-
α is elevated in VAT in obese animals compared with their
lean counterparts and plays critical roles in obesity-induced
insulin resistance (15, 16). In humans, the level of TNF-α
is also increased in fat tissues from obese individuals and
positively correlated with hyperinsulinemia (16). In addition,
the proinflammatory cytokine interleukin (IL)-6 from adipose
tissue also contributes to obesity-induced insulin resistance
in both humans and mice (17, 18). Adipocytes are able to
produce numerous inflammatory molecules, including TNF-
α and IL-6, whereas macrophages appear to be the major
source of these proinflammatory cytokines in adipose tissue
in vivo as demonstrated in a mouse model (19). Indeed,
macrophages were first reported to be increased and to polarize
into classically activated M1-like phenotype in adipose tissues
in obese humans and animals (6, 19–22). The chemokine
monocyte chemoattractant protein-1 (MCP-1) is elevated and
may contribute to the infiltration of macrophages in obese WAT
and subsequently to obesity-induced insulin resistance (21, 23–
25). Subsequently, T cells were found to be elevated in adipose
tissue in obese mice and humans (26), and effector T cells,
including CD4+ helper T (Th) cells and CD8+ cytotoxic T
lymphocytes (CTLs), may serve as active players in obesity-
associatedWAT inflammation (27–30). In addition, several other
immune cell populations or subsets mainly associated with type
2 immune response, such as type 2 innate lymphoid cells (ILC2),
alternatively activated M2 macrophages, eosinophils, invariant
natural killer T (iNKT) cells, and regulatory T or B cells, reside
in adipose tissue under normal conditions but are reduced in
obesity (31–35). These type 2 immune cells may be involved
in maintenance of both immune and metabolic homeostasis
under normal conditions. Energy excess or obesity can cause the
disruption of this homeostasis and induce a new immune cell
profile in adipose tissue that drives adipose tissue inflammation,
insulin resistance, and related metabolic disorders.

VARIOUS T CELL SUBSETS IN DIFFERENT
ADIPOSE TISSUE NICHES

Based on the composition of T-cell antigen receptors (TCR), T
cells can be classified into two populations, αβT cells and γδT

cells, both of which perform critical immune functions. While
αβT cells serve in adaptive immunity, γδT cells act mainly in
innate immunity. According to the cell surface markers, αβT
cells can be further divided into two subsets: CD4+ T cells and
CD8+ T cells. After activation by antigen stimulation, T cells can
proliferate and differentiate into effector T cells. CD4+ T cells
differentiate into effector Th cells and CD8+ T cells differentiate
into CTLs, thus exerting distinct effects. An important regulatory
subset among CD4+ T cells is regulatory T (Treg) cells, which
have a specific molecular signature as CD4+ CD25+ Foxp3+.
Treg cells inhibit the activation of T cells and the functions of
effector T cells as well as B cells and NK cells, participating in the
maintenance of tissue homeostasis and self-tolerance, or in the
pathogenesis of some morbidities through negatively regulating
immune responses (36).

The implication of T cells in obesity-induced inflammation
was first indicated by the increased T cell accumulation in
VAT in obese mice and humans as compared with their
lean counterparts (26). The chemokine CCL5 (also known as
regulated on activation, normal T cell expressed and secreted
[RANTES]) is upregulated in VAT in obesity and may account
for the recruitment of T cells into obese VAT (26, 37, 38).
Importantly, T cells are increased early, likely preceding the
infiltration of macrophages, in VAT in mice on high-fat diet
(HFD), and play important roles in macrophage recruitment
and VAT inflammation (30, 39, 40). While different effector
T cell subsets are implicated in adipose tissue inflammation,
regulatory T cell subsets are involved in healthy or normal
adipose tissue homeostasis (31). Given the heterogeneity of
T cells, we will discuss in this section the various patterns
and functions of different T cell subtypes in adipose tissue
niches.

TREG CELLS SERVE TO MAINTAIN
ADIPOSE TISSUE HOMEOSTASIS

The first finding regarding adipose-resident Treg cells was
from Feuerer and colleagues, who reported an enrichment
of CD4+ Foxp3+ Treg cells in VAT from lean mice (31).
Besides the canonical gene signature such as Foxp3, CD25,
glucocorticoid-induced tumor necrosis factor receptor (GITR),
cytotoxic T lymphocyte antigen-4 (CTLA-4), and OX40,
these Treg cells in VAT possess a phenotype different from
those residing in lymphoid tissues, with distinct expression
patterns of many Treg signature genes such as CD103 and
G protein–coupled receptor−83 (31). Treg cells are markedly
reduced in VAT of mice with diet-induced obesity. In
addition, depleting Treg cells in lean mice induces the gene
expression of inflammatory mediators (such as TNF-α, IL-
6, and CCL5) and impairs the metabolic signal pathway in
VAT, whereas expanding Treg cells in HFD-fed obese mice
improves metabolic parameters, possibly through the regulation
of adipose tissue inflammation, suggesting that Treg cells play
crucial roles in the maintenance of immune and metabolic
homeostasis of adipose tissue and may have beneficial effects
on systemic metabolic abnormalities associated with obesity (31,
41).
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Themechanisms for the enrichment and function of Treg cells
in lean VAT have not been fully defined. To date, several factors
are considered to be critical for the maintenance of Treg cells in
VAT. First, peroxisome proliferator-activated receptor-γ (PPAR-
γ) expressed by Treg cells is necessary for the accumulation,
phenotype, and function of VAT Treg cells in lean mice through
collaborating with Foxp3 to induce a distinct Treg signature;
while obesity induces the disappearance of this VAT Treg
signature by phosphorylation of PPAR-γ at position Ser273 (42–
44). These findings established a foundation for adipose Treg
cells and opened a new area of research to elucidate the precise
mechanisms by which PPAR-γ regulates VAT Treg signature.
Second, the IL-33/suppression of tumorigenicity 2 (ST-2) axis
plays an essential role in the amplification of Treg cells in VAT
(45–47). IL-33 is a cytokine of the IL-1 family and can be
produced by human adipocytes or mice stromal cells in VAT; ST-
2, the receptor for IL-33, is highly expressed on VAT Treg cells
in both humans and mice (45, 46, 48, 49). IL-33 can promote
the development and proliferation of Treg cells and then restore
their numbers in VAT, with attenuation in VAT inflammation
and improvements in the metabolic parameters in obese mice
(45–47). More recently, Kohlgruber and colleagues reported
that adipose-resident γδT cells positive for the Broad-complex,

Tramtrack, and Bric-à-brac/poxvirus and zinc finger (BTB-POZ)
transcription factor PLZF produce IL-17, which induces IL-33
expression from adipose stromal cells, thereby contributing to
age-dependent Treg cell accumulation in adipose tissue (49).
The same research group also found that iNKT cells, a unique
regulatory population residing in adipose tissue, help sustain the
immune homeostasis of adipose tissue through regulating the
number and function of Treg cells (50) (see discussion below).
In addition, IL-33 can active ILC2, which promotes Treg cell
accumulation in VAT through the ligation of ICOSL on ILC2with
ICOS on Treg cells. This process can be suppressed by interferon
(IFN)-γ, which elicits VAT inflammation andmetabolic disorders
(51). Thus, it is acknowledged that the accumulation of Treg cells
in VAT is a multifactorial process, which is further substantiated
by a recent report showing the collaboration of TCR, Foxp3, and
ST2 in this process (52). Some other factors such as leptin, IL-
21, and autophagy-related atg7 have been reported to influence
Treg cells in VAT and systemic insulin sensitivity (53–55).
However, the direct link and underlying mechanisms remain to
be established. Taken together, the available data indicate that
various cells and molecules form specific adipose tissue niches
that contribute to the pool and function of adipose Treg cells and
maintain the homeostasis of systemic metabolism (Figure 1).

FIGURE 1 | T cell subsets in different adipose niches in lean and obese conditions.
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TH CELLS MEDIATE DIVERGENT IMMUNE
AND METABOLIC EFFECTS ON ADIPOSE
TISSUE THROUGH DIFFERENT SUBTYPES

Based on the stimuli, Th cells can polarize into different
phenotypes that express distinct cytokine profiles and
exert different effector functions. Th1 cells produce IFN-γ,
which promotes the polarization of classically activated M1
macrophages, and participate in elimination of intracellular
microbes. Th2 cells produce IL-4, IL-5, and IL-13 to promote
the polarization of alternatively activated M2 macrophages,
help B cell responses, and participate in the immune responses
against helminths. Th17 cells produce IL-17 to induce neutrophil
inflammation and participate in the pathogenesis of several
autoimmune diseases (36).

Th1 Subset
The first Th subset identified in adipose tissue was Th1 cells.
The infiltration of CD4+ T cells was initially identified in human
VAT and showed significant correlation with the bodymass index
(39). Furthermore, waist circumference correlated with IFN-γ
mRNA in SAT from patients with type 2 diabetes, suggesting an
association of adipose tissue Th1 cells with obesity (39). CD4+ T
cells are also increased in VAT of obese mice compared with lean
controls. Importantly, CD4+ T cells from obese VAT produce
higher amounts of IFN-γ than those from lean VAT, indicating
Th1 polarization in obese VAT (29, 40, 56–58). Furthermore,
deficiency of T cells, including CD4+ T cells or IFN-γ
significantly reduces adipose tissue inflammation and improves
insulin sensitivity in obese mice, suggesting the substantial
contribution of Th1 cells to adipose inflammation and metabolic
dysfunctions associated with obesity (29, 59). Th1 cells and IFN-
γ, the major Th1 and CTL cytokine, can directly interrupt insulin
signaling, leading to insulin resistance in adipocytes and skeletal
muscle myocytes, which may contribute to systemic insulin
resistance in obesity (29, 58, 60). As to the mechanisms for Th1
polarization in obese VAT, obesity increases the levels of class II
major histocompatibility complex (MHC II) and costimulatory
molecules on VAT macrophages/dendritic cells (DCs) and also
on adipocytes. These adipocytes and macrophages/DCs can
function as antigen-presenting cells (APCs) to promote adipose
tissue CD4+ T cell proliferation and production of IFN-γ,
which further activate adipocytes and macrophages/DCs with
elevated MHC II, thereby forming a positive loop to amplify
Th1 cell-mediated inflammation in adipose tissue (Figure 1)
(39, 40, 57, 59, 61, 62). Importantly, adipocyte- or macrophage-
specific depletion of MHC II in obese mice reduces CD4+ T cell
numbers (especially the effector/memory CD4+ T cells) and IFN-
γ production in VAT and improves insulin sensitivity, indicating
critical roles of MHC II on adipocytes or macrophages in adipose
tissue Th1 polarization, which contributes to obesity-induced
adipose tissue inflammation and insulin resistance (40, 56, 63).

On the other hand, several pivotal costimulatory receptors on
T cells such as 4-1BB and CD28 are reported to be implicated
in obesity-induced adipose tissue inflammation and metabolic
disorders, as evidenced by the fact that 4-1BB or CD28 deficiency

in mice improves related metabolic parameters and reduces T
cell infiltration in VAT (64, 65). Considering the crucial roles
of costimulatory signals 4-1BB−4-1BBL and CD28–B7 in T cell
activation and proliferation and Th1 polarization (66–68), it is
reasonable to deduce the potential contribution of 4-1BB and
CD28 to Th1 polarization in obese VAT; however, future studies
are needed for confirmation.

ICOS is another inducible costimulatory receptor that can
be broadly expressed by various T cells and implicated in the
expansion and function of Th2 and Treg cells, and even Th1,
Th17, and NKT cells (51, 69–73). The expression patterns of
ICOS on adipose tissue T cells and its potential complex functions
in lean and obese states are intriguing and warrant investigation.
Furthermore, as exosomes from macrophages/DCs can carry
MHC II or costimulatory molecules that help the activation and
proliferation of T cells (74–76), it is very likely that APCs residing
in VAT secrete exosomes to promote activation and further Th1
polarization of CD4+ T cells, thereby driving adipose tissue
inflammation and insulin resistance. This is a promising field
of research that deserves further exploration and may help to
delineate the mechanisms for Th1 polarization in obese VAT.

Th17 Subset
A few earlier studies reported the association of obesity with
IL-17 or Th17 cells (77–79). However, these studies lacked
conclusive evidence for the presence of Th17 cells in adipose
tissue. First, besides Th17 cells, γδT cells are another important
source of IL-17. Therefore, the role of IL-17 in obesity cannot
be completely attributed to Th17 cells and needs to be further
elaborated. Second, the increase of Th17 subset in lymphoid
tissues, including spleen and lymphoid nodes, in obesity, or
in concert with other medical conditions like experimental
allergic encephalomyelitis or trinitrobenzene sulfonic acid colitis
may be distinguished from the presence of Th17 subset in
adipose tissue, and additional studies are needed to explain
fully the influence of Th17 cells on immunometabolism (77–79).
Nevertheless, Bertola and colleagues found that IL-17–producing
T cells are dramatically increased in SAT from overweight or
obese individuals compared with that from lean subjects and
further demonstrated that DCs from obese subjects may drive
the differentiation of Th17 cells, which produce high amounts
of IL-17, indicating that Th17 cells may directly participate in
adipose tissue inflammation and insulin resistance in obesity
(80). In addition, several more studies confirmed the elevation
of Th17 cells in adipose tissue, especially in VAT, in patients with
adiposity (81–83). More recently, a study showed that ATP drives
the Th17 responses via P2X7 receptor in human VAT, pointing to
a possibility that adipose tissue niches facilitate the differentiation
of Th17 cells (84). However, more studies are needed to verify the
profile, functions, and underlying mechanisms of Th17 cells in
adipose tissue and the direct contribution of Th17 cells to adipose
tissue inflammation and insulin resistance.

In addition to Th17, γδT cells that reside in adipose tissue and
are increased in obesity (85), also express IL-17. As mentioned
above, adipose γδT cells can contribute to the regulation of
age-dependent adipose tissue Treg homeostasis through IL-17–
induced IL-33 production from adipose stromal cells (49). Thus,
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based on the increases of both Th17 and γδT cells in obese
adipose tissue and the effect of IL-17 on IL-33 production, these
two IL-17–producing cell subsets may also have the potential to
initiate downregulation of the immune inflammatory reaction
in adipose tissue during obesity, although this remains to be
demonstrated.

Th2 Subset
Th2 cells produce type 2 cytokines, including IL-4, IL-5, and
IL-13, which play important roles in macrophage polarization
into M2 phenotypes. Several cell types, including eosinophils and
ILC2, have been identified in lean adipose tissue to produce type
2 cytokines andmay contribute toM2 polarization, inflammation
resolution, and metabolic homeostasis in WAT under normal
conditions (34, 35). However, data are limited on Th2 cells in
adipose tissue. A study showed that the percentage of Th2 cells
in human SAT and VAT negatively correlates with systemic
inflammation and insulin resistance, indicating a protective role
of Th2 cells in inflammation and metabolic dysfunctions (83).
Another study revealed that after adoptive transfer into obese
Rag1-null mice, CD4+ T cells gained a Th2 profile, indicated
by the production of IL-4 and IL-13, which was associated
with reversal of enhanced weight gain and insulin resistance in
recipient obese Rag1-null mice. Consistently, transfer of CD4+ T
cells deficient in signal transducer and activator of transcription
6 (STAT6), a transcription factor important for Th2 polarization,
into obese Rag1-null mice resulted in the reduction in Th2
cells in VAT and the loss of protective effects on obesity-related
metabolic parameters in recipient Rag1-null mice (86).

CTLS PERFORM BIDIRECTIONAL
FUNCTION IN ADIPOSE TISSUE
INFLAMMATION AND HOMEOSTASIS

Similar to CD4+ T cells, CD8+ T cells are significantly increased
in adipose tissue in obesity in both humans and mice (28, 30,
59, 87, 88). Along with macrophages, CD8+ T cells participate
in formation of crown-like structures (CLSs) surrounding
dying/dead adipocytes in adipose tissue of mice (30). Increased
infiltration as well as IL-12– and IL-18–mediated proliferation
and activation may contribute to the increase and activation of
CD8+ T cells in adipose tissue in obese mice (28). The increase in
adipose tissue CD8+ T cells appears to precede and contributes
to the accumulation of adipose tissuemacrophages andmetabolic
dysfunctions in obesity. In support of this, depletion of CD8+

T cells in obese mice dramatically decreases numbers of M1
macrophages and CLSs in adipose tissue, accompanied by an
improvement of insulin sensitivity, whereas adoptive transfer of
CD8+ T cells into CD8-deficient mice fed with HFD increases
numbers of adipose tissue macrophages and CLSs, with elevated
levels of proinflammatory cytokines and aggravated insulin
resistance (30). The increase of IFN-γ-expressing CD8+ T cells
in VAT in obesity further substantiates the contribution of CD8+

T cells to macrophage activation through the action of IFN-γ
(28, 30, 89, 90).

Besides their contribution to adipose tissue inflammation,
effector CTLs may also function in restricting T cell expansion
and activation in inflamed WAT through perforin. Perforin-
dependent cytotoxicity is not only an important way to attack
target cells, but also a critical regulator to limit abnormal T cell
activation in a physiological context (91, 92). In mice fed HFD,
depletion of perforin causes aggravated adiposity and insulin
resistance, together with upregulation of IFN-γ-producing CD4+

and CD8+ T cells as well as M1 macrophages in VAT. Perforin-
deficient CD8+ T cells from VAT show increased proliferation
but impaired early apoptosis. Transfer of perforin-deficient
CD8+ T cells into CD8-deficient mice exacerbates the metabolic
parameters more than wild-type CD8+ T cells (93). These
findings suggest that CTLs in fat tissue not only mediate adipose
tissue inflammation in obesity, but may also contribute, at least
partially, to the resolution of T cell–mediated inflammation
through perforin-dependent cytotoxicity (Figure 1).

NKT CELLS MAINTAIN THE IMMUNE AND
METABOLIC HOMEOSTASIS IN ADIPOSE
TISSUE

NKT cells are a unique subset of T cells that express both
NK cell markers (such as NK1.1 or CD56) and T cell marker
αβTCR. Themain function of NKT cells is to recognize glycolipid
antigen presented by MHC-class-I-like molecule CD1d. Based
on the expression of an invariant TCRα chain (Vα14-Jα18
in mice, Vα24-Jα18 in humans), CD1d-dependent NKT cells
can be classified into type I and type II NKT cells, both of
which can produce IFN-γ, the Th1 cytokine, and IL-4, a Th2
cytokine, and participate in the regulation of innate and adaptive
immunity. Type I NKT cells express the invariant TCRα chain in
combination with certain TCRβ chains (Vβ8.2,7,2 in mice, Vβ11
in humans) and are also called iNKT cells, whereas type II NKT
cells do not express this invariant TCRα chain (94–96).

Compared with other organs, adipose tissue in both humans
and mice is enriched with iNKT cells under normal conditions,
whereas obesity dramatically decreases iNKT cells in adipose
tissue (97, 98). Accordingly, weight loss restores adipose tissue
iNKT cells in murine models and peripheral iNKT cells in
obese humans (97, 98). Huh and colleagues reported that the
maintenance of iNKT cell numbers and activation in adipose
tissue relies on their interaction with CD1d expressed on
adipocytes. Adipocytes with high expression of CD1d under
normal conditions function as APCs to present lipid antigens
to maintain iNKT cells in adipose tissue and stimulate their
activation, whereas obesity reduces CD1d expression in human
and mouse adipose tissue, leading to the reduction of adipose
tissue iNKT cells (99–101).

Depletion of iNKT cells (deficient in Jα18) or deficiency of
CD1d in mice exacerbates HFD-induced weight gain, adipocyte
hypertrophy, fatty liver, and insulin resistance as compared
with wild type controls, whereas adoptive transfer of iNKT
cells into obese Jα18-deficient mice or activating iNKT cells
by lipid ligand α-galactocylceramidee (αGalCer) in obese wild-
type mice reverses HFD-induced phenotypes, with reduced
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weight gain and adipocyte hypertrophy, and alleviated fatty
liver and insulin resistance. These effects indicate a protective
role of iNKT cells in HFD-induced weight gain and metabolic
dysfunctions. Adipose tissue–resident iNKT cells express the
transcription factor E4BP4, but not the BTB-POZ transcription
factor PLZF. Under normal conditions, these adipose tissue iNKT
cells produce high levels of IL-2 and type 2 cytokines such as
IL-4, IL-10, and IL-13, but low level of IFN-γ, as compared
to iNKT cells from the spleen. Indeed, the type 2 cytokines
are downregulated in VAT of mice with CD1d deficiency and
upregulated by αGalCe treatment, which is consistent with
changes in the numbers of iNKT cells in VAT, suggesting
that iNKT cells make substantial contributions to the levels of
regulatory type 2 cytokines in VAT. These type 2 cytokines may
inhibit the infiltration and activation of proinflammatoryM1-like
macrophages, but enhance polarization of M2 macrophages as
well as expansion and suppressive function of Treg cells, thereby
maintaining immune homeostasis and alleviating inflammation
in adipose tissue (50, 98, 102). Adipocyte-specific deficiency of
CD1d in obese mice attenuates the responses of iNKT cells
to αGalCer, leading to reduced expression of IL-4 and IL-2 in
iNKT cells, subsequent impairment of the anti-inflammatory
responses mediated by M2 macrophages and Treg cells, and
aggravation of adipose tissue inflammation and insulin resistance
(99–101). All these findings support an important role of iNKT
cells in maintaining adipose tissue homeostasis under normal
conditions and in protecting against adipose tissue inflammation
and metabolic dysfunctions associated with obesity, possibly
through producing type 2 cytokines (Figure 1).

In addition, iNKT activation–mediated weight loss and
improvement of insulin sensitivity in obese mice may also be
attributable to β-oxidation–mediated energy expenditure and
thermogenesis.Mechanistically, activation of iNKTwith αGalCer
treatment strongly induces the expression and production of
FGF21 in both BAT and inguinal SAT, which drives the activation
of BAT and browning of WAT to burn fat through β-oxidation.

These findings point to another potential mechanism for the
beneficial roles of iNKT cells in adipose tissue to maintain
metabolic homeostasis through thermogenesis (103). However, a
potential connection between iNKT effects on thermogenesis and
inflammation remains to be clarified.

Taken together, these observations indicate that adipose tissue
iNKT cells, as a unique regulatory immune cell subset, play
important roles in both immune regulation and lipid metabolism
to maintain the homeostasis of immunometabolism.

QUESTIONS AND PERSPECTIVES

T cells reside in the network of adipose tissue, in which different
types of cells interact with each other through the action of
various cytokines, adipokines and membrane receptors. Beyond
the information that is already known, additional components
of the network may influence the profile and functions of
T cells in adipose tissue. For examples, it remains an open
question whether unknown or newly-discovered T cell subsets
such as Th9 and Th22 cells exist and function in adipose tissue.

The distinct signatures and regulatory mechanisms of well-
recognized adipose T cell subsets, including CTL, Th1, and Th17
cells, need to be elaborated. Given the direct participation of
iNKT cells in thermogenesis and of Treg cells in lipid uptake
(42, 103), precise elucidation of metabolic functions of various
T cells in physiopathological adipose tissue may provide new
insight for the direct contribution of T cells to metabolism
beyond immunity. Moreover, the interactions of T cells with
other, non-immune cells in the adipose stromal vascular fraction,
such as stem cells or endothelial cells, may also be crucial
events that impact the profile and functions of T cells. It has
been demonstrated that adipose-derived stem cells from lean
mice regulate macrophage polarization, thereby reducing adipose
tissue inflammation, whereas those from obese subjects induce
Th17 cells and activate monocytes, thus promoting inflammation

FIGURE 2 | Changes of T cell subsets in adipose tissue in obesity.
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(104–106). Therefore, it is important to examine the effects of
these cells on different adipose T cell populations, which may
link immunity with metabolism in adipose tissue in a different
manner. Finally, given the discussed roles of various types of T
cells in obese adipose tissue, mainly observed in animal models
and tissue culture, it is important to explore the feasibility of
targeting these immune cells as new therapies for obesity-related
metabolic disease in humans.

CONCLUDING REMARKS

Adipose tissue performs complex functions related to
metabolism, immune responses, and endocrine effects. Besides
adipocytes and preadipocytes, adipose tissue includes various
immune cells that compose special adipose niches under
different physiological or pathological conditions. T cells
function as critical players in adipose tissue and influence the
balance and functions of various populations of immune cells,
exerting beneficial or detrimental effects on immunometabolism.
In the healthy state, Treg cells, Th2 cells, and iNKT cells work
with other regulatory immune cells such as M2 macrophages,
ILC2, and eosinophils to maintain the immune and metabolic
homeostasis of adipose tissue, providing a steady environment
to retain normal systemic metabolism. When obesity develops,

Th1 cells, Th17 cells, and CTLs accumulate in adipose tissue
and, along with other proinflammatory immune cells such as M1

macrophages, disrupt the immune homeostasis, causing adipose
tissue inflammation and systemic insulin resistance (Figures 1,
2). The diversity of T cell pools in adipose tissue, either as friend
or foe, may result from the change of metabolism and in turn
influence metabolism in various ways.
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