

G OPEN ACCESS

Citation: Meng X, Zheng J-I, Sun M-I, Lai H-y, Wang B-j, Yao J, et al. (2022) Association between *MTHFR* (677C>T and 1298A>C) polymorphisms and psychiatric disorder: A meta-analysis. PLoS ONE 17(7): e0271170. https://doi.org/10.1371/journal.pone.0271170

Editor: Zezhi Li, National Institutes of Health, UNITED STATES

Received: May 19, 2021 **Accepted:** June 25, 2022 **Published:** July 14, 2022

Copyright: © 2022 Meng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files.

Funding: This study was supported by the Scientific Research Fund of the Liaoning Provincial Education Department (No. JCZR2020020). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

Association between *MTHFR* (677C>T and 1298A>C) polymorphisms and psychiatric disorder: A meta-analysis

Xinyao Meng¹, Ji-long Zheng², Mao-ling Sun₀³, Hai-yun Lai³, Bao-jie Wang³, Jun Yao₀^{3*}, Hongbo Wang₀^{1*}

- 1 School of Basic Medicine, Shenyang Medical College, Shenyang, P.R. China, 2 Department of Forensic Medicine, China Criminal Police College, Shenyang, P.R. China, 3 School of Forensic Medicine, China Medical University, Shenyang, P.R. China
- * 18640249580@163.com (HW); yaojun198717@163.com (JY)

Abstract

Recent studies showed that genetic polymorphism of 5,10-methylenetetrahydrofolate reductase (MTHFR) is related to attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD) and schizophrenia (SCZ). However, no consistent conclusion has been determined. This meta-analysis aims to interrogate the relationship between MTHFR gene polymorphisms (677C>T and 1298A>C) and the occurrence of ADHD, BD and SCZ. We retrieved case-control studies that met the inclusion criteria from the PubMed database. Associations between MTHFR polymorphisms (677C>T and 1298A>C) and ADHD, BD and SCZ were measured by means of odds ratios (ORs) using a random effects model and 95% confidence intervals (CIs). Additionally, sensitivity analysis and publication bias were performed. After inclusion criteria were met, a total of five studies with ADHD including 434 cases and 670 controls, 18 studies with BD including 4167 cases and 5901 controls and 44 studies with SCZ including 16,098 cases and 19913 controls were finally included in our meta-analysis. Overall, our meta-analytical results provided evidence that the MTHFR 677C>T was associated with occurrence of BD and SCZ, while the 1298A>C polymorphism was related to ADHD and BD, and additionally the sensitivity analysis indicated these results were stable and reliable. This may provide useful information for relevant studies on the etiology of psychiatric disorders.

Introduction

Folic acid, a member of the vitamin B complex, in considered to be strongly associated with the function and development of the central nervous system, which plays an important role in cellular processes including nucleotide synthesis and methylation [1]. The enzyme 5,10-methylenetetrahydrofolate reductase (MTHFR) functions in the pathway that converts folate into metabolites that may be used for cellular processes including methylation of gene promoter enhancers and protein, RNA, DNA, amino acid and phospholipid synthesis. Specifically, this enzyme converts 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, which

is required for the multistep process that converts the amino acid homocysteine to methionine. Methionine is used to synthesize proteins and other important compounds [2]. The *MTHFR* gene is located at 1p36.22 [3]. Genetic variation in this gene influences susceptibility to occlusive vascular disease, neural tube defects, colon cancer and acute leukemia, and mutations in this gene are associated with MTHFR deficiency. Among the variations of the *MTHFR* gene, the polymorphisms of C677T and A1298C affect both nucleotide synthesis and DNA methylation. Compared with wild genotype (CC), the heterozygote (CT) and mutation homozygote (TT) lead to declines in enzyme activity of about 34% and 75%, respectively [4]. Homozygous carriers of the 1298C allele have a more moderate 30–40% reduction of the enzyme activity, but its function remains controversial.

Epidemiological research has reported that attention-deficit hyperactivity disorder (ADHD), bipolar disorder (BD) and schizophrenia (SCZ) are multimorbid conditions that are typically accompanied by cognitive advantages or deficits, suggesting that common biological mechanisms may underlie these phenotypes [5]. The complex neurodevelopment disorder ADHD affects around 5% of school-aged children [6], and 65% of them can be still affected when they are grown up, which has significant social, academic and occupational effects [7]. Its prevalence in adults is approximately 2.5% [8]. The etiology of ADHD is not fully understood and remains inconclusive. Family, twin and adoption studies have identified the impact of genetic variation on ADHD risk. Not only environment, such as maternal smoking, but genetic factors also play an important role. Molecular genetics research has gradually ascertained the inherited susceptible genes for ADHD. Recent investigations reported that the average heritability was estimated at 76% [9, 10] in childhood and 30–50% [11–13] or even higher in adulthood [14, 15].

Characterized by alternating episodes of depression and mania [16], BD is a serious common chronic mental illness with population prevalence of about 1–2% [17]. Although it is more common than previously thought, it has received less attention in terms of research than other major psychiatric disorders. Family, twin and adoption studies have identified the impact of genetic variation on the risk of BD [18]. Age at onset and polarity at onset are related to the indicators of BD severity. The patients at an earlier onset show an increased polygenic liability of psychiatric disorders [19]. Both ADHD and BD are neurodevelopmental disorders with onset in childhood and early adolescence, and common persistence in adulthood [20].

Affected by the mutual influence of multiple genetic and environmental factors, SCZ is a common mental disorder with heritability up to 80% [21]. Patients with SCZ experience higher mortality rates than the general population, especially due to suicide [22]. Large-scale epidemiological studies have consistently shown that infections, autoimmune diseases and atopic disorders are associated with increased risk of SCZ and that SCZ is associated with increased levels of immune markers at diagnosis [23].

Recent studies showed that *MTHFR* genetic polymorphism is related to neuropsychiatric diseases such as ADHD, BD and SCZ [24–27]. Polymorphisms of *MTHFR* C677T are likely to be associated with the risk of developing BD and SCZ and influence the age at onset of BD but not for SCZ [28]. A regression model found the TT genotype of the C677T locus was associated with the lowest global methylation. Moreover, the C677T allele might represent different liability according to gender [29]. However, some studies failed to find any association between *MTHFR* C667T polymorphism and risk of SCZ and BD [30, 31]. Due to the small number of studies and the limited sample size, conclusions are not clear.

Meta-analysis is a widely used statistical method in medical studies, particularly for topics that are being extensively studied with controversial results [32]. No meta-analysis has yet reported on association between *MTHFR* polymorphism and ADHD occurrence. One meta-analysis reported that the *MTHFR* C677T locus was significantly associated with BD in 2011

(sample size 29,502) [33]. There have been four meta-analyses concerning the association of SCZ [33–36]. The latest study found that *MTHFR* A1298C polymorphism was a risk factor for SCZ, which included 19 studies with 4049 cases and 5488 controls [36]. To better understand the role of *MTHFR* in the occurrence of psychiatric disorders, we conducted a meta-analysis of all published case-control studies exploring the associations between two common polymorphisms (677C>T and 1298A>C) of *MTHFR* and three psychiatric disorders: ADHD, BD and SCZ. This will provide a more comprehensive assessment of the association between this polymorphism and ADHD, BD and SCZ.

Materials and methods

Identification and eligibility of relevant studies

To identify eligible studies for inclusion in this meta-analysis, we searched the PubMed electronic database up to December 2021, without restriction on article type in English. The following keywords were used in the literature search: 5,10-methylenetetrahydrofolate reductase, MTHFR, and one of the following three words: ADHD, BD or SCZ. The selected studies met the following inclusion criteria: (1) case-control design, (2) including patients with one of the three diseases and (3) stating available allele or genotype frequencies. Of the studies with the same or overlapping data published by the same authors, the latest articles were selected. Major reasons for exclusion follow: (1) no control population, (2) duplicate of an earlier publication and (3) lack of usable genotype frequency data. If we needed to retrieve additional data that were not contained in the original report, we contacted the corresponding authors for additional details (e.g., allele or genotype frequencies or sample characteristics).

Data extraction

Based on the inclusion criteria, two reviewers (Mao-ling Sun and Jun Yao) independently extracted information from all the included studies. Disagreements were resolved by discussion until the two reviewers reached a consensus. The following data were extracted from each study: first author's family name, publication year, country and number of genotypes between cases and controls. To delineate potential moderating influences on the effects obtained from the case-control studies considered, we also included the following variables: (1) diagnostic criteria, (2) controls source, (3) mean age of cases and (4) proportion of males in the disease sample.

Quality assessment

Two authors (Mao-ling Sun and Jun Yao) independently assessed the quality of the included studies according to the Newcastle Ottawa Scale (NOS) (www.ohri.ca/programs/clinical_epidemiology/oxfprd.asp). This scale consists of three components related to sample selection, comparability and ascertainment of exposure. A score of five or more was considered "high quality"; studies with scores from zero to four were assessed as "low quality".

Statistical analysis

Hardy–Weinberg equilibrium (HWE) in the genotype distribution of controls was tested using the chi-square goodness of fit. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to measure the strength of the association between the target locus and the disease. Pooled effect sizes across studies were determined using five genetic models (allele contrast, homozygous codominant, heterozygous codominant, dominant and recessive) by a random effects model, which could reduce the bias due to the heterogeneity from multiple

studies. The degree of heterogeneity between studies was determined by Q-statistic, with p>0.05 indicating a lack of heterogeneity and p<0.05 indicating heterogeneity. Moreover, I^2 was calculated to quantify the apparent inconsistency; its conventional interpretation for existing heterogeneity is low (<25%), moderate (approximately 50%) and high (>75%). Additionally, Begg's funnel plot and Egger's test were used to evaluate publication bias.

Sensitivity analysis was performed to assess the potential influences of a single study on the pooled effect size. It was performed by omitting single studies one at a time for each meta-analysis to screen for significant alterations to pooled effect size.

All statistical tests were two-sided, with p < 0.05 considered significant. The meta-analysis was conducted using Stata version 16.0 software (Stata Corp., College Station, TX, USA).

Results

After the removal of overlapping articles and those that did not meet the inclusion criteria (Fig 1), a total of five studies with ADHD including 434 cases and 670 controls [2, 37–40], 18 studies with BD including 4167 cases and 5901 controls [28–31, 41–53] and 44 studies with SCZ including 16,098 cases and 19913 controls were finally included in our meta-analysis [28–31, 42, 46, 47, 52, 54–76]. The key characteristics of the studies and NOS scale information are presented in Table 1. The NOS scale results showed that 66 studies were of high quality and one

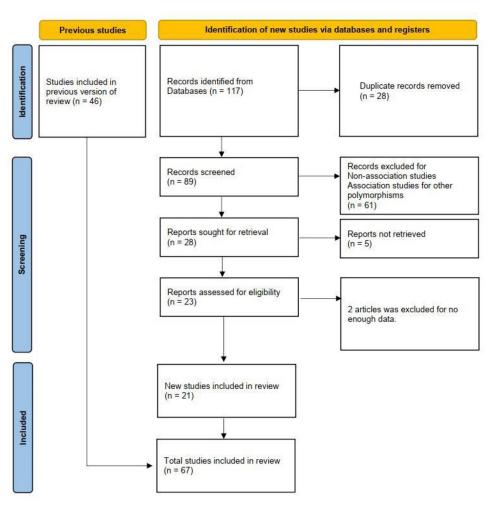


Fig 1. Flow of study identification, inclusion and exclusion.

https://doi.org/10.1371/journal.pone.0271170.g001

 $Table\ 1.\ Baseline\ characteristics\ of\ qualified\ studies\ in\ this\ meta-analysis.$

Author	Year	Country	Disease	Diagnostic criteria	Controls source	Mean age of cases (years)	Male (%)	NOS scores
Baykal	2019	Turkey	ADHD	DSM-V	hospital-based	8.70±2.77	78.1	5
Ergul	2012	Turkey	ADHD	DSM- IV	hospital-based	8.87±2.55	80	5
Gokcen	2011	Turkey	ADHD	DSM- IV	population-based	9.77±2.3	77.5	7
Krull	2008	U.S.	ADHD	-	-	8.70±2.77	78.1	4
Sadeghiyeh	2020	Aryan	ADHD	DSM- IV	population-based	8.13±1.34	82.2	7
Agnieszka	2014	Poland	BD	DSM-IV-TR	hospital-based	51±14	20	7
Arinami	1997	Japan	BD	DSM-IV	population-based	-	-	5
Arzaghi	2011	Iran	BD	DSM-IV	hospital-based	35±8	56.7	7
Chen	2009	China	BD	DSM-IV	population-based	36.6±7.2	-	7
El-Hadidy	2014	Egypt	BD	DSM-IV-TR	hospital-based	32.2±10.9	53.7	7
El-Hadidy	2013	Egypt	BD	DSM-IV	hospital-based	-	-	5
Ezzaher	2011	Tunisia	BD	DSM-IV	hospital-based	36±11.1	67.3	7
asson	2008	Norway	BD	DSM-IV	population-based	41±12.2	39.3	8
Kempisy	2006	Poland	BD	DSM-IV	population-based	44.5±13.5	52.5	8
Kempisy	2007	Poland	BD	DSM-IV	population-based	43.5±13.5	52.5	8
Kunugi	1998	Japan	BD	DSM-IV	population-based	47.9±13.6	37.1	8
Ozbek	2008	Turkey	BD	DSM-IV	population-based	40.55±12.33	37.6	8
Rahimi	2016	Iran	BD	DSM-IV-TR	hospital-based	35.4±12.3	50	7
Reif	2005	Germany	BD	DSM-IV	population-based	50	-	7
Sarah Woods	2010	UK, Canada	BD	DSM-IV	population-based	47.15±11.94	37.7	8
Гan	2004	Singapore	BD	DSM-IV	hospital-based	43.3±14	34.1	7
Wang	2015	China	BD	DSM-IV-TR	population-based	31.9±11.5	48	8
Zhao	2008	China	BD	DSM-IV	population-based	-	-	7
Gao	2020	China	SCZ	DSM-IV	population-based	47.8±10.2	81.8	8
Arinami	1997	Japan	SCZ	DSM-IV	-	-	-	5
Arzaghi	2011	Iranian	SCZ	DSM-IV	hospital-based	29±4	68.18	7
Betcheva	2009	Bulgaria	SCZ	DSM-IV	-			5
Bouaziz	2010	Tunisia	SCZ	DSM-IV-TR	population-based	36.0±9.0	100	8
El-Hadidy	2014	Egypt	SCZ	DSM-IV-TR	hospital-based	33.9±9.4	36.46	7
Feng	2009	China	SCZ	DSM-IV	hospital-based	31.7	40.65	7
Foroughmand.AM	2015	Iran	SCZ	DSM-IV-TR	population-based	43.3±11.3	58.5	7
Garcia-Miss Mdel	2010	Mexico	SCZ	DSM-IV-TR	population-based	38±9	70.48	8
Hei	2014	China	SCZ	DSM-IV	hospital-based	27±12	54.6	7
onsson	2008	Norway	SCZ	DSM-IV	population-based	36.6±9.8	53.99	8
	1	Denmark	SCZ	ICD-10	population-based		57.52	
lonsson	2008	Sweden	SCZ	DSM-III-R	population-based	44.4±11.2 55.7±15.6	62.02	8
oober	2008	Canada	SCZ	DSM-III-R DSM-IV	population-based	JJ./±1J.0	02.02	7
Kang.HJ	2010	Korean	SCZ	DSM-IV DSM-IV	population-based	38.32±3.93	54	8
		+	+	+	+	+		
Kempisty Kompisty	2007	Poland	SCZ	DSM-IV	population-based	43.5±13.5	52.5	8
Kempisty	2006	Poland	SCZ	DSM-IV	population-based	10.39	50.5	8
Kim	2011	Korean	SCZ	DSM-IV	hospital-based	32.89±7.76	66.17	7
Kontis.D	2013	Greece	SCZ	DSM-IV	population-based	42.91±10	64.44	8
Kunugi	1998	Japan	SCZ	DSM-IV	population-based	42.2±12.8	48.69	8
Lajin.B	2012	Syrian	SCZ	DSM-IV	hospital-based	37±10	70.59	7
Lee	2006	Korea	SCZ	DSM-IV	population-based	-	42.55	7

(Continued)

Table 1. (Continued)

Author	Year	Country	Disease	Diagnostic criteria	Controls source	Mean age of cases (years)	Male (%)	NOS scores
Misiak.B	2016	Poland	SCZ	DSM-IV,ICD-10	hospital-based	27.2±6.5	55.6	7
Muntjewerff	2008	Netherlands	SCZ	DSM-IV	population-based	41±14	73	8
Muntjewerff.JW	2011	Netherlands	SCZ	DSM-IV	hospital-based	39±14	75	7
Nishi	2014	Japan	SCZ	DSM-IV	population-based	54.6±14.9	48.6	8
Nishi	2014	Japan	SCZ	DSM-IV	population-based	46.5±15.8	58.8	8
Philibert	2006	USA	SCZ	DSM-IV	population-based	-	63.59	7
Roffman	2008	USA	SCZ	DSM-IV-TR	population-based	-	-	7
Sazci	2005	Turkey	SCZ	DSM-IV	population-based	41.22±9.43	56.57	8
Sazci	2003	Turkey	SCZ	DSM-IV	hospital-based	42.22±13.17	90	8
Tan	2004	Singapore	SCZ	DSM-IV	hospital-based	55.2±10.3	75.85	7
Tsutsumi	2011	Japan	SCZ	DSM-IV	population-based	47.2	53.51	8
Vilella	2005	Spain	SCZ	ICD-9	population-based	55.4±12.1	59.49	8
Virgos	1999	Spain	SCZ	ICD-9	-	-	-	5
Wan	2019	China	SCZ	DSM-IV	hospital-based	29.2±11.6	49.2	7
Wan	2019	China	SCZ	DSM-IV	hospital-based	14.07	52.6	7
Ye	2010	China	SCZ	DSM-IV	hospital-based	32.4±6.3	42.31	7
Yu	2004	China	SCZ	DSM-III-R	population-based	-	-	7
Yu	2004	Scotland	SCZ	DSM-III-R	population-based	-	-	7
Zhang	2013	China	SCZ	DSM-IV	population-based	31.2±9.9	54	8
Zhang	2012	China	SCZ	DSM-IV	hospital-based	31±9	55.74	7
Zhang	2010	China	SCZ	DSM-IV	hospital-based	32.1±9.7	58.05	7
Zhilyaeva.TV	2018	Russia	SCZ	ICD-10	population-based	42.22±12.7	55.4	8

Note: Male (%) = the proportion of males in the case samples.

https://doi.org/10.1371/journal.pone.0271170.t001

study was of low quality. Genotype and allele frequencies, HWE and sample size are given in Tables 2–4, respectively. Of the total of 67 studies, four showed significant deviations from HWE (p < 0.05).

Association between MTHFR 667C>T and ADHD

Table 5 and Fig 2 show results generated for five genetic models evaluating the association between 667C>T variation and ADHD risk under a random effects model. Results indicated no association between 677C>T locus and ADHD occurrence.

 $Table\ 2.\ Distribution\ of\ genotype\ and\ allele\ frequencies\ of\ the\ \textit{MTHFR}\ 677C>T\ and\ 1298A>C\ polymorphisms\ in\ ADHD\ patients.$

		(677C>T	genotyp	e				1	298A>C	genoty	e					
		Cases, n		C	controls,	n			Cases, n		(Controls,	n		Sam	ample size	
Author	CC	CT	TT	CC	СТ	TT	P_{HWE}	AA	AC	CC	AA	AC	CC	P_{HWE}	case	control	
Bayhal	24	34	6	14	20	6	0.7921	26	32	6	16	22	2	0.1088	64	40	
Ergul	44	47	9	154	125	21	0.5195	37	53	10	121	133	46	0.3477	100	300	
Gokcen	22	18	0	15	15	0	0.0679	9	31	0	14	16	0	0.0464	40	30	
Krull	6	10	0	40	40	0	0.0029	5	11	0	37	43	0	0.0010	16	80	
Sadeghiyeh	61	94	59	72	99	49	0.1816	45	98	71	59	107	54	0.6913	214	220	

Note: P_{HWE} represents the P value of Hardy-Weinberg equilibrium test in the genotype distribution of controls.

https://doi.org/10.1371/journal.pone.0271170.t002

Table 3. Distribution of genotype and allele frequencies of the MTHFR 677C>T and 1298A>C polymorphisms in bipolar disorder patients.

		67	77C > T	Genoty	pe				12	298A > C	Genoty	pe				
		Cases, n		C	Controls,	n			Cases, n		C	Controls,	n		Sam	ple size
Author	CC	CT	TT	CC	CT	TT	$P_{\rm HWE}$	AA	AC	CC	AA	AC	CC	P_{HWE}	case	control
Agnieszka	51	50	11	66	85	16	0.1266								112	167
Arinami	15	20	5	154	214	51	0.0743								40	419
Arzaghi	52	34	4	54	38	2	0.1096								90	94
Chen	178	231	92	153	235	73	0.2718								501	461
El-Hadidy	46	70	18	114	30	5	0.1026								134	149
El-Hadidy	42	40	8	72	30	6	0.2390								90	108
Ezzaher	41	40	11	94	62	14	0.4106								92	170
Jasson	58	49	10	80	75	22	0.5008	47	56	12	82	79	16	0.6243	232	354
Kempisy	108	73	19	210	79	11	0.3027								200	300
Kempisy								99	78	23	185	105	10	0.2903	200	300
Kunugi	41	74	28	95	129	34	0.3416								143	258
Ozbek	104	76	17	116	97	25	0.4846	91	84	22	113	101	24	0.8377	394	476
Rahimi	69	67	14	81	62	5	0.0934								150	148
Reif	48	34	10	75	80	21	0.9623	30	47	15	75	96	13	0.0163	184	360
Sarah Woods	362	386	98	642	719	216	0.5158								846	1577
Tan	99	60	8	80	33	7	0.1645								167	120
Wang	287	206	38	215	119	33	0.0073								531	367
Zhao	12	28	21	18	40	15	0.4036								61	73

Note: $P_{\rm HWE}$ represents the P value of Hardy-Weinberg equilibrium test in the genotype distribution of controls.

https://doi.org/10.1371/journal.pone.0271170.t003

 $Table \ 4. \ Distribution \ of genotype \ and \ allele \ frequencies \ of \ the \ \textit{MTHFR} \ 677C > T \ and \ 1298A > C \ polymorphisms \ in \ schizophrenia \ patients.$

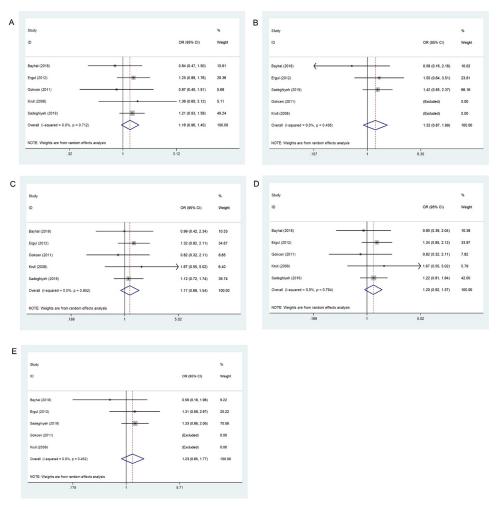
			677C >	T Genoty	pe				12	98A > C	Genoty	pe				
		Cases, n	l	C	ontrols, n	1			Cases, n		C	ontrols,	n		Sam	ple size
Author	CC	CT	TT	CC	CT	TT	$P_{\rm HWE}$	AA	AC	CC	AA	AC	CC	$P_{\rm HWE}$	case	control
Arinami	96	138	63	154	214	51	0.0743								297	419
Arzaghi	35	27	4	54	38	2	0.1096								66	94
Betcheva	76	85	24	84	76	22	0.4565	91	72	18	80	79	24	0.5213	366	365
Bouaziz	18	4	3	19	5	1	0.3969								25	25
El-Hadidy	48	28	20	72	30	6	0.2390								96	108
Feng	17	67	39	40	65	18	0.3084								123	123
Foroughmand.AM	104	76	20	123	64	13	0.2437	60	89	51	65	108	27	0.0885	400	400
Gao	298	344	123	145	202	70	0.9802								765	417
Garcia-Miss Mdel	29	45	31	22	54	31	0.8642								105	107
Hei	17	65	48	24	38	18	0.6898								130	80
Jonsson	75	70	18	80	75	22	0.5008	89	60	14	82	79	16	0.6243	326	354
Jonsson	200	177	42	490	413	103	0.2494	184	186	48	462	419	123	0.0664	837	2010
Jonsson	137	104	17	156	113	24	0.5809	110	113	35	122	129	42	0.4062	516	586
Joober	30	52	23	41	36	13	0.2783								105	90
Kang.HJ	125	176	59	130	158	60	0.3168	248	105	7	239	100	9	0.7026	720	696
Kempisty	109	74	17	185	105	10	0.2903								200	300
Kempisty	113	68	19	210	79	11	0.3027								200	300
Kim	62	101	38	112	167	71	0.5440								201	350
Kontis.D	40	37	13	21	22	12	0.1868								90	55

(Continued)

Table 4. (Continued)

			677C >	T Genoty	pe				12	98A > C	Genoty	ype				
		Cases, n	ı	C	ontrols, n	1			Cases, n		C	ontrols,	n		Sam	ple size
Author	cc	CT	TT	CC	CT	TT	P_{HWE}	AA	AC	CC	AA	AC	CC	P_{HWE}	case	control
Kunugi	121	168	54	95	129	34	0.3416								343	258
Lajin.B	47	26	12	58	58	10	0.3879	32	38	15	65	48	13	0.3592	170	252
Lee	74	128	33	99	115	21	0.1257	157	71	7	145	77	14	0.3824	470	471
Misiak.B	64	52	16	71	53	22	0.0280	55	64	13	55	72	19	0.5445	264	292
Muntjewerff	110	111	31	205	165	35	0.8261								252	405
Muntjewerff.JW	334	319	86	405	389	92	0.9213								739	886
Nishi	220	309	92	174	239	73	0.5380								621	486
Nishi	417	530	202	1,072	1,260	410	0.2074								1149	2742
Philibert	107	83	16	176	137	46	0.0212								206	359
Roffman	41	27	11	35	32	8	0.8652								79	75
Sazci	144	115	38	161	156	24	0.0926	130	129	38	159	155	27	0.2005	594	682
Sazci	59	49	22	106	103	17	0.2361	57	59	14	114	93	19	0.9957	260	452
Tan	136	84	16	80	33	7	0.1645								236	120
Tsutsumi	160	184	69	138	183	64	0.8004								413	385
Vilella	58	75	25	85	110	39	0.7360	76	68	14	124	97	13	0.2858	316	468
Virgos	81	98	31	79	106	33	0.7928								210	218
Wan	45	122	75	71	113	50	0.6869	174	63	5	171	58	5	0.9749	484	468
Wan	24	47	26	24	43	25	0.5323	66	29	2	69	22	1	0.6034	194	184
Ye	12	58	34	14	32	10	0.2658								104	56
Yu	91	96	43	85	126	40	0.5543	177	209	40	292	272	64	0.9552	656	879
Yu	199	186	41	306	260	62	0.5351	130	78	22	154	81	16	0.2350	656	879
Zhang	166	450	384	213	505	318	0.6297								1000	1036
Zhang	96	113	26	52	45	5	0.2248								235	102
Zhang								230	127	22	260	108	12	0.8478	379	380
Zhilyaeva.TV	245	212	43	280	188	31	0.9406								500	499

Note: P_{HWE} represents the P value of Hardy-Weinberg equilibrium test in the genotype distribution of controls.

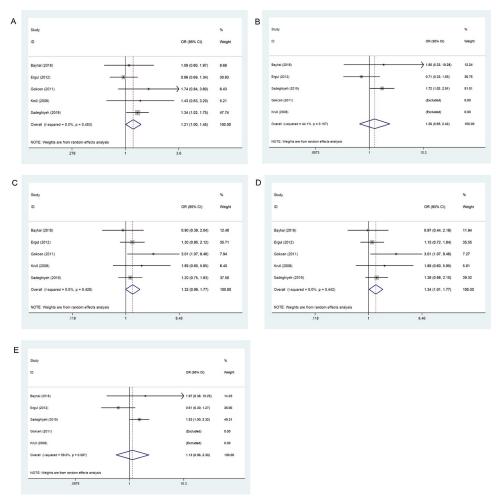

https://doi.org/10.1371/journal.pone.0271170.t004

 $Table \ 5. \ Summarized \ ORs \ with \ 95\% \ CIs \ for \ the \ association \ between \ \textit{MTHFR} \ polymorphisms \ and \ ADHD.$

Polymorphism	Genetic model	n	Statistical model	OR	95% CI	p _z	I ² (%)	p_{h}	pe
677C>T									
	Allele contrast	5	Random	1.161	0.962-1.400	0.119	0.0	0.712	0.367
	Homozygous codominant	3	Random	1.317	0.870-1.993	0.193	0.0	0.436	0.427
	Heterozygous codominant	5	Random	1.168	0.883-1.543	0.277	0.0	0.852	0.779
	Dominant	5	Random	1.205	0.924-1.571	0.169	0.0	0.794	0.544
	Recessive	3	Random	1.229	0.852-1.774	0.270	0.0	0.452	0.401
1298A>C									
	Allele contrast	5	Random	1.206	1.003-1.450	0.047	0.0	0.453	0.681
	Homozygous codominant	3	Random	1.255	0.650-2.420	0.497	44.1	0.167	0.873
	Heterozygous codominant	5	Random	1.321	0.987-1.767	0.061	0.0	0.428	0.352
	Dominant	5	Random	1.337	1.012-1.766	0.041	0.0	0.442	0.337
	Recessive	3	Random	1.132	0.558-2.297	0.731	59.0	0.087	0.850

Note: n, the number of studies; p_z , P value for association test; p_h , p value for heterogeneity test; p_e , p value for publication bias test.

https://doi.org/10.1371/journal.pone.0271170.t005


Fig 2. Forest plot of the association between 667C>T variation and risk of ADHD in the five genetic models: A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive.

Association between MTHFR 1298A>C and ADHD

Table 5 and Fig 3 show results for five genetic models evaluating associations between 1298A>C variation and ADHD risk under a random effects model. Results showed an association between 1298A>C and ADHD occurrence as a risk factor in the allele contrast (p = 0.047, OR = 1.206, 95% CI = 1.003–1.450) and the dominant models (p = 0.041, OR = 1.337, 95% CI = 1.012–1.766).

Association between MTHFR 667C>T and BD

Table 6 and Fig 4 show the results for five genetic models evaluating the association between 667C>T variation and BD risk under a random effects model. The results indicated an association between 677C>T locus and BD occurrence as a protective factor in the allele contrast model (p = 0.024, OR = 0.822, 95% CI = 0.693-0.974) and as a risk factor in the dominant model (p = 0.044, OR = 1.254, 95% CI = 1.006-1.562).

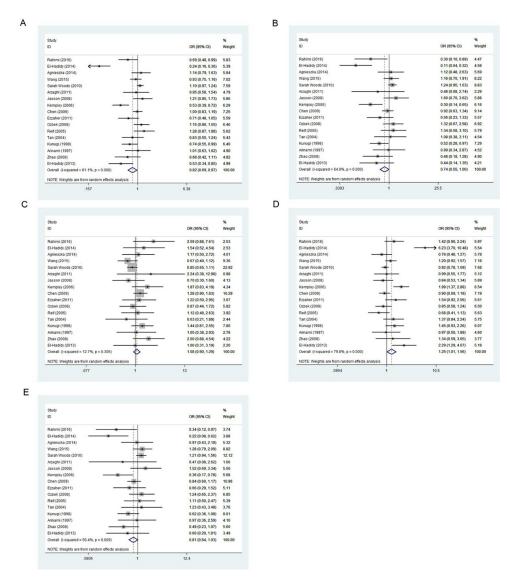

Fig 3. Forest plot of the associations between 1298A>C variation and risk of ADHD in the five genetic models: A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive.

Table 6. Summarized ORs with 95% CIs for the association between MTHFR polymorphisms and bipolar disorder.

Polymorphism	Genetic model	n	Statistical model	OR	95% CI	p _z	I ² (%)	$p_{ m h}$	p _e
677C>T									
	Allele contrast	17	Random	0.822	0.693-0.974	0.024	81.1	0.000	0.058
	Homozygous codominant	17	Random	0.744	0.553-1.001	0.050	64.9	0.000	0.025
	Heterozygous codominant	17	Random	1.079	0.905-1.287	0.396	12.7	0.305	0.128
	Dominant	17	Random	1.254	1.006-1.562	0.044	79.8	0.000	0.138
	Recessive	17	Random	0.810	0.640-1.026	0.080	50.4	0.009	0.036
1298A>C									
	Allele contrast	4	Random	0.756	0.602-0.950	0.017	50.8	0.107	0.991
	Homozygous codominant	4	Random	0.493	0.259-0.937	0.031	64.0	0.040	0.436
	Heterozygous codominant	4	Random	2.030	1.068-3.862	0.031	64.0	0.040	0.436
	Dominant	4	Random	1.326	1.075-1.636	0.008	0.0	0.409	0.941
	Recessive	4	Random	0.541	0.300-0.977	0.042	61.4	0.051	0.413

Note: n, the number of studies; p_z , P value for association test; p_h , p value for heterogeneity test; p_e , p value for publication bias test.

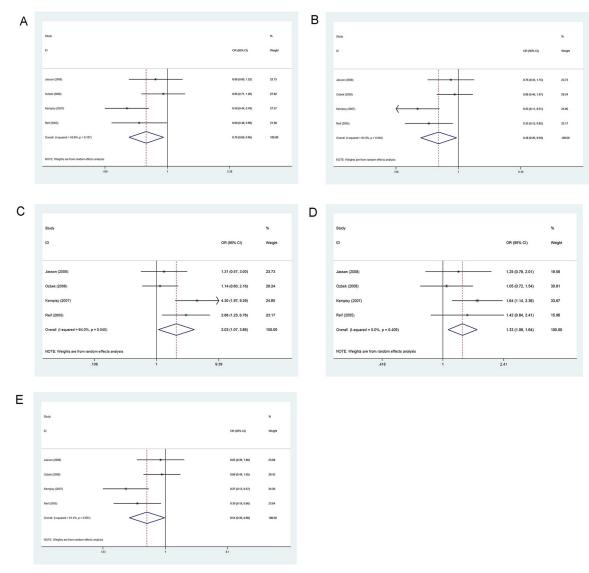
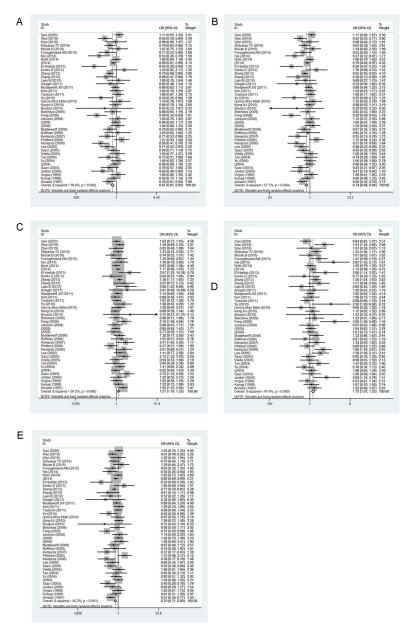

https://doi.org/10.1371/journal.pone.0271170.t006

Fig 4. Forest plot of the association between 667C>T variation and risk of bipolar disorder in the five genetic models: A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive.

Association between MTHFR 1298A>C and BD

Table 6 and Fig 5 show the results for five genetic models evaluating associations between 1298A>C variation and BD risk under a random effects model. Our results showed an association between 1298A>C and BD occurrence as a protective factor in the allele contrast (p = 0.017, OR = 0.756, 95% CI = 0.602–0.950), homozygous codominant (p = 0.031, OR = 0.493, 95% CI = 0.259–0.937) and recessive models (p = 0.042, OR = 0.541, 95% CI = 0.300–0.977). However, the *MTHFR* 1298A>C increased the BD occurrence in the heterozygous codominant (p = 0.031, OR = 2.030, 95% CI = 1.068–3.862) and dominant models (p = 0.008, OR = 1.326, 95% CI = 1.075–1.636).


Fig 5. Forest plot of the associations between 1298A>C variation and risk of bipolar disorder in the five genetic models: A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive.

 $Table\ 7.\ Summarized\ ORs\ with\ 95\%\ CIs\ for\ the\ association\ between\ MTHFR\ polymorphisms\ and\ schizophrenia.$

Polymorphism	Genetic model	n	Statistical model	OR	95% CI	p _z	I ² (%)	p_{h}	p _e
677C>T									
	Allele contrast	43	Random	0.867	0.815-0.923	0.000	58.6	0.000	0.135
	Homozygous codominant	43	Random	0.735	0.643-0.841	0.000	57.7	0.000	0.055
	Heterozygous codominant	43	Random	1.211	1.100-1.333	0.000	26.5	0.060	0.196
	Dominant	43	Random	1.153	1.066-1.246	0.000	47.9	0.000	0.104
	Recessive	43	Random	0.787	0.707-0.876	0.000	45.2	0.001	0.136
1298A>C									
	Allele contrast	17	Random	0.925	0.845-1.013	0.094	41.4	0.038	0.851
	Homozygous codominant	17	Random	0.852	0.691-1.052	0.136	35.4	0.074	0.833
	Heterozygous codominant	17	Random	1.113	0.926-1.338	0.254	18.4	0.239	0.756
	Dominant	17	Random	1.085	0.984-1.196	0.103	18.2	0.240	0.788
	Recessive	17	Random	0.867	0.711-1.057	0.158	34.0	0.084	0.800

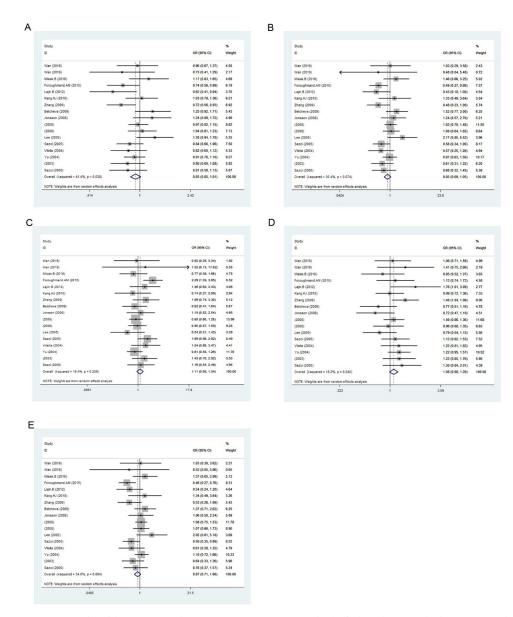
Note: n, the number of studies; p_z , P value for association test; p_h , p value for heterogeneity test; p_e , p value for publication bias test.

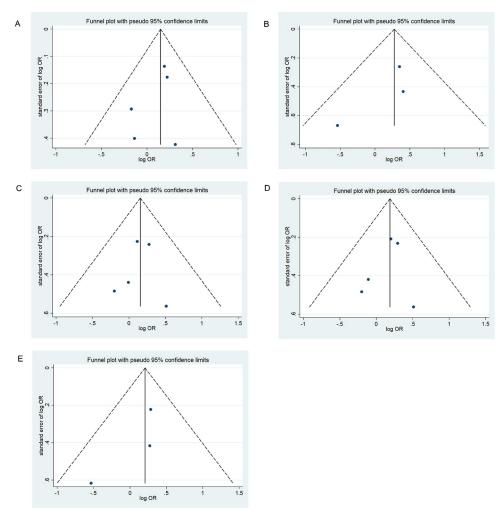
https://doi.org/10.1371/journal.pone.0271170.t007

Fig 6. Forest plot of the association between 667C>T variation and risk of schizophrenia in the five genetic models: A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive.

Association between MTHFR 667C>T and SCZ

Table 7 and Fig 6 show the results for five genetic models evaluating the association between 667C>T variation and SCZ risk under a random effects model. The results indicated an association between 677C>T locus and SCZ occurrence as a protective factor in the allele contrast (p < 0.001, OR = 0.867, 95% CI = 0.815–0.923), homozygous codominant (p < 0.001, OR = 0.735, 95% CI = 0.643–0.841) and recessive models (p < 0.001, OR = 0.787, 95% CI = 0.707–0.876) and as a risk factor in the heterozygous codominant (p < 0.001, OR = 1.211, 95% CI = 1.100–1.333) and dominant models (p < 0.001, OR = 1.153, 95% CI = 1.066–1.246).




Fig 7. Forest plot of the associations between 1298A>C variation and risk of schizophrenia in the five genetic models: A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive.

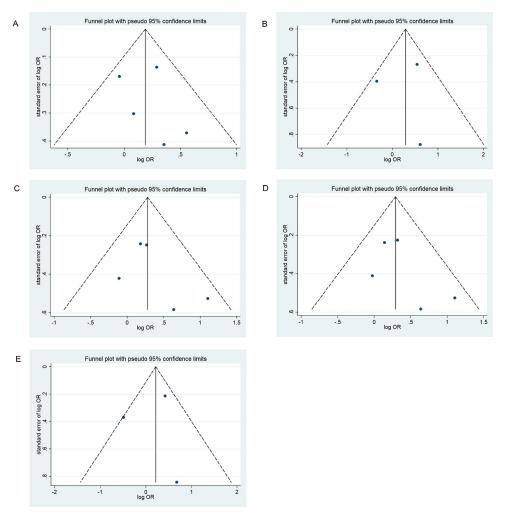
Association between MTHFR 1298A>C and SCZ

Table 7 and Fig 7 show the results for five genetic models evaluating associations between 1298A>C variation and SCZ risk under a random effects model. The results showed no association between 1298A>C and SCZ occurrence in the five genetic models.

Sensitivity analysis

We examined the influence of individual studies in the pooled ORs for 667C>T and 1298A>C loci via sensitivity analysis involving omitting each study in each genetic model; the results did not change. This indicates that our results were statistically robust for all five genetic

Fig 8. Funnel plot analysis depicting publication bias in the association between *MTHFR* 677C>T polymorphism and ADHD in the five genetic models: A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive.


models examining associations between *MTHFR* polymorphisms and susceptibility to ADHD, BD and SCZ.

Publication bias

We assessed possible publication bias using a Begg's funnel plot and Egger's test. No obvious asymmetry was observed in the funnel plot and Begg's test results, indicating a lack of publication bias (p > 0.05) except for the homozygous codominant model of 677C>T locus in BD (p = 0.025) (Figs 8–13).

Discussion

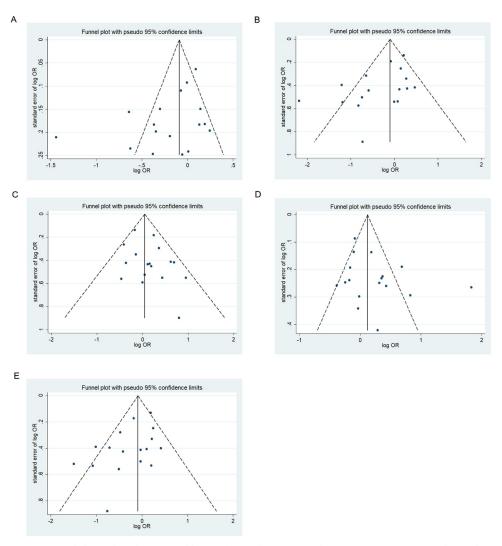

The present meta-analysis included 66 studies that investigated the association between *MTHFR* (677C>T and 1298A>C) polymorphisms and occurrence of ADHD, BD and SCZ. Overall, our meta-analytical results provided evidence that *MTHFR* 677C>T was associated

Fig 9. Funnel plot analysis depicting publication bias in the association between *MTHFR 1298A>C* polymorphism and ADHD in the five genetic models (A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive).

with occurrence of BD and SCZ, while the 1298A>C polymorphism was related to ADHD and BD. The sensitivity analysis indicated that these results were stable and reliable.

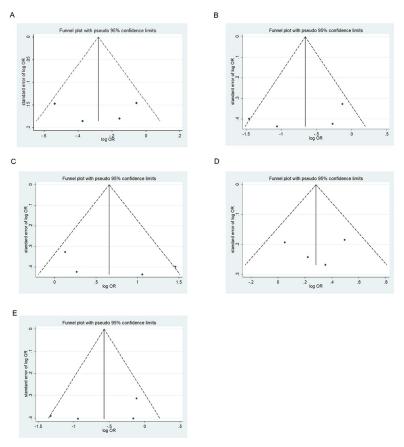

Five previous retrospective studies investigated the association between *MTHFR* polymorphisms and ADHD [2, 37–39, 77]. Our results were very similar to those of Tahereh Sadeghiyeh [77], but not exactly the same as those of Saliha Baykal and Emel Ergul [37, 38]. A total of five retrospective studies were included, which represented *MTHFR* polymorphisms more accurately than previous published studies. This is the first meta-analysis to include recent published studies concerning the association between *MTHFR* polymorphism and ADHD occurrence. Therefore, to some extent, our study provides a more reliable assessment of the association between *MTHFR* polymorphisms and ADHD. Additionally, some previous studies showed that ADHD occurrence was affected by various environmental factors [78]. It is possible that epigenetic risk mechanisms in ADHD responding to environmental risk factors or trans-regulatory and gene × environment effects in the development of child psychopathology might play a consequential role in ADHD etiology [79]. In addition, ADHD subtypes represent distinct clinical entities and may have different genetic backgrounds [80].

Fig 10. Funnel plot analysis depicting publication bias in the association between *MTHFR 677C>T* polymorphism and bipolar disorder in the five genetic models (A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive).

To date, case-control studies and meta-analyses have explored the role of *MTHFR* polymorphisms in BD occurrence [24, 31, 33, 43, 51, 81–83] but with no consistent conclusion. Additionally, The *MTHFR* gene polymorphism is unlikely to play a major role in the pathogenesis of obsessive-compulsive disorder [84]. Our study showed that the 677C>T and 1298A>C polymorphisms were involved in the occurrence of BD. Moreover, a genome-wide association study suggested that the *MTHFR* gene polymorphism was related to mood disorder [85]. The Genotypes of 677C>T were related to total homocysteine (tHcy), folate and B12. Individuals with TT genotype have elevated tHcy and reduced folate and B12 levels, which may be a susceptible factor for the BD [48]. The interaction of BDNF Val66Met and MTHFR C677T may reduce the hippocampal size in both healthy controls and patients with first-episode psychosis [86].

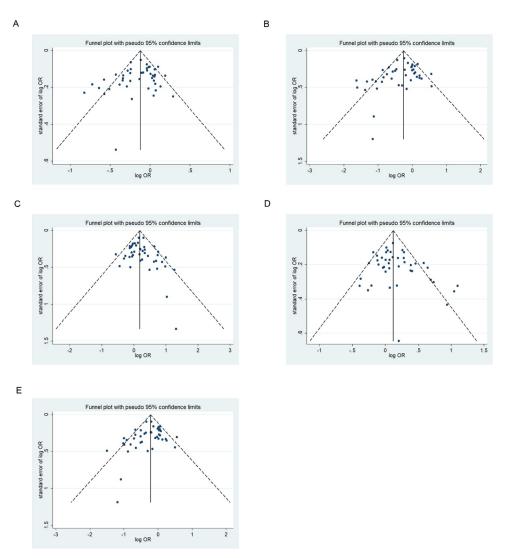

The C677T polymorphisms of *MTHFR* had an influence on SCZ symptoms. However, the effect of the T allele on the negative symptoms of SCZ could be further enhanced by folate deficiency [87]. Additionally, there was a significant association between the 677TT genotype and SCZ under the recessive model in the male patient subgroup, and CT genotype under the

Fig 11. Funnel plot analysis depicting publication bias in the association between *MTHFR 1298A*>*C* polymorphism and bipolar disorder in the five genetic models (A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive).

overdominant model in the total patient group [65]. The OR for patient with BD and SCZ in 1298CC homozygous state was 3.768 (P = 0.0003) and 2.694 (P = 0.0123), respectively. After the stratification of patients based on gender, only a significant association of 1298CC genotype with BD in female patients was observed (P = 0.0005) [46]. Moreover, a previous metaanalysis indicated that the T allele and TT genotype of C677T carriers showed significantly increased risk of major psychiatric disorders including SCZ and BD [33]. Moreover, the activity of MTHFR will be affected by multiple single-nucleotide polymorphisms. However, variations other than the 677C>T and 1298A>C polymorphisms have received little attention. In addition, aggravating symptoms, increased MTHFR polymorphisms, and reduced genomic methylation levels can be observed in patients with early-onset SCZ [88]. MTHFR 677T allele carriers have lower levels of total cholesterol and low-density lipoprotein cholesterol than those with the 677CC genotype [89]. There was a positive association between the COMT— MTHFR interaction and attention in inpatients suffering from recent onset SCZ [90]. MTHFR A1298C, but not C677T, was associated with the metabolic syndrome, its CC genotype having a 2.4 times higher risk compared to AA genotype [91]. In addition, the C allele of MTHFR was associated with BMI reduction in the schizophrenia patients following switching of antipsychotics to aripiprazole and ziprasidone [92].

There were several potential limitations to the present study. First, the most important was sample size. Small samples with limited participants are usually accompanied by selection

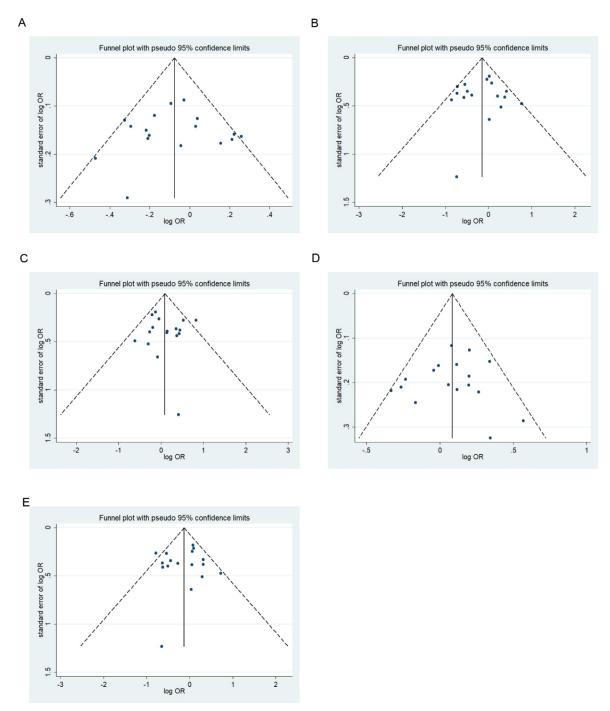


Fig 12. Funnel plot analysis depicting publication bias in the association between *MTHFR 677C>T* polymorphism and schizophrenia in the five genetic models (A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive).

biases. These studies lack sufficient power to support or refute meaningful conclusions [93]. Second, subgroup analysis cannot be carried out with limited samples, so the influence of some factors (e.g. ethnicity, source of controls and diagnostic criteria) were ignored. The discrepancies of the studies may result from population stratifications, explicitly, socio-economic status [94]. Finally, clinical subtypes of the mental disorder, gene–gene interaction and epigenetics were not examined in this study due to insufficient information.

Conclusions

Our findings suggest that the *MTHFR* 677C>T was associated with occurrence of BD and SCZ, while the 1298A>C polymorphism was related to ADHD and BD. Studies involving larger sample sizes will be necessary to confirm the meta-analysis results, particularly in different ethnicities and to address the epigenetic mechanisms and environmental influences on the occurrence of common mental disorders.

Fig 13. Funnel plot analysis depicting publication bias in the association between *MTHFR 1298A*>*C* polymorphism and schizophrenia in the five genetic models (A, allele contrast; B, homozygous codominant; C, heterozygous codominant; D, dominant; and E, recessive).

Supporting information

S1 Checklist. Meta-analysis on genetic association studies checklist. (\mbox{DOCX})

Author Contributions

Conceptualization: Ji-long Zheng, Jun Yao.

Data curation: Xinyao Meng, Mao-ling Sun, Hai-yun Lai.

Formal analysis: Mao-ling Sun. Funding acquisition: Jun Yao.

Methodology: Xinyao Meng, Bao-jie Wang.

Project administration: Ji-long Zheng.

Software: Hai-yun Lai.

Supervision: Ji-long Zheng, Hongbo Wang.

Validation: Xinyao Meng.

Visualization: Hongbo Wang.

Writing – original draft: Bao-jie Wang, Jun Yao.

Writing – review & editing: Hongbo Wang.

References

- Spellicy CJ, Northrup H, Fletcher JM, Cirino PT, Dennis M, Morrison AC, et al. Folate metabolism gene 5,10-methylenetetrahydrofolate reductase (MTHFR) is associated with ADHD in myelomeningocele patients. PLoS One. 2012; 7(12):e51330. Epub 2012/12/12. https://doi.org/10.1371/journal.pone. 0051330 PMID: 23227261; PubMed Central PMCID: PMC3515551.
- Gokcen C, Kocak N, Pekgor A. Methylenetetrahydrofolate reductase gene polymorphisms in children with attention deficit hyperactivity disorder. Int J Med Sci. 2011; 8(7):523–8. Epub 2011/09/08. https:// doi.org/10.7150/ijms.8.523 PMID: 21897766; PubMed Central PMCID: PMC3167178.
- Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, et al. Human methylenete-trahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet. 1994; 7 (2):195–200. Epub 1994/06/01. https://doi.org/10.1038/ng0694-195 PMID: 7920641.
- Goyette P, Christensen B, Rosenblatt DS, Rozen R. Severe and mild mutations in cis for the methylenetetrahydrofolate reductase (MTHFR) gene, and description of five novel mutations in MTHFR. Am J Hum Genet. 1996; 59(6):1268–75. Epub 1996/12/01. PMID: 8940272; PubMed Central PMCID: PMC1914869.
- Golovina E, Vickers MH, Erb CD, O'Sullivan JM. GWAS SNPs Impact Shared Regulatory Pathways Amongst Multimorbid Psychiatric Disorders and Cognitive Functioning. Front Psychiatry. 2020; 11:560751. Epub 2020/11/17. https://doi.org/10.3389/fpsyt.2020.560751 PMID: 33192679; PubMed Central PMCID: PMC7649776.
- Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry. 2007; 164(6):942–8. Epub 2007/06/ 02. https://doi.org/10.1176/ajp.2007.164.6.942 PMID: 17541055.
- Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med. 2006; 36(2):159–65. Epub 2006/01/20. https://doi. org/10.1017/S003329170500471X PMID: 16420712.
- Simon V, Czobor P, Balint S, Meszaros A, Bitter I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry. 2009; 194(3):204–11. Epub 2009/03/03. https:// doi.org/10.1192/bjp.bp.107.048827 PMID: 19252145.
- Faraone SV, Perlis RH, Doyle AE, Smoller JW, Goralnick JJ, Holmgren MA, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005; 57(11):1313–23. Epub 2005/06/14. https://doi.org/10.1016/j.biopsych.2004.11.024 PMID: 15950004.
- Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. Mol Psychiatry. 2019; 24 (4):562–75. Epub 2018/06/13. https://doi.org/10.1038/s41380-018-0070-0 PMID: 29892054; PubMed Central PMCID: PMC6477889.
- Boomsma DI, Saviouk V, Hottenga JJ, Distel MA, de Moor MH, Vink JM, et al. Genetic epidemiology of attention deficit hyperactivity disorder (ADHD index) in adults. PLoS One. 2010; 5(5):e10621. Epub

- 2010/05/21. https://doi.org/10.1371/journal.pone.0010621 PMID: 20485550; PubMed Central PMCID: PMC2868902.
- Kan KJ, Dolan CV, Nivard MG, Middeldorp CM, van Beijsterveldt CE, Willemsen G, et al. Genetic and environmental stability in attention problems across the lifespan: evidence from the Netherlands twin register. J Am Acad Child Adolesc Psychiatry. 2013; 52(1):12–25. Epub 2012/12/26. https://doi.org/10. 1016/j.jaac.2012.10.009 PMID: 23265630.
- Larsson H, Asherson P, Chang Z, Ljung T, Friedrichs B, Larsson JO, et al. Genetic and environmental influences on adult attention deficit hyperactivity disorder symptoms: a large Swedish population-based study of twins. Psychol Med. 2013; 43(1):197–207. Epub 2012/08/17. https://doi.org/10.1017/ S0033291712001067 PMID: 22894944.
- 14. Biederman J, Faraone S, Milberger S, Curtis S, Chen L, Marrs A, et al. Predictors of persistence and remission of ADHD into adolescence: results from a four-year prospective follow-up study. J Am Acad Child Adolesc Psychiatry. 1996; 35(3):343–51. Epub 1996/03/01. https://doi.org/10.1097/00004583-199603000-00016 PMID: 8714323
- 15. Faraone SV, Biederman J, Spencer T, Wilens T, Seidman LJ, Mick E, et al. Attention-deficit/hyperactivity disorder in adults: an overview. Biol Psychiatry. 2000; 48(1):9–20. Epub 2000/07/29. https://doi.org/10.1016/s0006-3223(00)00889-1 PMID: 10913503.
- Kasper SF. Living with bipolar disorder. Expert review of neurotherapeutics. 2004; 4(6 Suppl 2):S9–15. https://doi.org/10.1586/14737175.4.6.S9 PMID: 16279866.
- Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, et al. Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Archives of general psychiatry. 1994; 51(1):8–19. https://doi.org/10.1001/archpsyc.1994. 03950010008002 PMID: 8279933.
- Taylor L, Faraone SV, Tsuang MT. Family, twin, and adoption studies of bipolar disease. Current psychiatry reports. 2002; 4(2):130–3. https://doi.org/10.1007/s11920-002-0046-1 PMID: 11914174.
- Kalman JL, Olde Loohuis LM, Vreeker A, McQuillin A, Stahl EA, Ruderfer D, et al. Characterisation of age and polarity at onset in bipolar disorder. Br J Psychiatry. 2021; 219(6):659–69. Epub 2022/01/21. https://doi.org/10.1192/bjp.2021.102 PMID: 35048876; PubMed Central PMCID: PMC8636611.
- Marangoni C, De Chiara L, Faedda GL. Bipolar disorder and ADHD: comorbidity and diagnostic distinctions. Curr Psychiatry Rep. 2015; 17(8):604. Epub 2015/06/19. https://doi.org/10.1007/s11920-015-0604-y PMID: 26084666.
- Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a complex trait: evidence from a meta-analysis
 of twin studies. Archives of general psychiatry. 2003; 60(12):1187–92. https://doi.org/10.1001/
 archpsyc.60.12.1187 PMID: 14662550.
- Gomez-Duran EL, Martin-Fumado C, Hurtado-Ruiz G. Clinical and epidemiological aspects of suicide in patients with schizophrenia. Actas Esp Psiquiatr. 2012; 40(6):333–45. Epub 2012/11/21. PMID: 23165416.
- 23. Benros ME, Mortensen PB. Role of Infection, Autoimmunity, Atopic Disorders, and the Immune System in Schizophrenia: Evidence from Epidemiological and Genetic Studies. Curr Top Behav Neurosci. 2020; 44:141–59. Epub 2019/03/22. https://doi.org/10.1007/7854_2019_93 PMID: 30895532.
- 24. Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol. 2007; 165(1):1–13. Epub 2006/11/01. https://doi.org/10.1093/aje/kwj347 PMID: 17074966.
- 25. Wullner U, Kolsch H, Linnebank M. Methylenetetrahydrofolate reductase in Parkinson's disease. Ann Neurol. 2005; 58(6):972–3. Epub 2005/11/30. https://doi.org/10.1002/ana.20696 PMID: 16315277.
- Yoo JH, Choi GD, Kang SS. Pathogenicity of thermolabile methylenetetrahydrofolate reductase for vascular dementia. Arterioscler Thromb Vasc Biol. 2000; 20(8):1921–5. Epub 2000/08/11. https://doi.org/10.1161/01.atv.20.8.1921 PMID: 10938012.
- 27. Wang B, Jin F, Kan R, Ji S, Zhang C, Lu Z, et al. Association of MTHFR gene polymorphism C677T with susceptibility to late-onset Alzheimer's disease. J Mol Neurosci. 2005; 27(1):23–7. Epub 2005/08/02. https://doi.org/10.1385/JMN:27:1:023 PMID: 16055944.
- 28. EI-Hadidy MA, Abdeen HM, Abd EI-Aziz SM, AI-Harrass M. MTHFR gene polymorphism and age of onset of schizophrenia and bipolar disorder. Biomed Res Int. 2014; 2014:318483. Epub 2014/08/08. https://doi.org/10.1155/2014/318483 PMID: 25101272; PubMed Central PMCID: PMC4101969.
- 29. Kempisty B, Mostowska A, Gorska I, Luczak M, Czerski P, Szczepankiewicz A, et al. Association of 677C>T polymorphism of methylenetetrahydrofolate reductase (MTHFR) gene with bipolar disorder and schizophrenia. Neurosci Lett. 2006; 400(3):267–71. Epub 2006/03/21. https://doi.org/10.1016/j.neulet.2006.02.055 PMID: 16545905.

- Arzaghi SM, Hossein-Nezhad A, Shariat SV, Ghodsipour A, Shams J, Larijani B. C677T Methylenete-trahydrofolate Reductase (MTHFR) Gene Polymorphism in Schizophrenia and Bipolar Disorder: An Association Study in Iranian Population. Iran J Psychiatry. 2011; 6(1):1–6. Epub 2011/01/01. PMID: 22952513; PubMed Central PMCID: PMC3395937.
- Jonsson EG, Larsson K, Vares M, Hansen T, Wang AG, Djurovic S, et al. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder: an association study. Am J Med Genet B Neuropsychiatr Genet. 2008; 147B(6):976–82. Epub 2008/01/01. https://doi.org/10.1002/aimg.b.30671 PMID: 18165967.
- 32. Yang B, Fan S, Zhi X, Li Y, Liu Y, Wang D, et al. Associations of MTHFR gene polymorphisms with hypertension and hypertension in pregnancy: a meta-analysis from 114 studies with 15411 cases and 21970 controls. PLoS One. 2014; 9(2):e87497. Epub 2014/02/08. https://doi.org/10.1371/journal.pone. 0087497 PMID: 24505291; PubMed Central PMCID: PMC3914818.
- 33. Peerbooms OL, van Os J, Drukker M, Kenis G, Hoogveld L, Group MiP, et al. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: evidence for a common genetic vulnerability? Brain, behavior, and immunity. 2011; 25(8):1530–43. https://doi.org/10.1016/j.bbi.2010.12.006 PMID: 21185933.
- **34.** Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Molecular psychiatry. 2006; 11(2):143–9. https://doi.org/10.1038/sj.mp.4001746 PMID: 16172608.
- Yadav U, Kumar P, Gupta S, Rai V. Role of MTHFR C677T gene polymorphism in the susceptibility of schizophrenia: An updated meta-analysis. Asian journal of psychiatry. 2016; 20:41–51. https://doi.org/10.1016/j.ajp.2016.02.002 PMID: 27025471.
- 36. Rai V, Yadav U, Kumar P, Yadav SK, Gupta S. Methylenetetrahydrofolate reductase A1298C genetic variant& risk of schizophrenia: A meta-analysis. The Indian journal of medical research. 2017; 145 (4):437–47. https://doi.org/10.4103/ijmr.IJMR_745_14 PMID: 28862175; PubMed Central PMCID: PMC5663157
- Baykal S, Batar B, Nalbantoglu A, Albayrak Y, Hanci H, Potas N, et al. Altered methyltetrahydrofolate reductase gene polymorphism in mothers of children with attention deficit and hyperactivity disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2019; 88:215–21. Epub 2018/07/28. https://doi.org/10.1016/j.pnpbp.2018.07.020 PMID: 30053573.
- Ergul E, Sazci A, Kara I. Methylenetetrahydrofolate reductase gene polymorphisms in Turkish children with attention-deficit/hyperactivity disorder. Genet Test Mol Biomarkers. 2012; 16(1):67–9. Epub 2011/ 08/09. https://doi.org/10.1089/qtmb.2011.0062 PMID: 21819229.
- Krull KR, Brouwers P, Jain N, Zhang L, Bomgaars L, Dreyer Z, et al. Folate pathway genetic polymorphisms are related to attention disorders in childhood leukemia survivors. J Pediatr. 2008; 152(1):101–5. Epub 2007/12/25. https://doi.org/10.1016/j.jpeds.2007.05.047 PMID: 18154909.
- 40. Sadeghiyeh T, Dastgheib SA, Lookzadeh MH, Noori-Shadkam M, Akbarian-Bafghi MJ, Zare-Shehneh M, et al. Association of MTHFR 677C > T and 1298A > C polymorphisms with susceptibility to attention deficit and hyperactivity disorder. Fetal Pediatr Pathol. 2020; 39(5):422–9. Epub 2019/10/02. https://doi.org/10.1080/15513815.2019.1666330 PMID: 31573368.
- Permoda-Osip A, Dmitrzak-Weglarz M, Hauser J, Rybakowski JK. Are genes connected with homocysteine metabolism associated with bipolar disorder? Neuropsychobiology. 2014; 69(2):107–11. Epub 2014/03/01. https://doi.org/10.1159/000358091 PMID: 24577139.
- 42. Arinami T, Yamada N, Yamakawa-Kobayashi K, Hamaguchi H, Toru M. Methylenetetrahydrofolate reductase variant and schizophrenia/depression. Am J Med Genet. 1997; 74(5):526–8. Epub 1997/10/28 22:43. https://doi.org/10.1002/(sici)1096-8628(19970919)74:5<526::aid-ajmg14>3.0.co;2-e PMID: 9342205.
- 43. Chen Z, Liu Y, Zhang D, Liu Z, Wang P, Zhou D, et al. C677T methylenetetrahydrofolate reductase gene polymorphisms in bipolar disorder: an association study in the Chinese population and a meta-analysis of genetic association studies. Neurosci Lett. 2009; 449(1):48–51. Epub 2008/11/06. https://doi.org/10.1016/j.neulet.2008.10.077 PMID: 18983889.
- El-Hadidy MA, Abdeen HM, Abd El-Aziz SM, Al-Harrass M. WITHDRAWN:C677T Methylenetetrahydrofolate reductase gene polymorphism in schizophrenia and bipolar disorder. Psychiatr Genet. 2013. Epub 2013/11/28. https://doi.org/10.1097/YPG.0000000000000020 PMID: 24276736.
- **45.** Ezzaher A, Mouhamed DH, Mechri A, Omezzine A, Neffati F, Douki W, et al. Hyperhomocysteinemia in Tunisian bipolar I patients. Psychiatry Clin Neurosci. 2011; 65(7):664–71. Epub 2011/12/20. https://doi.org/10.1111/j.1440-1819.2011.02284.x PMID: 22176285.
- 46. Kempisty B, Bober A, Luczak M, Czerski P, Szczepankiewicz A, Hauser J, et al. Distribution of 1298A>C polymorphism of methylenetetrahydrofolate reductase gene in patients with bipolar disorder

- and schizophrenia. Eur Psychiatry. 2007; 22(1):39–43. Epub 2006/12/26. https://doi.org/10.1016/j.eurpsy.2006.11.003 PMID: 17188847.
- 47. Kunugi H, Fukuda R, Hattori M, Kato T, Tatsumi M, Sakai T, et al. C677T polymorphism in methylenete-trahydrofolate reductase gene and psychoses. Mol Psychiatry. 1998; 3(5):435–7. Epub 1998/10/17. https://doi.org/10.1038/sj.mp.4000390 PMID: 9774778.
- 48. Ozbek Z, Kucukali CI, Ozkok E, Orhan N, Aydin M, Kilic G, et al. Effect of the methylenetetrahydrofolate reductase gene polymorphisms on homocysteine, folate and vitamin B12 in patients with bipolar disorder and relatives. Prog Neuropsychopharmacol Biol Psychiatry. 2008; 32(5):1331–7. Epub 2008/06/03. https://doi.org/10.1016/j.pnpbp.2008.04.016 PMID: 18513846.
- 49. Rahimi Z, Kakabaraee K, Garavand A, Rahimi Z. The T Allele of MTHFR c.C677T and Its Synergism with G (Val 158) Allele of COMT c.G472A Polymorphism Are Associated with the Risk of Bipolar I Disorder. Genet Test Mol Biomarkers. 2016; 20(9):510–5. Epub 2016/07/23. https://doi.org/10.1089/gtmb.2016.0061 PMID: 27447284.
- Reif A, Pfuhlmann B, Lesch KP. Homocysteinemia as well as methylenetetrahydrofolate reductase polymorphism are associated with affective psychoses. Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29(7):1162–8. Epub 2005/08/02. https://doi.org/10.1016/j.pnpbp.2005.06.027 PMID: 16055253.
- 51. Cohen-Woods S, Craig I, Gaysina D, Gray J, Gunasinghe C, Craddock N, et al. The Bipolar Association Case-Control Study (BACCS) and meta-analysis: No association with the 5,10-Methylenetetrahydrofolate reductase gene and bipolar disorder. Am J Med Genet B Neuropsychiatr Genet. 2010; 153B (7):1298–304. Epub 2010/06/17. https://doi.org/10.1002/ajmg.b.31101 PMID: 20552676.
- 52. Tan EC, Chong SA, Lim LC, Chan AO, Teo YY, Tan CH, et al. Genetic analysis of the thermolabile methylenetetrahydrofolate reductase variant in schizophrenia and mood disorders. Psychiatr Genet. 2004; 14(4):227–31. Epub 2004/11/27. https://doi.org/10.1097/00041444-200412000-00012 PMID: 15564899.
- 53. Wang LJ, Lee SY, Chen SL, Chang YH, Chen PS, Huang SY, et al. A potential interaction between COMT and MTHFR genetic variants in Han Chinese patients with bipolar II disorder. Sci Rep. 2015; 5:8813. Epub 2015/03/07. https://doi.org/10.1038/srep08813 PMID: 25744938; PubMed Central PMCID: PMC4351536.
- 54. Gao J, Xiu MH, Liu DY, Wei CW, Zhang X. Interactive effect of MTHFR C677T polymorphism and sex on symptoms and cognitive functions in Chinese patients with chronic schizophrenia. Aging (Albany NY). 2020; 12(11):10290–9. Epub 2020/06/05. https://doi.org/10.18632/aging.103248 PMID: 32497019; PubMed Central PMCID: PMC7346048.
- 55. Betcheva ET, Mushiroda T, Takahashi A, Kubo M, Karachanak SK, Zaharieva IT, et al. Case-control association study of 59 candidate genes reveals the DRD2 SNP rs6277 (C957T) as the only susceptibility factor for schizophrenia in the Bulgarian population. J Hum Genet. 2009; 54(2):98–107. Epub 2009/01/23. https://doi.org/10.1038/jhg.2008.14 PMID: 19158809.
- 56. Bouaziz N, Ayedi I, Sidhom O, Kallel A, Rafrafi R, Jomaa R, et al. Plasma homocysteine in schizophrenia: determinants and clinical correlations in Tunisian patients free from antipsychotics. Psychiatry Res. 2010; 179(1):24–9. Epub 2010/05/18. https://doi.org/10.1016/j.psychres.2010.04.008 PMID: 20471108
- 57. Feng LG, Song ZW, Xin F, Hu J. Association of plasma homocysteine and methylenetetrahydrofolate reductase C677T gene variant with schizophrenia: A Chinese Han population-based case-control study. Psychiatry Res. 2009; 168(3):205–8. Epub 2009/07/01. https://doi.org/10.1016/j.psychres.2008.05.009 PMID: 19564051.
- 58. Foroughmand AM, Galehdari H, Pooryasin A, Ajam T, Kazemi-Nezhad SR. Additive effect of MTHFR and GRIN1 genetic polymorphisms on the risk of schizophrenia. Mol Biol Res Commun. 2015; 4(1):33–42. Epub 2015/01/01. PMID: 27843994; PubMed Central PMCID: PMC5019296.
- 59. Garcia-Miss Mdel R, Perez-Mutul J, Lopez-Canul B, Solis-Rodriguez F, Puga-Machado L, Oxte-Cabrera A, et al. Folate, homocysteine, interleukin-6, and tumor necrosis factor alfa levels, but not the methylenetetrahydrofolate reductase C677T polymorphism, are risk factors for schizophrenia. J Psychiatr Res. 2010; 44(7):441–6. Epub 2009/11/27. https://doi.org/10.1016/j.jpsychires.2009.10.011 PMID: 19939410.
- 60. Hei G, Pang L, Chen X, Zhang W, Zhu Q, Lu L, et al. [Association of serum folic acid and homocysteine levels and 5, 10-methylenetetrahydrofolate reductase gene polymorphism with schizophrenia]. Zhonghua Yi Xue Za Zhi. 2014; 94(37):2897–901. Epub 2015/01/01. PMID: 25549641.
- Joober R, Benkelfat C, Lal S, Bloom D, Labelle A, Lalonde P, et al. Association between the methylene-tetrahydrofolate reductase 677C—>T missense mutation and schizophrenia. Mol Psychiatry. 2000; 5 (3):323–6. Epub 2000/07/13. https://doi.org/10.1038/sj.mp.4000724 PMID: 10889537.
- **62.** Kang HJ, Choe BM, Kim SH, Son SR, Lee KM, Kim BG, et al. No Association Between Functional Polymorphisms in COMT and MTHFR and Schizophrenia Risk in Korean Population. Epidemiol Health.

- 2010; 32:e2010011. Epub 2011/01/11. https://doi.org/10.4178/epih/e2010011 PMID: 21217836; PubMed Central PMCID: PMC3013321.
- 63. Kim SG, Song JY, Joo EJ, Jeong SH, Kim SH, Lee KY, et al. No association of functional polymorphisms in methlylenetetrahydrofolate reductase and the risk and minor physical anomalies of schizophrenia in Korean population. J Korean Med Sci. 2011; 26(10):1356–63. Epub 2011/10/25. https://doi.org/10.3346/jkms.2011.26.10.1356 PMID: 22022190; PubMed Central PMCID: PMC3192349.
- 64. Kontis D, Theochari E, Fryssira H, Kleisas S, Sofocleous C, Andreopoulou A, et al. COMT and MTHFR polymorphisms interaction on cognition in schizophrenia: an exploratory study. Neurosci Lett. 2013; 537:17–22. Epub 2013/01/29. https://doi.org/10.1016/j.neulet.2013.01.012 PMID: 23353103.
- 65. Lajin B, Alhaj Sakur A, Michati R, Alachkar A. Association between MTHFR C677T and A1298C, and MTRR A66G polymorphisms and susceptibility to schizophrenia in a Syrian study cohort. Asian journal of psychiatry. 2012; 5(2):144–9. https://doi.org/10.1016/j.ajp.2012.03.002 PMID: 22813657.
- Lee YS, Han DH, Jeon CM, Lyoo IK, Na C, Chae SL, et al. Serum homocysteine, folate level and methylenetetrahydrofolate reductase 677, 1298 gene polymorphism in Korean schizophrenic patients. Neuroreport. 2006; 17(7):743–6. Epub 2006/04/28. https://doi.org/10.1097/01.wnr.0000215777.99473.52 PMID: 16641680.
- 67. Misiak B, Laczmanski L, Sloka NK, Szmida E, Piotrowski P, Loska O, et al. Metabolic dysregulation in first-episode schizophrenia patients with respect to genetic variation in one-carbon metabolism. Psychiatry Res. 2016; 238:60–7. Epub 2016/04/18. https://doi.org/10.1016/j.psychres.2016.01.077 PMID: 27086212.
- 68. Muntjewerff JW, Gellekink H, den Heijer M, Hoogendoorn ML, Kahn RS, Sinke RJ, et al. Polymorphisms in catechol-O-methyltransferase and methylenetetrahydrofolate reductase in relation to the risk of schizophrenia. Eur Neuropsychopharmacol. 2008; 18(2):99–106. Epub 2007/08/25. https://doi.org/10.1016/j.euroneuro.2007.06.005 PMID: 17716874.
- Muntjewerff JW, Ophoff RA, Buizer-Voskamp JE, Strengman E, den Heijer M, Consortium G. Effects of season of birth and a common MTHFR gene variant on the risk of schizophrenia. Eur Neuropsychopharmacol. 2011; 21(4):300–5. Epub 2010/11/26. https://doi.org/10.1016/j.euroneuro.2010.10.001 PMID: 21093223.
- Nishi A, Numata S, Tajima A, Kinoshita M, Kikuchi K, Shimodera S, et al. Meta-analyses of blood homocysteine levels for gender and genetic association studies of the MTHFR C677T polymorphism in schizophrenia. Schizophr Bull. 2014; 40(5):1154–63. Epub 2014/02/19. https://doi.org/10.1093/schbul/sbt154 PMID: 24535549; PubMed Central PMCID: PMC4133669.
- Philibert R, Gunter T, Hollenbeck N, Adams WJ, Bohle P, Packer H, et al. No association of the C677T methylenetetrahydrofolate reductase polymorphism with schizophrenia. Psychiatr Genet. 2006; 16 (5):221–3. Epub 2006/09/14. https://doi.org/10.1097/01.ypg.0000242192.28526.fa PMID: 16969279.
- Roffman JL, Gollub RL, Calhoun VD, Wassink TH, Weiss AP, Ho BC, et al. MTHFR 677C —> T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val—> Met. Proc Natl Acad Sci U S A. 2008; 105(45):17573—8. Epub 2008/11/08. https://doi.org/10.1073/pnas. 0803727105 PMID: 18988738; PubMed Central PMCID: PMC2582272.
- 73. Sazci A, Ergul E, Kucukali I, Kara I, Kaya G. Association of the C677T and A1298C polymorphisms of methylenetetrahydrofolate reductase gene with schizophrenia: association is significant in men but not in women. Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29(7):1113–23. Epub 2005/08/09. https://doi.org/10.1016/j.pnpbp.2005.06.022 PMID: 16084002.
- Sazci A, Ergul E, Guzelhan Y, Kaya G, Kara I. Methylenetetrahydrofolate reductase gene polymorphisms in patients with schizophrenia. Brain Res Mol Brain Res. 2003; 117(1):104–7. Epub 2003/09/23. https://doi.org/10.1016/s0169-328x(03)00327-9 PMID: 14499487.
- 75. Tsutsumi A, Glatt SJ, Kanazawa T, Kawashige S, Uenishi H, Hokyo A, et al. The genetic validation of heterogeneity in schizophrenia. Behav Brain Funct. 2011; 7:43. Epub 2011/10/11. https://doi.org/10.1186/1744-9081-7-43 PMID: 21981786; PubMed Central PMCID: PMC3198897.
- 76. Zhilyaeva TV, Sergeeva AV, Blagonravova AS, Kasimova LN, Kuznetsov KV, Golovanova VI, et al. Association study of methylenetetrahydrofolate reductase genetic polymorphism 677C>T with schizophrenia in hospitalized patients in population of European Russia. Asian J Psychiatr. 2018; 32:29–33. Epub 2017/12/05. https://doi.org/10.1016/j.ajp.2017.11.027 PMID: 29202425.
- 77. Sadeghiyeh T, Dastgheib SA, Lookzadeh MH, Noori-Shadkam M, Akbarian-Bafghi MJ, Zare-Shehneh M, et al. Association of MTHFR 677C > T and 1298A > C polymorphisms with susceptibility to attention deficit and hyperactivity disorder. Fetal Pediatr Pathol. 2019:1–8. Epub 2019/10/02. https://doi.org/10.1080/15513815.2019.1666330 PMID: 31573368.
- Little CW, Hart SA, Schatschneider C, Taylor J. Examining Associations Among ADHD, Homework Behavior, and Reading Comprehension: A Twin Study. J Learn Disabil. 2016; 49(4):410–23. Epub

- 2014/10/29. https://doi.org/10.1177/0022219414555715 PMID: 25349092; PubMed Central PMCID: PMC4411209.
- Nikolas MA, Klump KL, Burt SA. Parental involvement moderates etiological influences on attention deficit hyperactivity disorder behaviors in child twins. Child Dev. 2015; 86(1):224–40. Epub 2014/09/30. https://doi.org/10.1111/cdev.12296 PMID: 25263271; PubMed Central PMCID: PMC4331204.
- Covey LS, Hu MC, Weissman J, Croghan I, Adler L, Winhusen T. Divergence by ADHD subtype in smoking cessation response to OROS-methylphenidate. Nicotine Tob Res. 2011; 13(10):1003–8. Epub 2011/06/10. https://doi.org/10.1093/ntr/ntr087 PMID: 21652734; PubMed Central PMCID: PMC3179666.
- Zintzaras E. C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: a meta-analysis of genetic association studies. Psychiatr Genet. 2006; 16(3):105–15. Epub 2006/05/13. https://doi.org/10.1097/01.ypg.0000199444.77291.e2 PMID: 16691128.
- Rai V. Evaluation of methylenetetrahydrofolate reductase gene variant (C677T) as risk factor for bipolar disorder. Cell Mol Biol (Noisy-le-grand). 2011; 57 Suppl:OL1558–66. Epub 2011/10/14. PMID: 21955385.
- 83. Hu CY, Qian ZZ, Gong FF, Lu SS, Feng F, Wu YL, et al. Methylenetetrahydrofolate reductase (MTHFR) polymorphism susceptibility to schizophrenia and bipolar disorder: an updated meta-analysis. J Neural Transm (Vienna). 2015; 122(2):307–20. Epub 2014/06/19. https://doi.org/10.1007/s00702-014-1261-8 PMID: 24938371.
- 84. Caliskan M, Orenay-Boyacioglu S, Dondu A. Roles of 5,10-methylenetetrahydrofolate reductase C677T and A1298C polymorphisms in early- and late-onset obsessive-compulsive disorder. Indian J Psychiatry. 2019; 61(2):161–6. Epub 2019/04/18. https://doi.org/10.4103/psychiatry. IndianJPsychiatry. 370 18 PMID: 30992611; PubMed Central PMCID: PMC6425796.
- 85. Amare AT, Schubert KO, Klingler-Hoffmann M, Cohen-Woods S, Baune BT. The genetic overlap between mood disorders and cardiometabolic diseases: a systematic review of genome wide and candidate gene studies. Translational psychiatry. 2017; 7(1):e1007. https://doi.org/10.1038/tp.2016.261 PMID: 28117839; PubMed Central PMCID: PMC5545727.
- 86. Pujol N, Mane A, Berge D, Mezquida G, Amoretti S, Perez L, et al. Influence of BDNF and MTHFR polymorphisms on hippocampal volume in first-episode psychosis. Schizophr Res. 2020; 223:345–52. Epub 2020/09/30. https://doi.org/10.1016/j.schres.2020.08.002 PMID: 32988741.
- Roffman JL, Weiss AP, Purcell S, Caffalette CA, Freudenreich O, Henderson DC, et al. Contribution of methylenetetrahydrofolate reductase (MTHFR) polymorphisms to negative symptoms in schizophrenia. Biological psychiatry. 2008; 63(1):42–8. https://doi.org/10.1016/j.biopsych.2006.12.017 PMID: 17543893.
- 88. Wan L, Wei J. Early-Onset Schizophrenia: A Special Phenotype of the Disease Characterized by Increased MTHFR Polymorphisms and Aggravating Symptoms. Neuropsychiatr Dis Treat. 2021; 17:2511–25. Epub 2021/08/12. https://doi.org/10.2147/NDT.S320680 PMID: 34376980; PubMed Central PMCID: PMC8349230.
- 89. Chen CH, Chen PY, Chen CY, Chiu CC, Lu ML, Huang MC, et al. Associations of Genetic Variants of Methylenetetrahydrofolate Reductase and Serum Folate Levels with Metabolic Parameters in Patients with Schizophrenia. Int J Environ Res Public Health. 2021; 18(21). Epub 2021/11/14. https://doi.org/10.3390/ijerph182111333 PMID: 34769853; PubMed Central PMCID: PMC8583146.
- 90. Peitl V, Stefanovic M, Orlovic I, Culej J, Rendulic A, Matesic K, et al. Long acting aripiprazole influences cognitive functions in recent onset schizophrenia. Psychopharmacology (Berl). 2021; 238(6):1563–73. Epub 2021/02/14. https://doi.org/10.1007/s00213-021-05788-w PMID: 33580813.
- 91. van Winkel R, Rutten BP, Peerbooms O, Peuskens J, van Os J, De Hert M. MTHFR and risk of metabolic syndrome in patients with schizophrenia. Schizophr Res. 2010; 121(1–3):193–8. Epub 2010/06/16. https://doi.org/10.1016/j.schres.2010.05.030 PMID: 20547447.
- 92. Roffeei SN, Reynolds GP, Zainal NZ, Said MA, Hatim A, Aida SA, et al. Association of ADRA2A and MTHFR gene polymorphisms with weight loss following antipsychotic switching to aripiprazole or ziprasidone. Hum Psychopharmacol. 2014; 29(1):38–45. Epub 2014/01/16. https://doi.org/10.1002/hup. 2366 PMID: 24424705.
- Zhong S, Xu J, Li W, Chen Z, Ma T, Zhao J. Methionine synthase A2756G polymorphism and breast cancer risk: an up-to-date meta-analysis. Gene. 2013; 527(2):510–5. Epub 2013/07/13. https://doi.org/ 10.1016/j.gene.2013.06.054 PMID: 23845785.
- 94. Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Transl Psychiatry. 2018; 8(1):242. Epub 2018/11/07. https://doi.org/10.1038/s41398-018-0276-6 PMID: 30397195; PubMed Central PMCID: PMC6218441.