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Abstract: Oxazolidinones are a novel class of synthetic antibacterial agents that inhibit bacterial
protein synthesis. Here, we synthesized and tested a series of oxazolidinone compounds containing
cyclic amidrazone. Among these compounds, we further investigated the antibacterial activities
of LCB01-0648 against drug-susceptible or resistant Gram-positive cocci in comparison with those
of six reference compounds. LCB01-0648 showed the most potent antimicrobial activities against
clinically isolated Gram-positive bacteria. Against the methicillin-resistant Staphylococcus aureus
(MRSA) and methicillin-resistant coagulase-negative staphylococci (MRCNS) isolates, LCB01-0648
showed the lowest MIC90s (0.5 mg/L) among the tested compounds. In addition, LCB01-0648 had
the lowest minimum inhibitory concentrations (MICs) against the four linezolid-resistant S. aureus
(LRSA) strains (range 2–4 mg/L). The results of the time–kill studies demonstrated that LCB01-0648
at a concentration 8× the (MIC) showed bactericidal activity against methicillin-susceptible
Staphylococcus aureus MSSA or MRSA, but showed a bacteriostatic effect against LRSA. These results
indicate that LCB01-0648 could be a good antibacterial candidate against multidrug-resistant (MDR)
Gram-positive cocci.
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1. Introduction

The rapid increase in antibacterial-resistant Gram-positive bacteria including methicillin-resistant
Staphylococcus aureus (MRSA), beta-lactam-resistant Streptococcus pneumoniae, and vancomycin-resistant
enterococci (VRE) is a great concern for global health [1–3]. However, antibacterial-resistant
pathogens that are resistant to most available antibiotics are currently a more pressing concern [4,5].
Therefore, novel antibacterial agents are required for the treatment of infectious disease caused by
multidrug-resistant (MDR) Gram-positive pathogens [6,7].

Oxazolidinones are a novel group of synthetic antibiotics that mainly have antibacterial activities
against Gram-positive organisms [8–10]. This class of antibiotics specifically binds to the 23S ribosomal
RNA of the 50S ribosomal subunit, and thereby prevents the formation of the 70S ribosomal complex,
a key component of the translation process in bacteria [9,11–14]. In 2000, linezolid was the first
oxazolidinone antibiotic approved by the US Food and Drug Administration (FDA) for clinical
use [15–17]. This oxazolidinone antibiotic has been used for the treatment of patients with skin
and soft tissue infection and pneumonia caused by MDR Gram-positive pathogens [18–21]. However,
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it has been reported that several linezolid-resistant staphylococci have emerged worldwide [22–24].
These linezolid-resistant S. aureus (LRSA) strains have the 23S rRNA mutation or the Cfr ribosomal
methyltransferase [22,25–27]. To overcome infection by LRSA strains, several research groups are
developing analogs of oxazolidinones, which have potent activity against MDR Gram-positive cocci
including LRSA and Mycobacterium tuberculosis [28–31]. Sutezolid, posizolid and ranbezolid are under
development for the treatment of Gram-positive infections [32–36]. Recently, tedizolid phosphate
(Sivextro) was approved by the FDA for the treatment of acute bacterial skin infection [37–39].

Previously, we reported novel oxazolidinone compounds such as LCB01-0062 and LCB01-0371
which showed potent antibacterial activities against most Gram-positive cocci [40,41]. While LCB01-0371
has high potency and safety, this oxazolidinone showed moderate activity against linezolid-resistant
strains [41]. To overcome this weakness, we modified the C-5 side change of the oxazolidinone A-ring
(R) and the oxazolidinone C-ring (X) (Figure 1A). We synthesized a series of oxazolidinone compounds
containing cyclic amidrazone and presented the structure–activity relationship of these oxazolidinone
compounds which showed enhanced potencies against MRSA and linezolid-resistant VRE (Figure 1B).
Among them, we selected LCB01-0648 (Figure 1C) as a lead compound for a further evaluation due to
its high potent activity and low safety issues. In this study, we investigated the antibacterial activities
of LCB01-0648 against clinically isolated drug-susceptible and -resistant Gram-positive cocci.

Molecules 2017, 22, 394 2 of 11 

 

[22–24]. These linezolid-resistant S. aureus (LRSA) strains have the 23S rRNA mutation or the Cfr 
ribosomal methyltransferase [22,25–27]. To overcome infection by LRSA strains, several research groups 
are developing analogs of oxazolidinones, which have potent activity against MDR Gram-positive cocci 
including LRSA and Mycobacterium tuberculosis [28–31]. Sutezolid, posizolid and ranbezolid are under 
development for the treatment of Gram-positive infections [32–36]. Recently, tedizolid phosphate 
(Sivextro) was approved by the FDA for the treatment of acute bacterial skin infection [37–39]. 

Previously, we reported novel oxazolidinone compounds such as LCB01-0062 and LCB01-0371 
which showed potent antibacterial activities against most Gram-positive cocci [40,41]. While LCB01-
0371 has high potency and safety, this oxazolidinone showed moderate activity against linezolid-
resistant strains [41]. To overcome this weakness, we modified the C-5 side change of the oxazolidinone 
A-ring (R) and the oxazolidinone C-ring (X) (Figure 1A). We synthesized a series of oxazolidinone 
compounds containing cyclic amidrazone and presented the structure–activity relationship of these 
oxazolidinone compounds which showed enhanced potencies against MRSA and linezolid-resistant 
VRE (Figure 1B). Among them, we selected LCB01-0648 (Figure 1C) as a lead compound for a further 
evaluation due to its high potent activity and low safety issues. In this study, we investigated the 
antibacterial activities of LCB01-0648 against clinically isolated drug-susceptible and -resistant Gram-
positive cocci. 

 
Figure 1. Chemical structure of LCB01-0648. (A) Synthetic scheme of oxazolidinones containing cyclic 
amidrazone; (B) Structure–activity relationship of cyclic amidrazone; (C) Structure of LCB01-0648. 

2. Results 

As shown in Figure 1B, we synthesized four oxazolidinone compounds containing cyclic 
amidrazone, LCB01-0229, LCB01-0519, LCB01-0647, and LCB01-0648. We evaluated the in vitro 
activities of these four oxazolidinones against MRSA and linezolid-resistant VRE, and found that four 
oxazolidinone compounds have potent activities in test organisms. We then assessed the safety of 

Figure 1. Chemical structure of LCB01-0648. (A) Synthetic scheme of oxazolidinones containing cyclic
amidrazone; (B) Structure–activity relationship of cyclic amidrazone; (C) Structure of LCB01-0648.

2. Results

As shown in Figure 1B, we synthesized four oxazolidinone compounds containing cyclic amidrazone,
LCB01-0229, LCB01-0519, LCB01-0647, and LCB01-0648. We evaluated the in vitro activities of these
four oxazolidinones against MRSA and linezolid-resistant VRE, and found that four oxazolidinone
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compounds have potent activities in test organisms. We then assessed the safety of these compounds
using monoamine oxidase (MAO) inhibition and myelotoxicity. LCB01-0648 showed less bone marrow
toxicity of LCB01-0648, lower than the toxicities of other compounds (data not shown). LCB01-0648
showed weak inhibition of MAO activity, with 13.4 and 20.1 µM for MAO-A and MAO-B, respectively.
Due to the low bone marrow toxicity, we selected LCB01-0648 as a lead compound.

To further investigated the antibacterial activities of LCB01-0648, the MICs of LCB01-0648
against the 610 clinically isolated Gram-positive cocci were tested and compared with those of
linezolid, oxacillin, erythromycin, ciprofloxacin, sparfloxacin, moxifloxacin, gemifloxacin, vancomycin,
and quinupristin–dalfopristin. The MICs of LCB01-0648 against the clinically isolated staphylococci
were 0.125–1 mg/L (Table 1). Against the MRSA and MRCNS isolates, LCB01-0648 showed the lowest
MIC90s (0.5 mg/L) among the tested compounds. All staphylococci strains were also susceptible
to linezolid (MICs 1 to 2 mg/L), quinupristin–dalfopristin (MICs 0.25 to 4 mg/L), and vancomycin
(MICs 0.125 to 2 mg/L).

Table 2 showed the antibacterial activity of LCB01-0648 against streptococci in comparison
with those of reference compounds. The MIC90s of LCB01-0648 against S. pneumoniae and
Streptococcus pyogenes were 0.25 and 0.25 mg/L, respectively. LCB01-0648 showed the most potent
antibacterial activity against the clinically isolated streptococci and was four to eight times more active
than linezolid was.

Against enterococci, LCB01-0648 showed the most potent activity among the tested compounds
(Table 3). MIC90s of LCB01-0648 against Enterococcus faecalis and Enterococcus faecium were 0.5 and
0.5 mg/L, respectively. Against 47 VRE, LCB01-0648 had the lowest MIC90 (0.5 mg/L), followed by
linezolid (MIC90 2 mg/L), quinupristin–dalfopristin (MIC90 2 mg/L), gemifloxacin (MIC90, 32 mg/L),
moxifloxacin (MIC90, 32 mg/L), sparfloxacin (MIC90, 64 mg/L), ciprofloxacin (MIC90, >64 mg/L).

To evaluate the antimicrobial activity of LCB01-0648 against the LRSA, we evaluated the
MICs of LCB01-0648 and the other compounds against four LRSA strains [42–44]. LCB01-0648
had the lowest MICs against the four LRSA strains (range 2–4 mg/L), followed by moxifloxacin
(4–64 mg/L), gemifloxacin (8–64 mg/L), linezolid (8–64 mg/L), sparfloxacin (16–64 mg/L), oxacillin
(range 32–64 mg/L), and ciprofloxacin (>64 mg/L) (Table 4). These results demonstrate that
LCB01-0648 is a potent compound against MDR staphylococci.

To determine whether LCB01-0648 has bactericidal or bacteriostatic activity, we carried out
an in vitro time–kill assay with LCB01-0648 and linezolid against the methicillin-susceptible S. aureus
(MSSA) Giorgio, MRSA P125, and LRSA NRS271. As shown in Figure 2, LCB01-0648 and linezolid
had bactericidal activity at a concentration 4× the MIC against the MSSA and MRSA. LCB01-0648
and linezolid had bacteriostatic activity against the LRSA at a concentration 8× the MICs after 24-h
incubation (Figure 2E,F). However, we did not observe any re-growth at a concentration 8× the MICs.
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Table 1. Minimum inhibitory concentrations (MICs) of LCB01-0648, linezolid, oxacillin, erythromycin, ciprofloxacin, sparfloxacin, moxifloxacin, gemifloxacin,
vancomycin, and quinupristin–dalfopristin for clinical isolates of Staphylococci.

Antimicrobial Agents
MSSA (n = 74) a MRSA (n = 200) a MSCNS (n = 19) a MRCNS (n = 33) a

Range MIC50 MIC90 Range MIC50 MIC90 Range MIC50 MIC90 Range MIC50 MIC90

LCB01-0648 0.25–0.5 0.5 0.5 0.125–0.5 0.5 0.5 0.125–0.5 0.25 0.5 0.125–1 0.25 0.5
Linezolid 2 2 2 1–2 2 2 1–2 1 2 1–2 1 2
Oxacillin 0.06–4 0.25 0.5 8–64 >64 >64 0.03–1 0.125 1 2–64 >64 >64

Erythromycin 0.125–64 0.25 >64 0.25–64 >64 >64 0.06–64 0.25 >64 0.06–64 >64 >64
Ciprofloxacin 0.06–64 0.25 0.5 0.125–64 32 >64 0.06–8 0.125 8 0.06–64 8 32
Sparfloxacin 0.015–8 0.06 0.125 0.06–64 16 >64 0.03–8 0.125 4 0.03–32 4 16
Moxifloxacin 0.015–8 0.06 0.125 0.03–64 4 64 0.03–4 0.125 4 0.06–16 2 8
Gemifloxacin 0.008–8 0.015 0.06 0.008–64 2 64 0.008–0.5 0.015 0.5 0.008–8 0.5 4
Vancomycin 0.25–2 1 1 0.5–4 1 2 1–4 2 4 1–4 2 4

Quinupristin–dalfopristin 0.125–0.5 0.25 0.5 0.125–1 0.5 1 0.125–1 0.25 1 0.125–8 0.25 2
a MSSA, methicillin-susceptible Staphylococcus aureus; MRSA, methicillin-resistant S. aureus; MSCNS, methicillin-susceptible coagulase-negative staphylococci; MRCNS, methicillin-resistant
coagulase-negative staphylococci.

Table 2. Minimum inhibitory concentrations (MICs) of LCB01-0648, linezolid, oxacillin, erythromycin, ciprofloxacin, sparfloxacin, moxifloxacin, gemifloxacin,
vancomycin, and quinupristin–dalfopristin for clinical isolates of Streptococci.

Antimicrobial Agents
S. pneumoniae (n = 79) S. pyogenes (n = 21)

Range MIC50 MIC90 Range MIC50 MIC90

LCB01-0648 0.03–1 0.125 0.25 0.125–0.5 0.25 0.25
Linezolid 0.5–1 1 1 1–2 2 2
Oxacillin 0.008–32 16 16 0.25–32 0.5 8

Erythromycin 0.008–64 >64 >64 0.008–8 0.06 2
Ciprofloxacin 0.5–32 2 4 0.5–4 1 2
Sparfloxacin 0.06–16 0.25 0.5 0.125–1 0.25 0.5
Moxifloxacin 0.06–4 0.25 0.5 0.125–0.5 0.125 0.25
Gemifloxacin 0.008–0.25 0.03 0.06 0.03–0.125 0.03 0.06
Vancomycin 0.5–2 1 1 0.5–4 1 1

Quinupristin–dalfopristin 0.5–4 1 2 1–2 1 2
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Table 3. Minimum inhibitory concentrations (MICs) of LCB01-0648, linezolid, oxacillin, erythromycin, ciprofloxacin, sparfloxacin, moxifloxacin, gemifloxacin,
vancomycin, and quinupristin–dalfopristin for clinical isolates of Enterococci.

Antimicrobial Agents
E. faecalis (n = 108) E. faecium (n = 29) VRE (n = 47) a

Range MIC50 MIC90 Range MIC50 MIC90 Range MIC50 MIC90

LCB01-0648 0.125–0.5 0.25 0.5 0.25–0.5 0.25 0.5 0.125–0.5 0.25 0.25
Linezolid 1–2 2 2 1–2 2 2 1–2 2 2
Oxacillin 8–64 16 >64 16–64 >64 >64 >64–64 >64 >64

Erythromycin 0.125–64 >64 >64 0.125–64 >64 >64 >64–64 >64 >64
Ciprofloxacin 0.06–64 2 64 1~64 4 64 0.5–64 64 >64
Sparfloxacin 0.25–64 1 32 0.5–32 4 32 0.25–64 32 64
Moxifloxacin 0.06–64 1 32 0.25–64 4 32 0.25–32 16 32
Gemifloxacin 0.008–16 0.125 4 0.03–64 2 16 0.015–32 16 32
Vancomycin 0.5–4 2 4 0.5–8 1 2 >64–64 >64 >64

Quinupristin–dalfopristin 0.25–16 4 16 0.25–32 0.5 4 0.25–4 0.5 2
a VRE, vancomycin-resistant enterococci.

Table 4. MIC of LCB01-0648, linezolid, oxacillin, ciprofloxacin, moxifloxacin and gemifloxacin against linezolid-resistant S. aureus strains.

Strains Mutation Site LCB01-0648 Linezolid Oxacillin Ciprofloxacin Moxifloxacin Gemifloxacin

S. aureus NRS119 G2576U 4 64 >64 >64 4 8
S. aureus NRS121 G2576U 4 64 >64 >64 4 8
S. aureus NRS127 Non-23s rRNA 2 8 32 >64 64 64
S. aureus NRS271 G2576U 2 64 >64 >64 16 16
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Figure 2. Time–kill curves of LCB01-0648 and linezolid against Staphylococcus aureus. S. aureus
Giorgio (methicillin-susceptible S. aureus, MSSA) exposed to (A) LCB01-0648 or (B) linezolid (B).
S. aureus P125 (methicillin-resistant S. aureus, MRSA) exposed to (C) LCB01-0648 or (D) or linezolid.
(E and F) S. aureus NRS271 (linezolid-resistant S. aureus, LRSA) exposed to LCB01-0648.

3. Discussion

The oxazolidinone compounds are narrow-spectrum agents that have antibacterial activity against
Gram-positive cocci [10]. Linezolid was the only oxazolidinone antibiotic approved by the FDA until
2014 [17]. Recently, tedizolid has been used to treat acute skin infections caused by Gram-positive
cocci [37–39]. In this study, we investigated the in vitro activity of a novel oxazolidinone, LCB01-0648.
LCB01-0648 was four- to eight-fold more active than linezolid was against drug-susceptible and
-resistant staphylococci, streptococci, and enterococci, including MRSA and VRE (Tables 1–3).
Importantly, LCB01-0648 also exhibited potent antibacterial activity against linezolid-LRSA strains
that carried the G2576U mutation of the 23S rRNA (S. aureus NRS119, NRS121, and NRS271) or the
ribosomal protein L3 RplC (S. aureus NRS127) [43] (Table 4). These results suggest that LCB01-0648
might be a second-generation oxazolidinone derivative. Our time–kill results showed that LCB01-0648
had bacteriostatic activity against drug-susceptible and resistant S. aureus (Figure 2).

Previously, we synthesized novel oxazolidinones including LCB01-0062 and LCB01-0371 [40,41].
These oxazolidinones showed potent in vitro and in vivo activities against most Gram-positive
cocci. However, LCB01-0371 showed moderate activity against linezolid-resistant S. aureus. A series
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of studies demonstrated that the CD-rings of certain oxazolidinones play an important role for
interaction between oxazolidinone and the peptidyl transferase center binding site [45–47]. In addition,
either hydroxymethyl or 1,2,3-triazole C-5 groups are crucial for antibacterial activity against cfr
strains [29,36]. We assumed that LCB01-0371 might show lower potency against linezolid-resistant
S. aureus or cfr strains due to the lack of a D-ring substitute. To overcome this, we synthesized a series
of novel oxazolidinone compounds containing cyclic amidrazone at the D-ring. These compounds
containing cyclic amidrazone showed enhanced activities against linezolid resistant Gram-positive
cocci. Among them, LCB01-0648 showed strong activity against tested organisms and low toxicity.
Therefore, LCB01-0648 was selected as a lead compound for a further evaluation. In this study,
we focused on the in vitro antibacterial activities against clinically isolated Gram-positive cocci.
In order to develop LCB01-0648 as a novel second-generation oxazolidinone candidate, in vivo
activities of LCB01-0648 should be examined in various mouse models. In addition, pharmacokinetics
and pharmacodynamics studies for LCB01-0648 should be assessed.

4. Materials and Methods

4.1. Antimicrobial Agents

LCB01-0648 (purity, 99%; analyzed by HPLC) and linezolid were synthesized at LegoChem
Biosciences, Inc., Daejeon, Korea. Oxacillin, vancomycin, and erythromycin were obtained from
Sigma-Aldrich, Seoul, Korea. Ciprofloxacin, moxifloxacin, and sparfloxacin were provided by the
R & D Center, Dong-Wha Pharmaceutical Industry Co., Ltd., Anyang, Korea. Gemifloxacin was
obtained from LG Chemical Ltd. (Daejeon, Korea). Quinupristin-dalporistin was obtained from
CrystalGenomics Inc. (Seongnam, Korea).

4.2. Bacterial Strains

For the antibiotic susceptibility testing, the tested Gram-positive cocci were isolated from human
clinical specimens that were obtained from several hospitals in Seoul, Korea, from 2006 to 2015. A total
of 610 Gram-positive cocci strains including 326 staphylococci, 100 streptococci, and 184 enterococci
strains were used in this study. Four LRSA strains, S. aureus NRS119, NRS121, NRS127, and NRS271
were obtained from LegoChem Biosciences, Inc., while the S. aureus Giorgio was obtained from LG
Chemical Ltd. (Daejeon, Korea) and was used for the time–kill assay.

4.3. Susceptibility Test

To determine the MICs of the aerobic organisms, a two-fold agar dilution method was carried
out as described by the Clinical and Laboratory Standards Institute (CLSI) [48]. The test strains were
grown for 18 h at 37 ◦C in Mueller Hinton Agar (MHA, Difco, Sparks, MD, USA) and subcultured
in Mueller Hinton II Broth (MHIIB, Difco) except for the Streptococci. Bacteria were incubated for
18 h at 37 ◦C and diluted with the same fresh medium to a density of approximately 106 CFU/mL.
S. pneumoniae and S. pyogenes were grown on MHA supplemented with 5% defibrinated sheep
blood (Komed, Seongnam Korea). The diluted organisms were transferred to the wells of a multipin
inoculator and were inoculated onto the drug-containing agar plates. The plates were incubated at
37 ◦C for 24 h and were checked for growth. The MIC was determined to be the lowest concentration
that completely inhibited growth on the agar plates, disregarding a single colony or a faint haze caused
by the inoculum.

4.4. Time–Kill Assay

The time–kill studies were performed using the CLSI M26-A method [49]. The test microbes
were cultured for 18 h at 37 ◦C in MHIIB and were diluted with fresh MHIIB to a density of 105 to
106 CFU/mL. The diluted cultures were pre-incubated for 2 h, and then the LCB01-0648 or linezolid
was added to the cultures at concentrations of 0.5×, 1×, 2×, 4×, and 8× MIC. The numbers of viable
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cells were quantified after 0-, 2-, 4, 6-, 24-h incubation at 37 ◦C for 18 h by serial dilution on MHA.
The compounds were considered bactericidal at the concentration that reduced the original inoculum
by 3 log of CFU/mL (99.9%) at each of the time periods. Alternatively, the compounds were considered
bacteriostatic if the inoculum was reduced by 0–3 log of CFU/mL.

4.5. Monoamine Oxidase Inhibition Assays

Test compounds (Linerzolid, LCB01-0229, LCB01-0519, LCB01-0647, and LCB01-0648) were
dissolved in DMSO at a concentration of 50 mM and diluted to 4-fold concentration of the final
concentration with enzyme reaction buffer. MAO-A and MAO-B were purchased from Sigma
(St. Louis, MO, USA). MAO-GloTM Assay Kit was purchased from Promega (Madison, WI, USA).
An enzyme assay was performed according to MAO-GloTM Assay Kit protocol. The IC50 value was
calculated by the nonlinear regression method using GraFit software (Erithacus, London, UK). IC50

refers to the concentration of compound that inhibits a reaction by 50% for MAO-A or MAO-B
compared to the negative control.

4.6. Myelosuppression Assay

A myelosuppression assay was carried out as previously described with modification [50].
Animal protocols were approved by the Institutional Animal Care and Use Committee. Six or seven
weeks old female C3H mice were purchased from Orient Bio. Charles River Laboratories (Seongnam).
Mice were maintained in 22 ± 3 ◦C with 50% ± 20% relative humidity with water and diet (5L79, orient
bio) and housed in polycarbonate cages. Individual dose (50 mg/kg) was calculated for each animal
based on the most recently recorded body weight with the dose volume of 10 mL/kg. The animals
were orally administered using a sonde attached to disposable syringes. Dosing formulation was
administered once daily for 4 days. Mice were sacrificed by ether 4 days after treatment. All animals
had been fasted for approximately 16 h prior to sacrifice. Blood samples were collected from the vena
cava and were taken into a tube containing EDTA (Ethylenediaminetetraacetic acid) (Becton Dickinson,
Sparks, MD, USA). Samples were analyzed by Biotoxtech Co. Ltd. (Cheongju, South Korea).

5. Conclusions

Our in vitro results demonstrate that LCB01-0648 had potent antibacterial activities against MDR
Gram-positive pathogens including MRSA, LRSA, and VRE. Therefore, LCB01-0648 is worth further
evaluation as a new second-generation oxazolidinone candidate that will be available for the clinical
treatment of serious skin infections caused by multi-drug Gram-positive cocci including LRSA.
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