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Abstract
Purpose This work aims for a systematic comparison of popular shape and appearance models. Here, two statistical and four
deep-learning-based shape and appearance models are compared and evaluated in terms of their expressiveness described by
their generalization ability and specificity as well as further properties like input data format, interpretability and latent space
distribution and dimension.
Methods Classical shape models and their locality-based extension are considered next to autoencoders, variational
autoencoders, diffeomorphic autoencoders and generative adversarial networks. The approaches are evaluated in terms of
generalization ability, specificity and likeness depending on the amount of training data. Furthermore, various latent space
metrics are presented in order to capture further major characteristics of the models.
Results The experimental setup showed that locality statistical shape models yield best results in terms of generalization
ability for 2D and 3D shape modeling. However, the deep learning approaches show strongly improved specificity. In the
case of simultaneous shape and appearance modeling, the neural networks are able to generate more realistic and diverse
appearances. A major drawback of the deep-learning models is, however, their impaired interpretability and ambiguity of the
latent space.
Conclusions It can be concluded that for applications not requiring particularly good specificity, shape modeling can be
reliably established with locality-based statistical shape models, especially when it comes to 3D shapes. However, deep
learning approaches are more worthwhile in terms of appearance modeling.

Keywords Comparison · Generative models · Shape and appearance models

Introduction

Building representative, generativemodels that capture shape
and appearance variations of anatomical structures com-
monly observed in a population of subjects, is a classical
problem in computational anatomy. Such models have mul-
tiple applications in medical image analysis where they can,
for example, provide prior information about plausible shape
and appearance configurations in classical image segmenta-
tion and registration approaches [13,17]. In an era where
medical image analysis is dominated by deep learning-based
methods, models of shape and appearance are still valuable
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as either a way to systematically generate additional training
data [15,29] or to directly integrate such information into the
network architecture [20,33].

Statistical shape models (SSMs) use the principal compo-
nent analysis (PCA) on point-wise shape representations to
compactly describe the shape variability [4,12].

While those models have had great success in the past
[12], they come with significant disadvantages as they are
only able to represent linear manifolds, rely on point-by-
point correspondences across all training shapes, and do not
generalize well to unseen data when only few training sam-
ples were available. Some of those shortcomings have been
addressed via targeted extensions of the core method. For
example, in [17] a nonlinear extension of SSMs is derived,
[5,32] introduce methods to still learn representative SSMs
based on few real samples, and [14,18] propose a proba-
bilistic method to build SSMs without fixed point-by-point
correspondence. In addition to shape modeling, the PCA-
based mechanisms underlying SSMs [4] have also been used
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to learn statistical appearancemodels (SAMs) that simultane-
ously model shape and grayvalue appearance of anatomical
structures [3,18]. This not only allows for an improved rep-
resentation of the structures being modeled, but also enables
the generation of realistic images for tasks like data augmen-
tation when training neural networks [29].

In recent years, the focus has shifted away from tradi-
tional SSMs or SAMs for generative modeling in medical
image analysis as deep learning approaches have become
more popular. For example, autoencoders (AEs) and vari-
ational autoencoders (VAEs) were successfully applied for
feature extraction [2] or unsupervised pathology localization
[28]. Furthermore, so-called generative adversarial networks
(GANs) known for their excellent ability to generate realistic
images have been utilized for data augmentation [7]. More-
over, the recently developed diffeomorphic and deformable
autoencoders (DAEs) share foundations with SSMs and
are thus particularly suitable for representation learning
[1,26].When compared to traditional SSMs and SAMs, deep
learning-based generative models have many advantages in
terms of model flexibility and image generation. For exam-
ple, typically no separate handling of shape and appearance
is required, point-by-point correspondences are not needed,
and they are flexible enough to directly handle nonlinear rela-
tionships. However, deep learning-based models typically
require a much larger amount of training data than their tra-
ditional counterparts and are often deemed as black boxes
that are hard to interpret.

Given the amount of various traditional and deep learning-
based shape modeling methods, a systematic investigation
of their specific strengths and drawbacks in relevant med-
ical image analysis scenarios has been missing so far. This
work aims to consistently and systematically evaluate the per-
formance and characteristics of two traditional approaches
(SSMs and their locality-based extension [32] (LSSMs)) and
four deep learning-based autoencoding architectures on pub-
lic datasets. Although the models differ with respect to the
representation of input and output data, they were chosen
since they agree in terms of purpose and aim: generative
modeling of shape and/or appearance information based on
a set of training data. Despite the fact that shape information
is encoded as contours (or pseudo-landmarks) in statistical
shapemodels, and as label images inCNN-based approaches,
all of the discussed approaches can be used interchangeably
in downstream tasks, e.g., to synthesize training data, to pro-
vide shape priors, or for data augmentation [6,7,29]. The
provided comparison aims to contribute to the discussion
which generative model is the most appropriate for a given
task by evaluating their reconstruction performance as well
as the specificity and diversity of generated samples depend-
ing on the size of the training dataset.

Furthermore, we study and compare the consistency and
characteristics of the respective latent spaces. In a previous

study [27], we examined the shape modeling properties of
SSMs and different neural networks for 2D shapes. We were
able to show that on average neural networks perform on
par with SSM in terms of generalization ability while out-
performing them in terms of specificity. On the other hand,
traditional SSMs and specific extensions especially showed
their benefits in scenarios with small training populations.
This work substantially extends [27] by (1) also investigating
3D shapes in addition to 2Ddata, by (2) incorporating appear-
ance information, and by (3) utilizing additional metrics to
inspect sample quality and latent space characteristics. We
strongly believe that those extensions of our analysiswill help
to obtain a better understanding of the differences between
various deep learning and classical shape and appearance
modeling approaches.

Methods

Compared approaches

In this work, the following two statistical and four deep-
learning approaches are considered in a systematic compar-
ison.

Statistical Shape and Appearance Models Statistical shape
models (SSMs) are built using a training set of N discrete,
vectorized shape representations x1 . . . xN [4].

Here, each xi ∈ R
dm is composed of m landmarks rep-

resenting the object’s shape in a d-dimensional space. PCA
of a training set is used to create a mean shape xμ and an
orthonormal basis U ∈ R

dm×p for projecting shape repre-
sentations into a low-dimensional latent space z ∈ R

p via
xnew = xμ + Uz or to generate new shapes by varying z.

SSMs can be expanded by appearance modeling (SAMs)
[3] by considering appearance images ai and warping their
shape representations xi to xμ with the corresponding trans-
formation ϕi . The resulting ”shape-normalized” images can
be used in a similar manner for a PCA-based modeling of the
intensities sampled on multiple points. After the sampling of
the appearance parameters, the resulting image need to be
warped back with ϕ−1.

Locality-based Statistical Shape and Appearance Models In
classical SSMs, the number of training samples influences
the flexibility of the model, since the size of the latent space
is limited by the size of the training set. Locality-based SSMs
(LSSMs) [32] introduce additional flexibility by breaking
global relationships and assuming that local shape varia-
tions have limited effects in distant areas. This idea can be
integrated into the traditional SS(A)M framework by manip-
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ulating covariances based on the distance between landmarks
in a multi-resolution manner.

Autoencoders Autoencoders (AEs) are typically neural net-
works that aim to learn a low-dimensional representation
from high-dimensional input data [16]. They consist of an
encoder f : R

d → Z that maps the input x ∈ R
d to a

latent space variable z ∈ Z; and a decoder g : Z → R
d that

aims to reconstruct the input image as flawlessly as possi-
ble by only considering its latent representation. To ensure a
good reconstruction of the input image, a reconstruction loss
between the real input image and its reconstruction is usually
calculated.

AEs can be observed as generative models, where an
unseen sample xnew can be reconstructed as xnew ≈
g( f (xnew)) and new samples can be generated by sampling
a random latent vector zsample and computing g(zsample).
However, using AEs for the generation of new samples in
this manner might be infeasible due to the unknown under-
lying distribution of the latent space. Thus a random sample
can lie far away from the learned distribution and produce
unrealistic results.

Variational Autoencoders Variational autoencoders (VAEs)
[16] are an extension of conventional AEs that prevent the
problem of unknown latent distribution. VAEs constrain the
latent space to a known prior distribution p(z), most com-
monly set to the normal distributionN (0, 1). In practice, this
is done by applying aKullback-Leibler (KL) loss to the latent
space. Using VAEs for the reconstruction of unseen samples
can be done analogously to conventional AE; however, the
main difference lies in the generation of new samples by
sampling a zsample ∼ N (0, 1).

Autoencoder Generative Adversarial NetsAutoencoder gen-
erative adversarial nets (AE-GANs) [19] are a combination
of an autoencoder with an adversarial discriminator inspired
by GANs [9]. Thus an AE-GAN consists of an encoder
f : R

d → Z , a decoder g : Z → R
d and enclosed

adversarial discriminator d : R
d →{real,fake}. Here, the

typical GAN-loss is combined with a reconstruction loss
to improve convergence. For our purposes, the straight-
forward use of GANs is infeasible, since they do not directly
enable reconstruction of samples and approaches like [24] are
time-consuming. Using anAE-GAN architecture enables the
reconstruction of samples analogously to AEs.

Diffeomorphic Autoencoders Similarly to statistical models,
diffeomorphic autoencoders (DAEs) [1] assume images as a
deformed version of a global template. DAEs also feature
an encoder-decoder structure; however, the decoder’s out-
put is a deformation field ϕ, such that given a template t
the input image x can be reconstructed as t ◦ ϕ, where ◦
denotes the warping function. Diffeomorphic autoencoders

most commonly constrain the latent space to a normal distri-
bution using a KL loss.

Using the annotations from Sect. 2.1, unseen samples can
be reconstructed as xnew ≈ t ◦ g( f (xnew)) and new sam-
ples can be generated as t ◦ g( f (zsample)) with zsample ∼
N (0, 1). DAEs reliably capture shape changes between sam-
ples; however, modeling of appearance is not feasible with
this approach. For the additional modeling of intensity off-
sets, an extension to the DAE approach similar to [26] is
used in this work. We correspond to this model as appear-
ance DAE (ADAE). The main idea is to represent images as
x ≈ (t + a) ◦ ϕ with a being an image-specific pixel-wise
intensity offset. To enable this, the encoder f generates a
composite latent representation z = [zs, za] for shape and
appearance respectively and two decoders gs and ga each
generate a shape displacement ϕ and an appearance map a.

Architectures and Implementation Details
In order to decouple architectural search from network

performance and enable comparability between the deep
learning approaches in terms of the number of trainable
parameters, the same architectures (except for particular
model-specific components) were applied for all models.
In this way, the expressiveness of the networks for a fixed
architecture can be evaluated and separated from the perfor-
mance gain due to architectural optimization. Each encoder
(or discriminator) contains three convolutional layers (2D
or 3D depending on the input data) with stride two and
a growing number of channels [inch ,20,40,80] and a fully
connected layer at the end to obtain the latent vector. The
decoders contain three subsequent bilinear upsampling and
convolutional layers with a decreasing number of channels
[80,40,20,outch]. The input and output number of channels
inch and outch depends on the input and output types (one-
hot encoded label images, displacement fields or one-channel
intensity images). When modeling shapes (represented as
labels) a weighted generalized Dice loss is used [25], when
modeling appearances an SSIM-loss is chosen. For the
diffeomorphic autoencoders, the displacement field is reg-
ularized using diffusion and L1-regularization as in [26]. All
parameters for the weighting of the loss function were taken
from [26], where both regularization terms are weighted by
a factor of ten.

Evaluation techniques

Assessing the quality of generative models

Generalization Ability Generalization ability (GA) is the
ability of a generative model to reconstruct samples unseen
during training. Formally, given a set of real left out images
ri ∈ R, GA is measured as 1

NR

∑NR
i dist(ri , r̂ i ), where

dist(·, ·) is a suitable image-wise distance metric and r̂ is the
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reconstructed input r. The reconstruction of unseen samples
is established depending on the used approach as explained
in 2.1.

Specificity The specificity is the ability of a generative
model to generate new samples that are similar to the
real samples of the training dataset, i.e., realistic samples
can be generated. Specificity is measured by generating a
dataset s j ∈ S of NS sampled images and calculating:
1
NS

∑NS
j minri∈R{dist(ri , s j |ri ∈ R} where R is a set of

real images. Specificity measures the distance of a generated
image to its best fitting real image; however, the diversity of
the generated samples is not considered. This means that a
good specificity may indicate that the model only generates
one image that suits a particular real image very well. Thus
the diversity of the generated images is also considered by
the following evaluation method.

Likeness The likeness score proposed by [10] evaluates the
realism of generated images by considering the aspects cre-
ativity, inheritance and diversity. The authors propose to
compute a distance-based separability index (DSI) by com-
paring the distributions of distances between images of the
same class (real or synthetic) and different classes. For two
sets R, S of real and synthetic images, the intra-class dis-
tance set (ICD) is defined as: {dR} = {dist(ri , r j )|ri , r j ∈
R; ri �= r j } (analogously {dS} for S), and the between-
class distance set (BCD) can be determined as: {dR,S} =
{dist(ri , s j )|ri ∈ R; s j ∈ S}. The Kolmogorov–Smirnov
statistic is used to quantify the similarity of the distribu-
tions sR = K S({dR}, {dR,S}), sS = K S({dS}, {dR,S}),
and the average of the two KS similarities defines the DSI:
DSI (R,S) = (sR + sS)/2. We refer to this metric as like-
ness since it describes the similarity between the distribution
of the real data and the generated data. The likeness ranges
from 0 to 1 where smaller values indicate better synthetic
images.

Quantifying the latent space

CompactnessThemost important property of the latent space
is its dimension, with a smaller number of latent dimen-
sions contributing to the interpretability of the model. While
in SSMs the dimension of the latent space is determined
by the number of modes describing the desired percentage
of variability (95%), for deep learning models this must be
empirically determined a priori (see appendix for choice of
latent dimensions).

Normality An important assumption of all approaches is that
new samples can be generated by sampling a vector z from
a normal distribution. This requires a roughly normal distri-
bution of the learned latent spaces. To assess this property,
we encode a set of real samples and examine the distribu-

tions along each dimension using a Shapiro-Wilk test [23].
In this manner, the percentage of not-normally distributed
components of the latent space can be determined. A fur-
ther visual evaluation of the smooth distribution of the latent
space can be established by interpolating between the pro-
jections of two random images and visualizing the decodings
of the intermediate latent vectors.

Latent ambiguity scoreAdesired property of generativemod-
els is that if an image x is mapped to its latent variable z
and reconstructed to x̂, the reconstruction x̂ should also get
mapped to the same latent vector. This is given for SSM-
based models, however not mandatorily fulfilled by deep
learning approaches. To asses the extent of the problem, we
propose the latent ambiguity score L AS = D/Dbase, where
D = 1

NR

∑NR
i || f (ri ) − f (g( f (ri )))||2 is the mean latent

space distance of images ri ∈ R and their reconstructions,
andDbase = 1

NR ·(NR−1)

∑NR
i

∑NR
j �=i || f (ri )− f (r j )||2 is the

mean encoded distance between different images. LAS close
to zero corresponds to an unambiguous latent space, whereas
a score close to one indicates that the latent mappings of
the real and the reconstructed images are nearly randomly
located. Thus models with high LAS are able to sample
the entire latent space by simply subsequently inputting the
reconstructions of the previous input.

Experiments and results

Data and experimental setup

Thorax X-Rays We use an openly available thorax X-
ray dataset containing 247 chest radiographs and ground
truth segmentations of five structures: the heart, both lungs
and both clavicles (see Fig. 1 for examples) [30]. This
dataset is only used for shape modeling, thus for the
SSM methods, point-based representations are used, and
for the deep-learning approaches the segmentation labels
are applied directly. The images are split in 123/114/10
test/train/validation.

Brain MRIs This dataset contains 600 3D T1-weighted brain
MRIs from the publicly available IXI dataset1 [11]. Anatom-
ical labels were generated using atlas-based segmentation,
while simultaneously obtaining the one-to-one correspon-
dences needed for SSM-basedmethods from the registration.
A dataset split of 300/290/10 test/train/validation is used. For
this dataset, we explore both shape and appearance model-
ing of the given segmentations and intensity volumes. Since
deep-learning methods are very resource demanding, the
images and labels are cut to a central area around the ventri-

1 brain-development.org/ixi-dataset/.
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point-based shapes labels segmentation mesheslabels + appearance image

Fig. 1 Example image data used in our experiments

cles of size 64 × 96 × 64 resulting in eight labels as shown
in Fig. 1.

Three experiments are carried out: 1) shape modeling for
2D thorax x-rays; 2) shape modeling for 3D brain MRIs;
3) appearance modeling for 3D brain MRIs. For the shape
modeling scenarios, point-based representations of the seg-
mentation labels are used as input, whereas the deep-learning
methods take in the one-hot-encoded labels directly. For the
appearance modeling scenario, the intensity image volumes
can be directly used by the neural networks; however, the
SAMs consider shape distortions (given by registration dis-
placement fields) and appearances separately. Each model is
trained on various training set sizes and the generalization
ability, specificity and likeness are assessed in accordance to
that. This allows an observation of the quality of the gen-
erative models depending on the training set size and thus
an assessment of their robustness. To avoid choosing unsuit-
able training data for smaller training set sizes, a multi-fold
training is performed (four folds for N < 100, two folds
for N ≥ 100), averaging the results over the folds. To
establish fairness against all methods when generating new
samples, the latent vectors are drawn from the normal dis-
tribution described by the mean and standard deviation of
the latent vectors of the training dataset. The metrics used
for assessing the generative models vary depending on the
data. When shapes are considered, average symmetric sur-
face distance (ASSD) is calculated for all models. Here, a
geometric distance is deliberately chosen since a landmark
distance is infeasible for the deep learning approaches using
labels as inputs, and a label-based metric such as Dice is
not precise enough and might favor the methods trained on
labels since they optimize towards a generalized Dice coeffi-
cient during training. Hence, the chosen ASSD is the middle
ground between the slight loss of accuracy by computing the
contours from the landmarks for the evaluation of statisti-
cal methods and the conversion from contours to labels and
backward for the deep learning approaches. For the appear-
ances, the L1 distance is used here. Since our experience
showed that metrics like MSE and SSIM behave similarly,
those results are only shown in Appendix. The latent space
evaluation is carried out for the largest possible training sets
for each experiment.

Results

2D and 3D Shape Modeling
The specificity and generalization ability for the shape
models are presented in Fig. 2. For the 2D scenario, all deep-
learning approaches perform similarly to the LSSM in terms
of generalization ability, whereas the classical SSMperforms
significantly worse, regardless the training set size. For small
training set sizes (N ≤ 40), LSSM even outperforms the
deep-learning methods. Furthermore, for small training set
size the neural networks tend to not generate small struc-
tures like the clavicles (bars in Fig. 2). This problem does
not appear when using (L)SSMs or DAEs, since they repre-
sent shapes as a deformed global template that contains all
structures. When it comes to specificity, the deep-learning
methods outperform the (L)SSMs for all training set sizes.

A different behavior can be observed for the 3D shapes.
Here, the (L)SSMs both yield slightly improved generaliza-
tion ability compared to the deep-learning methods. Please
note that all methods perform with voxel-level accuracy for
N > 5. Again, the deep-learning methods yield better speci-
ficity values; however, the difference between the models is
not as vast and the distances for all models lie under one
voxel. A significant drawback of the neural networks in this
scenario, is however their enormous GPU memory demand,
which is why the input shape size needed to be drastically
decreased in order to enable training on a 12GB GPU for
all models. Figure 3 shows surface distances for a recon-
structed structure (putamen) by some of the methods, where
the LSSM and AE-GAN approaches deliver the smallest dis-
tances, which is consistent with the presented quantitative
results.

The assessment of the latent spaces gives further insight.
The normality test of latent vectors shows that SSMs have
a large amount of non-normally distributed dimensions
(LSSM: 40%, SSM: 33%)whichmight be the reason for their
bad specificity. On the contrary, the deep-learning methods
yield less non-normally distributed dimensions (VAE: 10%,
AE: 18%, DAE: 13%, AE-GAN: 19%), whereas expected
methods with explicit KL-normalization have the smallest
percentage of non-normally distributed dimensions. In terms
of compactness, the SSM methods are much more compact,
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Fig. 2 Generalization ability (left) and specificity (right) for the 2D (top) and 3D shapes (bottom) measured in ASSD (left y-axis) – smaller values
are better. The bars indicate the percentage of not generated structures (right y-axis)

Fig. 3 Absolute surface
distances from a reconstructed
left putamen (blue segmentation
label in Fig. 1) to the original
input. Smaller values indicate
better reconstruction

VAE DAE AE-GAN LSSM

whereas the latent space dimension of the neural networks
is much larger, implicitly making them harder to interpret
(Table 2).

Table 1 shows the LAS for the different models. SSMs,
by definition, have an L AS = 0; however, all deep learning
methods show scores> 0. Again, neural networks that apply
a KL-loss tend to map reconstructions closer to their initial
input shapes. Thus, VAEs and DAEs seem to build a less
ambiguous latent space than AEs and (AE-)GANs. A less
ambiguous latent space is generally desirable in generative
modeling; however, in deep learning methods some ambi-
guity comes with a trade-off concerning the representation
of degrees of freedom. Since statistical models are linear
mappings and have an a-priori one-to-one correspondence
from the input to its latent representation and back, their rep-
resentation abilities are limited. Following from this, some
ambiguity should be taken into account for the higher expres-
siveness of deep learning models.

To further visualize the latent spaces, Fig. 4 shows inter-
polations between two random2D shapes. Due to themissing
regularization of the latent space, AEs produce holes in
the segmentations and they show abrupt, irregular changes
between interpolated shapes (middle shape and shape left
to it), which are also present to a lesser extent in DAEs and

Table 1 Latent space ambiguity scores (LAS) for all models and train-
ing scenarios. Values close to zero indicate an unambiguous latent space

Data SS(A)M LSS(A)M AE VAE AE-GAN (A)DAE

Shapes 2D 0 0 0.4 0.02 0.5 0.03

Shapes 3D 0 0 0.95 0.14 0.45 0.05

Appearance 3D 0 0 0.27 0.06 0.14 0.07

AE-GANs. In contrast, LSSMs show continuous and smooth
shape interpolations due to their linear nature.

3D Appearance Modeling Figure 5 shows the results of the
3D appearance modeling. Here, the deep-learning methods
perform better in terms of generalization and specificity for
all training set sizes, whereas the ADAE yields the best
results. In terms of likeness, the VAE yields the worst results,
possibly due to the blurriness of the generated samples. The
best likeness is delivered by theAE-GANapproach, followed
by ADAE that is constrained through a template and thus
most likely generates less diverse samples.

In terms of latent space ambiguity and normality, the same
tendency as in the previous experiments can be observed.
The percentage of non-normality distributed components can
be broken down as follows: AE: 12%; VAE: 7%; GAN:
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Table 2 Compactness for all models and data. Smaller values are better. For the statistical methods, the compactness is specified in a range
depending on the training set size. For the models that observe shape and appearance separately, the values are noted as dims + dima

Data SS(A)M LSS(A)M AE VAE AE-GAN (A)DAE

Shapes 2D [3,14] [4,55] 512 512 512 512

Shapes 3D [4,51] [31,100] 1024 1024 1024 1024

Appearance 3D [4+4,257+189] [37+41,383+351] 1024 1024 1024 1024+64

Fig. 4 Visualization of the
linear interpolation between
latent vectors of two shapes
(first and last in a row). The bars
underneath indicate the ASSD
between a reconstruction (20
steps) and the first shape (top
bar); and a reconstruction and
the last shape (bottom bar). First
and last values are the ASSD
between real shape to itself or to
the second shape and vice versa:
yellow(max)→blue(0). Some
models skipped due to space
constrains

AE

DAE

AE-
GAN

LSSM

14%; DAE: 7%; PCA: 52%; LPCA: 56%. However, in terms
of compactness, the SAM and LSAM show a significant
increase of modes, shrinking the gap between the neural
networks and the statistical approaches. The interpolation
experiment from Fig. 6 also shows that a smooth inter-
polation is possible for all methods. However, the images
generated by the VAE are very blurry. The images generated
by the (L)SAMs look more realistic, yet, they are not able to
attain the high quality of the images generated by the ADAE
and AE-GAN models.

Discussion and conclusion

In this work, a systematic comparison of the shape and
appearance modeling abilities of four deep learning and two
statistical generative models was performed. To facilitate
comparability, all methods were consistently evaluated using
the same image data, processing pipeline and metrics, and
the network architectures of the deep-learning methods were
kept constant except for model-specific components.

In general, our experiments show that for shape model-
ing, present extensions of classical SSMs have a number of
advantages over deep learning-based approaches. Among the

tested methods, the locality-based SSM approach achieves
the best generalization ability and requires less training sam-
ples and less computational resources, especially in the case
of 3D shapes. The latent space of SSM-based models shows
advantages like better interpretability and compactness and
is producing continuous and smooth interpolation results.
Another advantage of SSM-based models in this scenario
is that anatomical shapes are represented point-based with
sub-voxel accuracy, while CNN-based architectures use vox-
elized label maps. The main disadvantage of SSM-based
models is, however, the lower specificity of generated sam-
ples, which is likely caused by the non-normality of the latent
space distribution.

Since they use a linear mapping of the input data to the
latent vectors, the distribution of the training data defines
the distribution of the latent space. Interestingly, even the
deep learning methods that use no KL-constrain on their
latent space, map the the input data to a latent distribution
that has far more normally distributed components than the
ones resulting from statistical models. This results into fairly
good specificity (e.g. AE-GAN) even though no latent space
constrain is used. A possible reason for that is the usage of
weight decay regularization during the optimization process
which gives the network’s weights a Gaussian prior and thus
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Fig. 5 Generalization ability, specificity and likeness for the 3D appearance modeling measured as L1 distances: smaller values are better

Fig. 6 Interpolation experiment
for the 3D appearance images
(axial slices). Visualization
analogous to Fig. 4 (except for
measuring L1 distances between
images)

VAE

ADAE

AE-
GAN

LSAM

the latent space is also pushed in the direction of a normal
distribution. Here, the regularization term is low weighted;
however, other works feature approaches like regularized
autoencoders [8] that only use regularization techniques and
omit the KL-loss. Yet, the explicit constraining of the latent
space to a normal distribution using a KL-term here yields
slightly increased specificity; however, this might interfere

with the model’s generalization ability and presents an addi-
tional loss component,making the optimization processmore
complex and increasing the number of hyperparameters.
Thus, whether a KL-constrain is used greatly depends on
the chosen application and desired results.

For the simultaneous shape and appearance modeling,
however, the deep-learning methods show considerable
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advantages: the ADAE and AE-GAN generate diverse, sharp
and realistic images and show best results in terms of all
metrics. Here, ADAEs have the further advantage that their
latent space is more normally distributed and less ambigu-
ous due to the use of the KL divergence. Surprisingly, they
also prevent blurriness of the generated samples typical for
the standard VAE approach. SAM-based approaches require
pre-registration of all training images to establish point-by-
point correspondences, and unavoidable registration errors
may reduce generalization ability. Also, the compactness
and computational resources needed approach those of deep
learningmethods due to the size of the underlying covariance
matrices. So that SAM-based methods are clearly inferior to
deep-learning models for appearance modeling.

Given the wide variety of generative models, we only
considered a selection of commonly used approaches in
this paper. We provided a comparison between LSSMs and
other classical shape modeling approaches, like wavelet-
based SSMs or Gaussian process morphable models, in our
previous work [31,32]. Other approaches, like autoregres-
sive generative models [21] or normalizing flows [22], show
promising generative properties, but are costly to train and
have few applications in the medical field so far. Besides the
integration of such models in a systematic comparison as
focused in this paper, a further interesting line of research is
to combine the strengths of different models. One example
is included in this paper by combining autoencoders with a
GAN-inspired discriminative loss function. Another possi-
ble example is to use normalizing flows to ensure normality
distributions in the latent space of VAE or SSMmodels. This
will be one of our future directions of research.

In conclusion, this study enables insights into the advan-
tages and disadvantages of generative models for medical
images in different settings, providing a decision support
for the choice of a suitable model and motivating further
research for the improvement of the presented drawbacks.
Considering the various possible applications and purposes
of generativemodels, their different characteristics need to be
weighed with regard to the specifically planned application,
since, e.g., interpretability and a small number of parameters
might be an important feature for applications like segmenta-
tion but high specificity and diverse and naturalistic samples
might be required for data augmentation for the training of
neural networks.
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A Optimizing the latent space dimension
toward evaluation metrics for the different
models

In our work, the latent dimensions are fixed between the dif-
ferent models in order to preserve comparability (different
latent spaces correspond to a different number of trainable
parameters). For the 2D shape models, a latent dimension
of 512 was chosen, since it is the smallest model corre-
sponding to specific thresholds: specificity ≤ 2.6mm and
generalization ability ≤ 1.5mm for all models when the
largest possible training set is used. For the 3Dmodels, 1024
was chosen similarly setting both cutoff values at 0.5mm.
However, choosing the latent dimensionality for each model
separately is not trivial, since a trade-off between specificity
and generalization, aswell as computational feasibility needs
to be obtained. A good value might result in a good result
for specificity for one model, but lead to bad generaliza-
tion ability in that same model or be less suitable for other
models. Here, we investigated that property exemplary for
the use-case of the 2D shapes. The tested dimensions are
128, 256, 512, 1024, 1500. The experimental setup is corre-
sponding to the previous experiments using the same training
set sizes and a multi-fold validation. The results for the
three highest dimensions are presented in Fig. 7 since 512
is the first size delivering optimal results for at least one of
the models. Interestingly, larger dimensions are not always
contributing to better generalization ability: the GAN and
AE models yield best results using latent vectors of size
512, contrary to the VAE and DAE approaches, that achieve
slightly better results with a latent dimension of size 1500.
Another important observation is that specificity is not best,
when generalization is best. However, overall those differ-
ent dimensions deliver fairly similar results, such that 512
remains a good choice for the means of comparability and
computational efficacy.
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Dim=512

Optimal for GAN &AE
Dim=1024

Optimal for GAN, DAE &AE
Dim=1500

EAVroflamitpOEAD&EAVroflamitpO

Fig. 7 The results for the 2D shapes plotted for different latent dimensions. The dimensions optimal for a certain model and metric are noted
underneath the plots, respectively

B Additional metrics for the evaluation of
appearancemodels

Figure 8 presents additional metrics for the evaluation of
the appearance modeling approaches: Mean squared error
(MSE) and structured similarity index (SSIM). Results com-
parable to the L1 metric from Fig. 5.

123



International Journal of Computer Assisted Radiology and Surgery (2022) 17:1213–1224 1223

Fig. 8 Generalization ability and specificity of all models measured in MSE(↓) and SSIM(↑). For colors, see legend (bottom)
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