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Heart failure is a common complication in patients with sepsis, and individuals who experience both 
sepsis and heart failure are at a heightened risk for adverse outcomes. This study aims to develop an 
effective nomogram model to predict the 7-day, 15-day, and 30-day survival probabilities of septic 
patients with heart failure in the intensive care unit (ICU). This study extracted the pertinent clinical 
data of septic patients with heart failure from the Critical Medical Information Mart for Intensive 
Care (MIMIC-IV) database. Patients were then randomly allocated into a training set and a test set 
at a ratio of 7:3. Cox proportional hazards regression analysis was used to determine independent 
risk factors influencing patient prognosis and to develop a nomogram model. The model’s efficacy 
and clinical significance were assessed through metrics such as the concordance index (C-index), 
time-dependent receiver operating characteristic (ROC), calibration curve, and decision curve 
analysis (DCA). A total of 5,490 septic patients with heart failure were included in the study. A 
nomogram model was developed to predict short-term survival probabilities, using 13 variables: 
age, pneumonia, endotracheal intubation, mechanical ventilation, potassium (K), anion gap (AG), 
lactate (Lac), activated partial thromboplastin time (APTT), white blood cell count (WBC), red cell 
distribution width (RDW), hemoglobin-to-red cell distribution width ratio (HRR), Sequential Organ 
Failure Assessment (SOFA) score, and Charlson Comorbidity Index (CCI). The C-index was 0.730 (95% 
CI 0.719–0.742) for the training set and 0.761 (95% CI 0.745–0.776) for the test set, indicating strong 
model accuracy, indicating good model accuracy. Evaluations via the ROC curve, calibration curve, 
and decision curve analyses further confirmed the model’s reliability and utility. This study effectively 
developed a straightforward and efficient nomogram model to predict the 7-day, 15-day, and 30-day 
survival probabilities of septic patients with heart failure in the ICU. The implementation of treatment 
strategies that address the risk factors identified in the model can enhance patient outcomes and 
increase survival rates.
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Sepsis is an exaggerated immune response by the host to infection, often resulting in multiple organ dysfunction 
and mortality1,2. Despite significant advancements in early recognition, etiological treatment, fluid resuscitation, 
vasopressor administration, and supportive care for critically ill patients in recent years, the mortality rate 
associated with sepsis remains alarmingly high3. Current data indicate that the mortality rates for sepsis in 
intensive care units (ICU) and hospitals are 25.8% and 35.3%, respectively4. This has led to annual healthcare 
costs exceeding $24 billion5. Consequently, developing more precise clinical management strategies for sepsis 
patients with various comorbidities has become a focal point of research.

Heart failure (HF) is a complex clinical syndrome resulting from structural or functional abnormalities of the 
heart and is characterized by impaired cardiac contractility or relaxation that fails to meet the metabolic needs 
of tissues6. More than 40 million individuals worldwide are affected by HF7, with approximately 17–45% of these 
patients dying within the first year of diagnosis and a five-year mortality rate approaching 50%8 The mortality 
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rate associated with septic shock is approximately 40%9, and sepsis accounts for one-quarter of all deaths among 
HF patients10. The pathophysiological processes of HF are often associated with compromised intestinal barrier 
function and subsequent bacterial translocation, which can lead to secondary organ damage11. This makes HF 
patients more susceptible to infections, including sepsis. In this population, circulatory dysfunction and reduced 
cardiac reserve further exacerbate the pathological cycle, with many deaths in HF patients attributed to septic 
complications. Research indicates that patients with HF are at an increased risk of developing sepsis, and those 
with concurrent HF and sepsis experience significantly poorer clinical outcomes during hospitalization12,13. 
Therefore, early identification and risk stratification are critical for guiding the treatment of septic patients with 
HF, ultimately aiming to improve their prognosis.

Clinical prediction models serve as vital tools for risk assessment, enabling the estimation of current and 
future patient outcomes based on specific algorithms. These models provide timely and accurate information 
that can significantly enhance clinical decision-making. Various models have been developed to assess the 
prognostic risk associated with sepsis and its related complications. For example, a 30-day mortality prediction 
model for septic patients utilizing the XGBoost algorithm14 and a model for sepsis-associated acute kidney injury 
developed by Fan, both demonstrate robust predictive performance15. However, research specifically focusing 
on clinical prediction models for septic patients with HF remains relatively limited. Given the complexity and 
rapid progression of these conditions, there is a pressing need for further investigations in this area to increase 
predictive accuracy and improve clinical outcomes.

Early warning scoring systems, such as the Sequential Organ Failure Assessment (SOFA) and the Simplified 
Acute Physiology Score II (SAPS II), are widely utilized for prognostic evaluation in critically ill patients. 
However, due to the complex pathophysiology associated with sepsis combined with HF, these singular scoring 
systems often lack sufficient specificity and sensitivity. Consequently, there is a growing trend in research 
towards integrating existing biomarkers and scoring systems to develop more precise clinical risk prediction 
models. Among these models, nomograms have garnered significant attention for their interpretability and 
broad applicability. They can quantitatively integrate multiple independent prognostic factors and present 
this information in a visual format, enabling clinicians to swiftly identify high-risk patients and implement 
tailored treatment strategies16,17. Consequently, this study conducted a retrospective cohort analysis based on 
the Medical Information Mart for Intensive Care IV (MIMIC-IV version 2.2) database. This study aimed to 
develop a nomogram model that effectively predicts short-term survival probabilities for septic patients with HF. 
By enhancing the accuracy of clinical decision-making, this model will aid clinicians in risk stratification and the 
formulation of tailored treatment strategies.

Materials and methods
Data sources and ethical approval
The MIMIC-IV database, provided by the Massachusetts Institute of Technology (MIT), offers detailed medical 
information on patients who underwent ICU treatment at Beth Israel Deaconess Medical Center (BIDMC) 
from 2008 to 2019. It includes demographics, vital signs, interventions, lab results, imaging, nursing notes, 
and discharge summaries. Ethical approval for this study was obtained from the Institutional Review Boards 
of MIT and BIDMC. As all personal data in the database were deidentified before analysis, the requirement for 
institutional review board approval was waived, and patient consent was not needed. The author (Yikun Guo) 
has successfully completed the requisite training for utilizing the database and is certified to use it for research 
purposes (certification number: 62099487). The reporting of this study followed the Transparent Reporting of a 
multivariable prediction model for individual prognosis or diagnosis (TRIPOD) guidelines18.

Population selection criteria
This study identified septic patients with HF via the International Classification of Diseases (ICD) codes from 
the MIMIC-IV database. The relevant ICD-9 codes included 99,591–99,592, 4280, 42,820–42,823, 42,830–
42,833, and 42,841–42,843, and the relevant ICD-10 codes included A419, R6520-R6521, I5021-I5023, and 
I5030-I5033. According to the Sepsis-3 guidelines19, patients with suspected infection and a Sequential Organ 
Failure Assessment (SOFA) score of ≥ 2 were also classified as having sepsis. HF is defined as a syndrome 
characterized by inadequate cardiac output due to structural or functional abnormalities of the heart, resulting 
in congestion in the systemic or pulmonary circulation, encompassing all types of HF with varying ejection 
fractions11. The exclusion criteria included age < 18 years or > 100 years, an ICU stay duration < 24 h, and only 
the first admission was considered for patients with multiple ICU admissions. Patients meeting the inclusion 
criteria were randomly divided into training and test sets at a ratio of 7:3.

Data collection
We utilized structured query language (SQL) within PostgreSQL software (version 13.7.2) to extract common 
clinical parameters from MIMIC-IV, focusing on six key areas: (1) Demographic information: age, sex, and 
weight. (2) Vital signs: Heart rate (HR), mean blood pressure (MBP), systolic blood pressure (SBP), diastolic 
blood pressure (DBP), respiratory rate (RR), temperature, and blood oxygen saturation (SpO2). (3) Laboratory 
indicators: White blood cell count (WBC), red blood cell count (RBC), platelet count (PLT), hemoglobin (HGB), 
red cell distribution width (RDW), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular 
hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), chloride (Cl), potassium (K), 
sodium (Na), calcium (Ca), magnesium (Mg), glucose (Glu), anion gap (AG), pH, partial pressure of oxygen 
(PO2), partial pressure of carbon dioxide (PCO2), lactate (Lac), activated partial thromboplastin time (APTT), 
international normalized ratio (INR), creatinine (Cr), and blood urea nitrogen (BUN). (4) Complications: 
Hypertension, diabetes, myocardial infarction, malignancy, pneumonia, stroke, chronic obstructive pulmonary 
disease (COPD), atrial fibrillation, acute kidney injury (AKI), liver disease, and coronary heart disease (CHD). 
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(5) Scoring systems: Sequential Organ Failure Assessment (SOFA) score, Charlson Comorbidity Index (CCI). 
(6) Outcome indicators: ICU length of stay, and ICU survival status.

The variables included in the nomogram model comprised only clinical data from the first day of ICU 
admission. Only the first measurement was used if multiple measurements were taken within the first 24 h of ICU 
admission. During the data preprocessing stage, we computed certain indicators, such as the hemoglobin-to-red 
cell distribution width ratio (HRR), which is derived from hemoglobin (Hb) levels and the red cell distribution 
width (RDW). Since missing data are a common issue in the MIMIC-IV database, directly excluding patients 
with missing values or analyzing variables with missing data could introduce bias. To ensure the reliability and 
completeness of our analysis, we employed multiple imputation techniques via the missForest R package to 
address missing data20,21, particularly for variables with over 20% missing data.

Statistical analysis
Continuous variables with nonnormal distributions were reported as medians (interquartile ranges, 25th to 
75th percentiles) and were compared between groups via the nonparametric Mann-Whitney U test. Continuous 
variables with normal distributions were presented as the mean ± SD, and group differences were assessed via 
t-test. Qualitative variables were expressed as n (%) and analyzed via Fisher’s exact or chi-square tests.

We employed the Cox proportional hazards model to analyze and identify independent prognostic factors 
for patients with sepsis complicated by HF. Variance inflation factor (VIF) calculations were conducted to detect 
multicollinearity among the variables. Based on the selected variables, we constructed a nomogram model for 
short-term prognosis in septic patients with HF. The model’s performance was further evaluated via a testing 
dataset, in which the concordance index (C-index) and time-dependent receiver operating characteristic (ROC) 
curve analysis were used to assess the predictive ability of the nomogram. We also utilized calibration curves to 
examine the model’s accuracy and conducted decision curve analysis (DCA) to evaluate its clinical utility. All 
the statistical tests were performed via a two-tailed approach, and the analyses were conducted via R software 
(version 4.2.1, http://www.Rproject.org) and EmpowerStats software (version 4.0,  h t t p : / / w w w . e m p o w e r s t a t s . c o 
m     ) , with a p-value of ≤ 0.05 considered statistically significant.

Results
We enrolled a total of 5,490 patients with sepsis and HF from the MIMIC-IV database. The patients were 
randomly assigned to a training set (3,842 patients) or a test set (1,648 patients) at a ratio of 7:3(Fig. 1).

Fig. 1. Selecting Flowchart.
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Baseline demographic and clinical characteristics
Table 1 outlines the clinical characteristics and baseline data of septic patients with HF. The average age of the 
patients was 73.6 years; 3,080 (56.1%) were males and 2,410 (43.9%) were females. Among these patients, 689 
individuals passed away during their ICU stay, resulting in an ICU mortality rate of 12.6%, with an average ICU 
length of stay of 5.8 days. Common comorbidities observed at admission included pneumonia (43.2%), diabetes 
(39.5%), and renal insufficiency (38.6%), whereas fewer patients presented with liver disease (0.3%) or COPD 
(9.6%). Only 0.4% of patients lacked systemic inflammatory response syndrome (SIRS), and inflammatory 
markers and disease scores generally exceeded the normal clinical range. Importantly, there were no significant 
differences in the baseline characteristics between the training set and the test set (P > 0.05), suggesting the 
comparability of the two groups.

Cox regression analysis
Univariate and multivariate Cox regression analyses revealed 13 independent predictors of survival in septic 
patients with HF (Fig. 2). These predictors included age (HR = 1.03, 95% CI: 1.02–1.04, p < 0.001)、pneumonia 
(HR = 1.25, 95% CI: 1.06–1.46, p = 0.006)、endotracheal intubation (HR = 1.57, 95% CI: 1.32–1.87, p < 0.001)
、mechanical ventilation (HR = 0.67, 95% CI: 0.50–0.89, p = 0.007)、K (HR = 1.18, 95% CI: 1.02–1.36, 
p = 0.026)、AG (HR = 1.01, 95% CI: 1.01–1.06, p = 0.016)、Lac (HR = 1.05, 95% CI: 1.00–1.11, p = 0.049)
、APTT (HR = 1.01, 95% CI: 1.00–1.01, p = 0.001)、WBC (HR = 1.01, 95% CI: 1.00–1.02, p = 0.001)、SOFA 
(HR = 1.04, 95% CI: 1.01–1.07, p = 0.015)、CCI (HR = 1.04, 95% CI: 1.01–1.08, p = 0.039)、RDW (HR = 1.07, 
95% CI: 1.03–1.12, p = 0.001)、HRR (HR = 2.59, 95% CI: 1.35–4.97, p = 0.004).The variance inflation factor 
(VIF) values for these variables were all less than 4, indicating the absence of multicollinearity (Table 2).

Constructing and validating nomogram models
Based on the Cox proportional hazards model, we constructed a nomogram incorporating 13 risk factors to 
predict the 7-day, 15-day, and 30-day survival probabilities of septic patients with HF (Fig. 3). The nomogram 
calculates each patient’s total points by summing the scores assigned to each feature (points). The total points 
correspond vertically to the respective survival probability scale (7-day, 15-day, and 30-day survival rates), 
indicating the predicted survival rate for each patient.

The training set and test set had C-indexes of 0.730 (95% CI 0.719–0.742) and 0.761 (95% CI 0.745–0.776), 
respectively, indicating good model accuracy. ROC curve analysis (Fig. 4), calibration curve analysis (Fig. 5), and 
decision curve analysis (Fig. 6) were performed to validate the model’s accuracy. The AUCs for the nomogram 
model predicting 7-day, 15-day, and 30-day survival probabilities were 0.739, 0.699, and 0.684 in the training 
set, and 0.777, 0.771, and 0.730 respectively in the test set, demonstrating good predictive accuracy. Calibration 
curve analysis showed good consistency between the predicted and actual values. Additionally, decision curve 
analysis indicated a substantial net benefit of our model in both the training set and test set.

Discussion
Using the large publicly available MIMIC-IV database, our study developed a straightforward nomogram 
model to predict the short-term mortality risk of septic patients with HF in the Intensive Care Unit (ICU). 
Our nomogram incorporates 13 easily accessible and assessable predictive variables, including age, pneumonia, 
endotracheal intubation, mechanical ventilation, potassium (K), anion gap (AG), lactate (Lac), activated partial 
thromboplastin time (APTT), white blood cell count (WBC), red cell distribution width (RDW), hemoglobin-
to-red cell distribution width ratio (HRR), Sequential Organ Failure Assessment (SOFA) score, and Charlson 
Comorbidity Index (CCI).

The model exhibited strong discriminatory and calibration performance in training and testing cohorts, 
confirming its reliability and clinical applicability without necessitating complex tests, advanced imaging, or 
invasive procedures. This nomogram may be a valuable tool for clinicians and researchers in predicting and 
assessing the severity of illness in septic patients with HF, facilitating advanced management strategies. In the 
future, this model could be integrated into the hospital’s clinical decision support system, leveraging routinely 
collected clinical data for automated monitoring and real-time assessment of mortality risk in septic patients 
with HF, ultimately optimizing the allocation of medical resources.

In our analysis, age emerged as a critical independent risk factor influencing short-term survival probabilities 
in septic patients with HF. The prevalence and mortality rates associated with both sepsis and HF increase 
significantly with increasing age22. Data indicate that approximately 60% of sepsis cases occur in patients aged 
65 and older, which is closely linked to age-related immunodeficiency, neurohormonal dysregulation, and 
the coexistence of multiple chronic conditions23. Furthermore, the increasing age of patients with HF is often 
accompanied by a decline in cardiovascular structure and function, further exacerbating the risk of adverse 
outcomes24. Additionally, age-related metabolic remodeling, persistent chronic inflammation, and excessive 
oxidative stress contribute to a reduced cardiovascular reserve, negatively impacting patient survival prognosis25.

Our study identified that pneumonia, endotracheal intubation, and mechanical ventilation are associated 
with survival probabilities in septic patients with HF. The lungs are among the most vulnerable organs in patients 
suffering from sepsis and heart failure. Pulmonary complications, such as pneumonia, acute lung injury, and 
respiratory failure, are among the most common complications in ICU patients and are significantly linked 
to poor prognoses and increased mortality rates in those with sepsis and HF. Epidemiological studies indicate 
that approximately 40–60% of sepsis cases originate from respiratory tract infections, with pneumonia being 
the primary cause26. Infections trigger a systemic inflammatory response, leading to an inflammatory storm 
that exacerbates cardiac burden and can precipitate or worsen HF27. Furthermore, the use of certain antibiotics 
during the treatment of sepsis can introduce cardiotoxic effects, complicating the management of HF patients 
and increasing the risk of adverse events in those with sepsis and HF27.
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Variable
Training set
(N = 3,842)

Testing set
(N = 1,648) Total(N = 5,490) P-value

Demographic

Gender, N(%) 0.632

Male 2,164 (56.3%) 916 (55.6%) 3,080 (56.1%)

Female 1,678 (43.7%) 732 (44.4%) 2,410 (43.9%)

Age, (year) 73.8(60.6,87) 73.4(59.9,86.9) 73.6 (60.3,86.9) 0.283

weight(kg) 84.5(58.4,110.6) 83.6 (58.9,108.3) 84.3 (58.6,109.7) 0.187

Vital signs

HR, (times/min) 89.0(68.3,109.7) 89.0(69.1,108.9) 89.0(68.5, 109.5) 0.964

RR, (times/min) 19.7(13.2,26.2) 19.7(13.4, 26.0) 19.7(13.3, 26.1) 0.729

Temperature, (℃) 36.6(34.3,38.9) 36.7(34.9, 38.5) 36.7(34.6, 38.8) 0.502

DBP, (mmHg) 65.4(46.9,84.3) 69.6(50.9, 88.3) 66.7(48.7, 84.7) 0.308

SBP, (mmHg) 118.8(94.4,143.2) 118.8(94.2,143.4) 118.8(94.3, 143.3) 0.973

MBP, (mmHg) 78.6(55.6,101.6) 78.5(60.0, 97.1) 78.6(56.8, 100.4) 0.895

Spo2,(%) 96.7(82.0,111.4) 96.4(91.7, 101.1) 96.6(84.0, 109.2) 0.166

Scoring systems

SOFA 6.4(3.1, 9.7) 6.3(2.9, 9.7) 6.4(3.0, 9.8) 0.463

CCI 7.0(4.5, 9.5) 6.9(4.3, 9.5) 7.0(4.4, 9.6) 0.664

Laboratory results

WBC, (K/UL) 13.4(5.3, 21.5) 13.5(5.7, 21.3) 13.4(5.3, 21.5) 0.885

RBC, (m/UL) 3.5(2.8, 4.2) 3.5(2.8, 4.2) 3.5(2.8, 4.2) 0.143

Platelet, (K/UL) 201.2(101.7,300.7) 203.5(97.8,311.2) 201.9(100.4, 303.4) 0.458

Hemoglobin, (g/dL) 10.4(8.5, 12.3) 10.3(8.4, 12.2) 10.3(8.4, 12.2) 0.094

RDW, (%) 15.5(13.3, 17.7) 15.6(13.2, 17.8) 15.5(13.2,17.8) 0.213

HCT, (%) 31.9(25.3, 38.5) 31.6(25.1, 38.2) 31.8(25.2, 38.4) 0.081

HRR 0.7(0.5, 0.9) 0.7(0.5, 0.9) 0.7(0.5, 0.9) 0.101

RPR 0.1(0.0, 0.2) 0.1(0.0, 0.2) 0.1(0.0, 0.2) 0.535

MCH, (pg) 32.5(30.8, 34.2) 32.5(30.8, 34.2) 32.5(30.8, 34.2) 0.248

MCHC, (g/L) 29.9(27.2, 32.6) 29.8(27.0, 32.6) 29.8(27.1, 32.5) 0.748

MCV, (fL) 91.9(84.7, 99.1) 91.9(84.4, 99.4) 91.9(84.6, 99.2) 0.741

Na, (mmol/L) 138.4(133.5, 143.3) 138.4(133.6, 143.2) 138.4(133.6, 143.2) 0.737

K, (mmol/L) 4.3(3.7, 4.9) 4.3(3.7, 4.9) 4.3(3.7, 4.9) 0.644

Ca, (mmol/L) 8.3(7.6, 9.0) 8.3(7.6, 9.0) 8.3(7.6, 9.0) 0.468

Cl, (mmol/L) 103.3(97.0, 109.6) 103.2(96.7, 109.7) 103.3(96.9, 109.7) 0.433

Mg, (mmol/L) 2.1(1.6, 2.6) 2.1(1.3, 2.9) 2.1(1.5, 2.7) 0.562

Glu, (mmol/L) 8.2(5.0, 11.4) 8.3(5.0, 11.6) 8.2(5.0, 11.4) 0.641

APTT, (s) 42.0(21.8, 62.2) 42.4(21.7, 63.1) 42.1(21.7, 62.5) 0.496

INR 1.7(0.8, 2.6) 1.6(0.6, 2.6) 1.7(0.7, 2.7) 0.817

Cr, (mg/dL) 1.8(0.2, 3.4) 1.9(0.2, 3.6) 1.8(0.2, 3.4) 0.527

BUN, (mg/dL) 36.1(11.4, 60.8) 36.0(11.6, 60.4) 36.1(11.5, 60.7) 0.956

AG 15.2(11.3, 19.1) 15.2(11.4, 19.0) 15.2(11.3, 19.1) 0.846

Blood gas analysis

PH, (%) 7.4(7.3, 7.5) 7.4(7.3, 7.5) 7.4(7.3, 7.5) 0.603

CO2,(mmHg) 42.8(33.4, 52.2) 43.0(33.1, 52.9) 42.8(33.2, 52.4) 0.409

PO2,(mmHg) 154.0(37.6, 270.4) 154.6(40.4, 268.8) 154.2(38.4, 270.0) 0.765

Lac, (mmol/L) 2.2(0.8,3.6) 2.2(0.8, 3.6) 2.2(0.8, 3.6) 0.519

Comorbidities

SIRS 0 13 (0.3%) 9 (0.5%) 22 (0.4%) 0.783

1 332 (8.6%) 135 (8.2%) 467 (8.5%)

2 1,094 (28.5%) 465 (28.2%) 1,559 (28.4%)

3 1,672 (43.5%) 716 (43.4%) 2,388 (43.5%)

4 731 (19%) 323 (19.6%) 1054 (19.2%)

Hypertension 0.228

No 2,655 (69.1%) 1,111 (67.4%) 3,766 (68.6%)

Yes 1,187 (30.9%) 537 (32.6%) 1,724 (31.4%)

Diabetes 0.952

Continued
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Mechanical ventilation and endotracheal intubation influence patient prognosis, often indicating a severe 
clinical condition and a reduced likelihood of survival. Sepsis frequently leads to acute respiratory distress 
syndrome (ARDS), resulting in impaired oxygenation and ventilation, which further exacerbates respiratory 
failure28. While the necessity for intubation and mechanical ventilation suggests a critical state for patients, these 
interventions can also improve their prognosis by alleviating pulmonary strain and promoting the recovery of 
lung function29. Consequently, optimizing lung-protective ventilation strategies, such as using low tidal volumes 
and positive end-expiratory pressure (PEEP), is essential for delivering effective respiratory support30. However, 

Variable
Training set
(N = 3,842)

Testing set
(N = 1,648) Total(N = 5,490) P-value

No 2,324 (60.5%) 999 (60.6%) 3,323 (60.5%)

Yes 1,518 (39.5%) 649 (39.4%) 2,167 (39.5%)

Myocardial infarction 0.396

No 3,331 (86.7%) 1,414 (85.8%) 4,745 (86.4%)

Yes 511 (13.3%) 234 (14.2%) 745 (13.6%)

Cancer 0.456

No 3,213 (83.6%) 1,364 (82.8%) 4,577 (83.4%)

Yes 629 (16.4%) 284 (17.2%) 913 (16.6%)

Pneumonia 0.823

No 2,187 (56.9%) 932 (56.6%) 3,119 (56.8%)

Yes 1,655 (43.1%) 716 (43.4%) 2,371 (43.2%)

Stroke 0.383

No 3,406 (88.7%) 1,475 (89.5%) 4,881 (88.9%)

Yes 436 (11.3%) 173 (10.5%) 609 (11.1%)

COPD 0.757

No 3,471 (90.3%) 1,494 (90.7%) 4,965 (90.4%)

Yes 371 (9.7%) 154 (9.3%) 525 (9.6%)

Atrial fibrillation 10

No 1,843 (48%) 790 (47.9%) 2,633 (48%)

Yes 1,999 (52%) 858 (52.1%) 2,857 (52%)

AKI 0.966

No 2,361 (61.5%) 1,011 (61.3%) 3,372 (61.4%)

Yes 1,481 (38.5%) 637 (38.7%) 2,118 (38.6%)

Hepatopathy 10

No 3,832 (99.7%) 1,643 (99.7%) 5,475 (99.7%)

Yes 10 (0.3%) 5 (0.3%) 15 (0.3%)

Coronary heart disease 0.157

No 3,146 (81.9%) 1,322 (80.2%) 4,468 (81.4%)

Yes 696 (18.1%) 326 (19.8%) 1,022 (18.6%)

Treatment

Mechanical ventilation 0.435

No 285 (7.4%) 133 (8.1%) 418 (7.6%)

Yes 3,557 (92.6%) 1,515 (91.9%) 5,072 (92.4%)

Endotracheal intubation 0.685

No 2,933 (76.3%) 1,249 (75.8%) 4,182 (76.2%)

Yes 909 (23.7%) 399 (24.2%) 1,308 (23.8%)

Outcome

Los of ICU, (days) 5.8(1.3, 10.3) 5.7(1.1, 10.5) 5.8(1.2, 10.4) 0.798

ICU mortality, n (%)

Alive 3,349 (87.2%) 1,452 (88.1%) 4,801 (87.4%) 0.359

Dead 493 (12.8%) 196 (11.9%) 689 (12.6%)

Table 1. Descriptions of the characteristics of sepsis patients with heart failure. HR: Heart rate; RR: 
Respiratory rate; SBP: Systolic blood pressure; SpO2: Blood oxygen saturation; SOFA: Sequential Organ Failure 
Assessment; CCI: Charlson comorbidity index; WBC: white blood cel; RDW: Red cell distribution width; 
HRR: hemoglobin-to-red cell distribution width ratio; COPD: chronic obstructive pulmonary disease; AKI: 
acute kidney injury; Na: sodium; K: potassi um; Cl: chlorine; Mg: magnesium; AG: anion gap; Lac: lactic acid; 
Glu: glucose; BUN: blood urea nitrogen; Cr: creatinine; APTT: activated partial thromboplastin time INR: 
international normalized ratio.
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postintubation hypotension (PIH) is a common complication that may increase hospital mortality and the length 
of stay for patients with septic HF31,32. Therefore, it is imperative to actively address and correct hypotension in 
patients suspected of having hypovolemia to improve outcomes.

Other biomarkers also influence the prognosis of patients with septic and HF. An elevated WBC count 
reflects immune system activation, suggesting a potential excessive inflammatory response, and is associated 
with an increased risk of mortality, which is commonly used in relevant studies for predicting sepsis and sepsis-
related damage33–35. APTT is associated with poor prognosis in septic patients with HF, possibly related to 
disseminated intravascular coagulation (DIC) caused by inflammation36, endothelial cell damage induced by 
inflammation, microvascular thrombosis formation, and microcirculatory deterioration37. RDW is a routine 
parameter reflecting red blood cell size heterogeneity and distinguishing anemia types, is significantly correlated 
with the systemic inflammatory response38and has been linked in multiple studies to the prognosis of HF39, 
sepsis40, coronary artery disease41, pulmonary hypertension42, acute pulmonary embolism43, stroke44, and other 
diseases, demonstrating its unique clinical value in critically ill patients. Furthermore, the HRR is considered 
to be associated with poor prognosis in septic patients with HF, and increasing evidence suggests that the HRR 
can serve as a new prognostic indicator for critically ill patients. For example, Rahamim et al.. reported that the 
HRR effectively predicts mortality in HF patients45; Wang et al..‘s study indicated that the HRR performs well in 
predicting adverse outcomes in septic atrial fibrillation patients46; Chi et al. found that a low HRR is associated 
with dual risks of disease progression or cancer recurrence and used them to predict adverse outcomes in cancer 
patients47. Our study also found that HRR can be utilized as a predictor of survival rates in patients with sepsis-
induced heart failure.

Potassium ion (K+) are crucial cations for maintaining the cell membrane potential and transmitting nerve 
impulses, with elevated baseline levels possibly indicating compromised heart function, renal insufficiency, or 
more severe diseases48, and HF patients are more sensitive to fluctuations in potassium ion levels49. Therefore, 
K + can be a predictive indicator for survival rates in septic patients with HF.

The anion gap (AG), a biochemical parameter, is widely used to evaluate acid-base balance, electrolyte 
imbalances, and metabolic disorders. Studies have shown that elevated AG levels are linked to the severity 
and mortality of conditions such as chronic kidney disease50,stroke51, cardiac arrest52, and aortic aneurysm53. 
In sepsis management, serum lactate (Lac) is a critical marker for early identification and risk stratification, 
reflecting inadequate tissue perfusion in sepsis patients and correlating closely with increased mortality rates. 
However, the use of lactate measurement may be limited in settings outside of intensive care or in resource-
constrained environments. Consequently, some scholars have proposed that the anion gap could be used as a 
substitute for lactate measurement in these circumstances54. While the AG does not accurately predict lactate 
level changes, it can still effectively identify the mortality risk in septic patients when resources are limited, 
thus guiding subsequent treatment decisions55. This study also revealed that the AG can be used to predict and 
identify adverse outcomes in septic patients with HF. However, the specific mechanisms and therapeutic efficacy 
require further investigation.

Fig. 2. COX regression analysis. SOFA: Sequential Organ Failure Assessment; CCI: Charlson comorbidity 
Index; WBC: white blood cell; RDW: red blood cell distribution width; HRR: hemoglobin-red cell distribution 
width ratio; K: potassium; Lac: lactic acid; AG: anion gap; APTT: activated partial thromboplastin time.
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Fig. 3. Nomogram model for short-term survival probabilities in septic patients with HF. This model is 
utilized for estimating the 7, 15, and 30-day survival probabilities of patients with this condition. By assigning 
scores on a scale, the changes in each variable are represented through forest plots, followed by the calculation 
of a cumulative score to forecast the likelihood of an event occurrence. SOFA: Sequential Organ Failure 
Assessment; CCI: Charlson comorbidity Index; WBC: white blood cell; RDW: red blood cell distribution 
width; HRR: hemoglobin-red cell distribution width ratio; K: potassium; Lac: lactic acid; AG: anion gap; 
APTT: activated partial thromboplastin time.

 

Variable VIF

Age 1.2173

Pneumonia

NO Reference

YES 1.0391

Endotracheal intubation

NO Reference

YES 1.1048

Mechanical ventilation

NO Reference

YES 1.0457

WBC 1.0294

RDW 2.0944

HRR 2.1055

K 1.1544

Lac 1.9609

AG 2.1305

APTT 1.0227

SOFA 1.2706

CCI 1.2728

Table 2. VIF results for variables. SOFA: Sequential Organ Failure Assessment; CCI: Charlson comorbidity 
Index; WBC: white blood cell; RDW: red blood cell distribution width; HRR: hemoglobin-red cell distribution 
width ratio; K: potassium; Lac: lactic acid; AG: anion gap; APTT: activated partial thromboplastin time.
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The mortality rate among septic patients with HF remains alarmingly high, undeniably increasing the 
complexity and challenges associated with their clinical management. Various scoring systems, such as SOFA, 
mSOFA, qSOFA, APACHE II, and SAPS II, are widely employed for the clinical assessment of sepsis patients56,57. 
However, these scoring systems exhibit varying degrees of sensitivity and specificity in the early identification 
and rapid evaluation of sepsis, each accompanied by certain limitations58–60. In light of the constraints of 
these singular assessment tools and the urgent need in clinical practice, numerous researchers are focused on 
integrating scoring systems with biomarkers to achieve early identification and precise risk stratification for 
patients with sepsis and its complications. This integrated evaluation approach demonstrates superior predictive 

Fig. 5. Prognostic calibration curve plot. (A) Training set; (B) testing set. This figure displays the calibration 
curves for the established nomogram, indicating the agreement between predicted and observed survival 
probabilities in both the training set (A) and the test set (B).

 

Fig. 4. The time-dependent ROC curve of the nomogram. (A) Training set; (B) testing set. To evaluate the 
accuracy of a model in predicting the 7-day, 15-day, and 30-day survival probabilities for septic patients with 
heart failure within both the training set (A) and the test set (B), the ROC curve was utilized. The model 
demonstrated robust predictive accuracy.
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and identification capabilities compared to standalone scoring systems33,61,62. Our study further explores the 
combination of the SOFA score, CCI score, and biomarkers to predict the survival probability of septic patients 
with HF. The results indicate a promising level of accuracy, suggesting that this method could provide robust 
quantitative support for clinical decision-making, optimize treatment strategies, and ultimately improve patient 
outcomes.

This study utilized the MIMIC database to analyze the clinical data of septic patients with HF, developing 
a nomogram model to predict 7-day, 15-day, and 30-day survival probabilities. The risk factors included in 
this study are common clinical complications and widely used laboratory indicators, enhancing the clinical 
practicability of the model. Despite limitations, including bias in retrospective cohort studies and undefined 
causality, our large sample cohort mitigated these. While MIMIC-IV provided reliable data, single-center 
design limited generalizability. Future plans include multi-center validation to enhance generalization. Residual 
confounding and unmeasured variables remain challenges despite using multivariate Cox regression. Subsequent 
research should expand the sample size, incorporate more influencing factors, and consider adopting more 
advanced statistical methods and machine learning techniques, such as random forest, ensemble learning, etc., 
to further optimize the prediction model for the short-term mortality risk of septic patients with heart failure. 
However, it is worth noting that although advanced machine learning techniques are used to develop prediction 
models, they also need to be reasonably selected based on specific backgrounds and circumstances63.

Conclusion
This retrospective study developed and validated a nomogram model to predict short-term survival probabilities 
in septic patients with HF. Our model exhibited strong predictive performance compared to traditional scoring 
systems, emphasizing its potential utility in clinical practice. The model aids clinicians in making rapid initial 
clinical decisions and can be utilized in managing septic patients with HF.

Data availability
The datasets used/analyzed in the current study are available from corresponding authors on reasonable request. 
The datasets presented in this study are accessible within the MIMIC repository at  [   h t t p s : / / m i m i c . p h y s i o n e t . o r 
g     ] .  

Received: 4 August 2024; Accepted: 3 January 2025

Fig. 6. Prognostic DCA plot. (A-C) Training set; (D-F) testing set. This figure presents the DCA for predicting 
survival probabilities in septic patients with heart failure within both the training set (A-C) and the test set 
(D-F). The curves evaluate the clinical utility of the model, demonstrating that our model yields substantial net 
clinical benefit in both the test set and the training set.
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