
ORIGINAL PAPER

Exploring a coarse-grained distributive strategy
for finite-difference Poisson–Boltzmann calculations

Meng-Juei Hsieh & Ray Luo

Received: 14 September 2010 /Accepted: 14 November 2010 /Published online: 3 December 2010
The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract We have implemented and evaluated a coarse-
grained distributive method for finite-difference Poisson–
Boltzmann (FDPB) calculations of large biomolecular systems.
This method is based on the electrostatic focusing principle of
decomposing a large fine-grid FDPB calculation into multiple
independent FDPB calculations, each of which focuses on only
a small and a specific portion (block) of the large fine grid. We
first analyzed the impact of the focusing approximation upon
the accuracy of the numerical reaction field energies and found
that a reasonable relative accuracy of 10−3 can be achieved
when the buffering space is set to be 16 grid points and the
block dimension is set to be at least (1/6)3 of the fine-grid
dimension, as in the one-block focusing method. The impact
upon efficiency of the use of buffering space to maintain
enough accuracy was also studied. It was found that an
“optimal” multi-block dimension exists for a given computer
hardware setup, and this dimension is more or less indepen-
dent of the solute geometries. A parallel version of thedis-
tributive focusing method was also implemented. Given the
proper settings, the distributive method was able to achieve
respectable parallel efficiency with tested biomolecular sys-
tems on a loosely connected computer cluster.

Keywords Finite difference . Poisson–Boltzmann .

Electrostatic focusing . Distributive computing .

Domain decomposition

Introduction

The Poisson–Boltzmann theory has become well estab-
lished for the modeling of electrostatic solvation interac-
tions in biomolecules [1–14]. In this approach, a molecular
solute is approximated as a continuous cavity with a low
dielectric constant, for example with values in the range of
1–4. The solvent is approximated as a continuous medium
with a different dielectric constant solvent, for example
with a value of ~80 for water. The cavity contains point
charges at atomic centers obtained from a molecular
mechanics representation of the solute. When mobile ions
are present, the ion distribution is also modeled in a mean
field fashion (assumed to obey the Boltzmann distribution).
With such a continuum approximation of the electrostatic
interactions, the electrostatic potential � is characterized by
the Poisson–Boltzmann equation (PBE):

r � (rf ¼ �4pr0 � 4pl
X

i

ezici exp �ezif=kBTð Þ; ð1Þ

where (is the dielectric constant, ρ0 is the solute charge
density, l is the Stern layer masking function, ezi is the
charge of ion type i, ci is the bulk number density of ion
type i, kB is the Boltzmann constant, and T is the absolute
temperature. If the electrostatic field is weak and ionic
strength is low, the PBE can be linearized as [15]

r � (rf ¼ �4pr0 þ lk2f: ð2Þ
Here k2 ¼ 4pe2

P
i
z2i ci=kBT . Since the early 1980s,

considerable efforts have been devoted to solving the PBE
numerically for biomolecular applications. Many software
packages that can solve either the linear or the nonlinear
PBE have been released, such as Delphi [16–18], UHBD
[19–22], MEAD [23, 24], the CHARMM PBEQ module

M.-J. Hsieh :R. Luo
Department of Molecular Biology and Biochemistry,
University of California,
Irvine, CA 92697-3900, USA

R. Luo (*)
Department of Biomedical Engineering, University of California,
Irvine, CA 92697-3900, USA
e-mail: rluo@uci.edu

J Mol Model (2011) 17:1985–1996
DOI 10.1007/s00894-010-0904-4

[25, 26], the Jaguar PB module [27], APBS [28, 29], and
the Amber PBSA module [30–35].

Typical numerical methods involve the discretization of
the partial differential equation (PDE) into a system of
linear or nonlinear equations and then the solution of the
linear or nonlinear system with an iterative approach. The
most commonly used discretization approach is the finite-
difference method [16–19, 21, 24, 26, 30, 36–38]. In this
method, the physical properties of the solution, such as
atomic charges and dielectric constants, are mapped onto
rectangular grids, and a discrete approximation to the
governing PDE is produced. The second approach is the
finite-element method [27–29, 39–41], which approximates
the potential with the superposition of a set of basis
functions. A linear or nonlinear system for the coefficients
produced by the weak formulation has to be solved. The
third approach is the boundary-element method [42–55].
One advantage of applying the boundary element approach
lies in the fact that the dimension of the linear or nonlinear
system is much smaller than that from the finite-difference
scheme due to the different dimensionality (3-D vs. 2-D).
However, the corresponding system is much denser.

In this study, we focus our effort on the sparse linear
systems from the finite-difference discretization of the
linear PBE. These methods are often termed finite-
difference Poisson–Boltzmann (FDPB) methods. The
FDPB method converts the PBE to a system of linear
equations Ax = b, where the electrostatic potential (x) on
every grid point is unknown, the charge distribution (b) on
the grid point is the source, and the dielectric constant and
salt-related terms are wrapped into the coefficient matrix A,
which is a seven-banded symmetric matrix [36]. Its
numerical solvers can be categorized into direct methods
and iterative methods. Due to the large number of
unknowns in biomolecular applications, it is not very
practical to use direct methods. Therefore, most solvers
are iterative in nature for biomolecular applications.

The iterative methods can be loosely grouped into two
types: stationary methods and Krylov subspace methods.
The partition is not very strict because many stationary
methods can be used during preconditioning for the Krylov
subspace methods [56]. To implement stationary methods
such as Jacobi, successive over-relaxation, and Gauss–
Seidel for distributive computing environments, the
unknowns are usually reordered with multi-coloring [57]
or multi-splitting approaches [58].

Possible strategies for implementing Krylov subspace
methods in distributive computing environments are do-
main decompositions and distributive preconditioners. The
principle of domain decompositions is to divide the
problem domain into smaller subdomains, solve the sub-
domains independently, and merge the subdomain solutions
in a self-consistent manner. We can decompose a problem

domain into either overlapping or nonoverlapping subdo-
mains with the domain decomposition methods for the
linear systems from FDPB. An overlapping domain
decomposition method normally takes the form of the
multiplicative Schwarz method; for nonoverlapping domain
decomposition, the Schur method is usually used [59].

Most prior efforts to adapt Krylov subspace methods to
distributive computing environments focus on the precon-
ditioning step [60]. These efforts aim at either extracting the
data/instruction independence from a serial method or
modifying or approximating a serial method to increase
the independence [61]. Take the widely used incomplete
factorization methods [62] for example. We cannot simply
convert the algorithm into a distributive method because of
the data dependence in the forward and backward sub-
stitutions [61]. Modifying or approximating the methods
normally leads to slower convergence because there is a
trade-off between the data locality needed for parallelism
and the data global dependence needed for fast conver-
gence. Therefore, a reduction in CPU time is not always
guaranteed in distributive computing environments [63].
Three basic strategies for incomplete factorization methods
such as incomplete Cholesky conjugate gradient (ICCG)
are: reordering, series expansion, and domain decomposi-
tion [61]. Some common practices for reordering include
hyperplane ordering (to change the order of computation)
and multi-color ordering (to reorder the unknowns). The
hyperplane ordering method can be implemented efficiently
for good parallel performance [61, 64–67]. Multi-coloring
methods like red–black ordering were proven to result in
slower convergence [68]. However, the use of more colors
was reported to lead to a good balance between conver-
gence and data/instruction independence [69, 70]. More
recent studies of ordering strategies show that a “blocked”
red–black ordering method can reduce the cost of synchro-
nization or communication [71]. Series expansions were
also attempted to approximate the preconditioners with
truncated expansions that can be evaluated more efficiently
without data dependence. The idea is to split and truncate
the expansions but keep enough terms to ensure that the
convergence rate is not degraded too much. The truncated
Neumann expansion [72] and other polynomial expansions
[73] are often used to approximate the preconditioners.
Interestingly, the domain-decomposition idea can also be
used to implement preconditioning without data depen-
dence. Aside from decomposing the grid then applying
independent incomplete factorization for distributive pro-
cessing, preconditioners can also be domain-decomposed
algebraically [74–76].

Other efforts to solve linear problems include the use of
a two- (or more) level grid-based solution such as multigrid
methods [77, 78]. Multigrid methods usually consist of the
following steps: (1) performing some stages of a basic

1986 J Mol Model (2011) 17:1985–1996

method (i.e., one of the iterative solvers) to smooth out the
error; (2) restricting the current state of the problem to a
subset of coarse grids and solving the resulting smaller
problem; (3) interpolating the coarse-grid solution back to
the original grid and performing a number of stages of the
basic method. These steps are applied recursively to
achieve convergence [79]. Many aspects of multigrid
algorithms are readily implemented in multiple threads for
distributive environments. Indeed, multigrid methods have
become popular for solving linear systems arising from
PDEs [28, 29, 80, 81].

A seemingly related method is electrostatic focusing in
FDPB. The focusing technique is a series of finite-
difference runs that are performed with successively finer
grids. Each run has boundary conditions that are calculated
from the potential map of its predecessor [36]. The focusing
technique ensures reasonable accuracy on the finest grid
without a huge computational overhead, because only a
certain part of the problem domain is solved on the finest
grid. Long-range interactions with the rest of the domain
outside the focusing region can be accurately represented
by the coarser-grid calculations. However, there has been
no theoretical justification of focusing when it is applied in
the finite-difference method [28], though the error due to
the approximation is often extremely small under certain
conditions.

A limitation of the electrostatic focusing calculations
is that the memory usage of the finest grid for the region
of interest may still be unmanageably large in FDPB
calculations of large biomolecular systems. It has been
reported that the fine grids in the focusing technique can
be divided into multiple smaller blocks for distributive
computation [82]. This idea, termed “multi-block” focus-
ing below, is similar to the domain decomposition
concept, but the boundaries of the subdomains are neither
conjugated nor communicated during computation. It is
thus an approximated method. Nevertheless, the method
may be used to lower the memory usage of each focusing
run and is potentially friendly to distributive computing
environments.

In this study, we explored the distributive multi-block
focusing technique in order to analyze what it takes to
achieve an acceptable accuracy and good performance in
numerical FDPB solutions of large biomolecular systems.
A highly scalable parallel version of the method is also
implemented and incorporated into the Amber/PBSA
program [30–35]. In the following, we summarize our
algorithm design and implementation and evaluate its
performance using several challenging test cases. We
conclude with a brief discussion of potentially more
accurate numerical algorithms for future development in
the field of distributive FDPB calculations of large
biomolecular systems.

Methods

Finite-difference Poisson–Boltzmann method

In our implementation of the FDPB method, a uniform
cubic grid is used to discretize the linear PBE [Eq. 2]; i.e.,
the spacing between neighboring grid points is uniformly
set to be h. The grid points are labeled (i, j, k), i=1,....xm,
j=1,....ym, and k=1,....zm, where xm, ym and zm are the
numbers of grid points along the x, y and z axes,
respectively. Electrostatic potential (φ) and atomic charge
(q) are mapped onto the grid points. The dielectric constant
is defined at the midpoint between any two neighboring
grid points: εi(i, j, k) denotes the dielectric constant between
grids (i, j, k) and (i+1, j, k), and εj(i, j, k) and εk(i, j, k) are
used similarly. Finally, κ2 is used to absorb all related
coefficients in the Boltzmann term. The discretized linear
PBE can then be written as

�h�2"iði� 1; j; kÞ½fði� 1; j; kÞ � fði; j; kÞ�
�h�2"iði; j; kÞ ½fðiþ 1; j; kÞ � fði; j; kÞ�
�h�2"jði; j� 1; kÞ½fði; j� 1; kÞ � fði; j; kÞ�
�h�2"jði; j; kÞ ½fði; jþ 1; kÞ � fði; j; kÞ�
�h�2"kði; j; k � 1Þ½fði; j; k � 1Þ � fði; j; kÞ�
�h�2"kði; j; kÞ ½fði; j; k þ 1Þ � fði; j; kÞ�
þ k2 fði; j; kÞ ¼ h�3qði; j; kÞ;

ð3Þ
which is a linear system of xmymzm equations, usually
denoted Ax = b (with the electrostatic potential as the
unknown x, the charge distribution as the source b, and the
dielectric constant and salt-related terms wrapped into a
seven-banded symmetric coefficient matrix A).

One-block versus multi-block electrostatic focusing

As mentioned in the “Introduction,” electrostatic focusing
can be used to obtain an accurate solution in a specific
region of a problem domain. For the sake of simplicity of
presentation, we utilized only a two-level focusing con-
struct in this study; i.e., only two grids (coarse and fine)
were used in all test calculations discussed below. The first
step in the electrostatic focusing method is a coarse-grid
FDPB calculation spanning the entire problem domain. The
problem domain is often set to be large enough to secure a
good free-boundary condition. The coarse-grid solution of
the potential is then used to define the boundary condition
(i.e., the boundary potential) for the fine grid covering only
the region of interest. Here the boundary potential is
computed with the trilinear weighted interpolation method
for a good balance of accuracy and efficiency [31].

Again, as we mentioned in the “Introduction,” there
often is memory limitation in electrostatic focusing calcu-

J Mol Model (2011) 17:1985–1996 1987

lations. For example, an electrostatic focusing calculation
for the complete 70S ribosome requires ~16.6 GB memory
to achieve a resolution of 0.5Å at the fine-grid level. To
overcome this limitation, the fine-grid region can be
divided into multiple subdomains or blocks to be solved
independently, via the so-called divide-and-conquer strate-
gy. Subsequent multiple blocks can be made small enough
to be processed sequentially on a personal workstation or in
a distributive manner on networked workstations or
computing nodes.

In the following we term the extended electrostatic
focusing method the “multi-block” electrostatic focusing
method, and the classical electrostatic focusing method the
“one-block” electrostatic focusing method. One noticeable
feature of the multi-block electrostatic focusing method is that
the adjacent blocks overlap (see Fig. 1) in order to maintain
good overall calculation accuracy. The overlapping region is
termed the buffering space in this study. Its influence upon
the calculation accuracy is analyzed in detail below.

In the current design (Fig. 1), every focusing FDPB
calculation depends on the solution of the coarse-grid
FDPB calculation. There are two choices with how to
proceed in the coarse-grid FDPB calculation if the focusing
blocks are distributed to different computing threads: (1)
only the master thread is used to solve the coarse-grid
FDPB, and the solution is communicated to slave threads
before the fine-grid FDPB starts; or (2) the coarse-grid
FDPB is solved on all threads before starting the assigned
fine-grid FDPB calculations, so the coarse-grid solution is
kept local on each thread. Apparently the second strategy is
slightly better because it reduces the need for communica-

tion among all threads. Of course, the molecular data are
still needed on the slave threads before the coarse-grid
FDPB calculation, and the final electrostatic energies are
communicated back to the master thread after finishing the
assigned fine-grid FDPB calculations. The distributive
multi-block focusing method can then be summarized as
the following pseudo procedure:

1. (a) Discretize the problem domain with the coarse
grid. Discretize the region of interest with the
fine grid.

(b) Decompose the fine grid into blocks.
(c) Distribute blocks to computing threads if multiple

threads are deployed.
2. Solve the linear system for the coarse grid.
3. Solve the linear systems for the assigned fine-grid

blocks in turn.
4. Collect electrostatic energies from blocks.

Since the multi-block focusing method is only an
approximation to the classical one-block focusing method,
it is important to analyze the influence of the approximation
on the calculation accuracy while optimizing the algorithm
for efficiency. We checked three key data structures in the
FDPB algorithm to gain a better understanding of how the
approximation may influence accuracy as follows. (1) The
coefficient matrix (i.e., the dielectric constant and salt
term). It is fairly straightforward to enforce exact numerical
consistency between the matrices of the multi-block
focusing method and the one-block focusing method if the
same grids are used. (2) The constant term (i.e., the atomic
charge term). It is also not difficult to enforce numerical
consistency between the atomic charge terms in the two
focusing methods if the same grids are used. (3) The
boundary condition for the fine-grid iteration. This is where
the inconsistency may be located; i.e., the boundary grid
points are deeply buried inside the solute in the multi-block
focusing method, while the boundary grid points are
exposed in solvent in the one-block focusing method. Since
the boundary potentials are assigned from the coarse-grid
solution, the quality of the boundary potentials on the fine
grid is clearly different from that in the one-block focusing
method, where the boundary grid points are well away from
the heterogeneous dielectrics and atomic charges near the
solute. In the one-block focusing method, it is a very good
approximation to interpolate fine-grid boundary potentials
from the coarse-grid potentials. However, in the multi-block
focusing method, the distortion might be noticeable when
the boundary grid points are buried well inside the solute.
Further analysis is certainly necessary before the method is
recommended for wide applications.

This is why the buffering space is required in each block
to maintain a reasonable accuracy level in the multi-block
focusing method. Note that the fine-grid potentials in the

Fig. 1 Four multi-block focusing subdomains (blocks) on a two-
dimensional grid. The coarse grid is colored black. The fine grid is
covered by four overlapping blocks in different colors. The dimension
of each fine-grid block is 7×7. The buffering space is 2 grid points
thick on all sides of each block. Therefore the actual computed grid
number for each block in this example is 11×11

1988 J Mol Model (2011) 17:1985–1996

buffering space are neither passed to other computing
threads nor used for later energy calculations. Thus, any
large error from the distortion of boundary potentials when
atomic charges and heterogeneous dielectrics are too close
to the edge of the block can be alleviated to a certain
degree. Of course, the use of buffering space leads to an
extra computing cost in the multi-block focusing method.
Thus, on the one hand, the use of smaller fine grid blocks
accelerates each FDPB calculation; on the other hand, the
use of buffering spaces slows down the overall calculation.
In general, there is an optimal block partition scheme that
achieves the best efficiency, as shown below in the “Results
and discussion.”

Distributive implementation of the multi-block electrostatic
focusing method

When implementing the multi-block focusing method as a
distributive program suitable for multi-thread computing
environments, we also paid attention to computing resource
usage, particularly in relation to memory management and
network communication management. As we mentioned in
the “Introduction,” one key benefit of the multi-block
focusing method is that it reduces the memory needed. A
distributive algorithm like the multi-block focusing method
undoubtedly divides a large system into smaller and
manageable pieces. However, strict memory management
is still necessary to achieve the desired benefit (i.e.,
allocating only the memory needed for the current
calculation). Similarly, communication management is also
strictly enforced so that only the smallest amount of data
required for multi-thread implementation is broadcast. We
reduced the communication needs of the distributive multi-
block focusing method to several 1-to-N broadcasts of
working arrays for initialization, and one N-to-1 broadcast
for collecting electrostatic energies in the current
implementation.

MICCG solver

The basic iterative solver used in the multi-block focusing
method is the MICCG method with the following pseudo
program:

where M is the preconditioner matrix, r and p are auxiliary
vectors, and<x, y>represents the inner product of x and y.
The preconditioner matrix M in MICCG can be symboli-
cally written in a factorized form as [83]:

M�1 ¼ ðET þ CT þ BT þ DÞD�1 ðDþ Bþ Cþ EÞ; ð4Þ
assuming a 7-band matrix of A as

A ¼ETþCTþBTþdiagðAÞ þ Bþ Cþ E: ð5Þ
Here B and BT are the bands next to the diag(A), C and

CT are xm away from the diag(A), and E and ET are xmym
away from diag(A). In MICCG, the elements of D are
computed from a recursive relation as

Dijk ¼ diag Að Þijk � bi�1jk bi�1jk þ aci�1jk þ aei�1jk

� �
=Di�1jk

�cij�1k abij�1k þ cij�1k þ aeij�1k

� �
=Dij�1k

�eijk�1 abijk�1 þ acijk�1 þ eijk�1

� �
=Dijk�1;

ð6Þ
where α was suggested to be 0.95 in the original MICCG
implementation [64], while we adopted a value of −0.3 for
biomolecules in this study [30].

Other computation details

Four biomolecular systems with nontrivial sizes were used
as test cases in this study. These are: the 5S ribosomal RNA
of the 70S ribosome (chain B of PDB id: 2J01, denoted
rRNA), the p53 DNA binding domain tetramer in complex
with DNA (PDB id: 2AC0, denoted p53 DBD), the
GROEL heptamer (PDB id: 1SX3, denoted GROEL), and
the complete 70S ribosome (PDB id: 2J01+2J02, denoted
the 70S ribosome). For the 70S ribosome, the missing
residues in the terminal regions were ignored and the gaps
within protein subunits were rebuilt with MODELLER
[84]. The all-atom models of these systems were built
according to the Amber force field, with tRNA and metal
ion parameters obtained from the Amber contributed
parameters database (http://www.pharmacy.manchester.ac.
uk/bryce/amber). All models were subsequently energy-
minimized with the Amber molecular dynamics program
SANDER. More detailed information on the tested biomo-
lecular systems is listed in Table 1.

In this study, the dielectric constants of the internal and
external regions were set to 1 and 80, respectively. The
ionic strength was set to be 200 mM for rRNA and the 70S
ribosome, and 150 mM for p53 DBD and GROEL. The
coarse-grid spacing was 2Å and the fine-grid spacing was
0.5Å, respectively, if not otherwise specified. The conver-
gence criterion for finite-difference iteration was set to
10−9, and a two-level focusing technique was used for all
the calculations, as described above. The boundary poten-
tials for the coarse-grid FDPB calculation were set to zero.

0

0

0

0

00

0

i i

i

i

i

i

i i

i i

i

i i

i

i

i

i+1

i+1 i+1

i+1

i+1

i+1

i+1

i+1

J Mol Model (2011) 17:1985–1996 1989

http://www.pharmacy.manchester.ac.uk/bryce/amber
http://www.pharmacy.manchester.ac.uk/bryce/amber

This is only a reasonable approximation for the free space
boundary condition when the finite-difference grid bound-
ary is far away from the solute. Thus, the dimension of the
coarse grids was set to be at least twice that of the solute to
secure a good boundary condition. The fine-grid boundary
potentials were interpolated using the coarse-grid poten-
tials. All other computational details can be found in our
previous publications on the FDPB method [30–35].

The electrostatic energy was computed as

ΔGelec ¼ 1

2

X

j

qjfj; ð7Þ

where j runs over all charged atoms. The electrostatic
potential φj at atomic charge qj was computed by solving
the linear PBE as in Eq. 2. The reaction field energy was
computed as the difference between the electrostatic energy
in the solvent dielectric and the electrostatic energy in the
uniform solute dielectric. All reported energy values were
averaged from the 64 individual computations with random
grid origins. The relative accuracies were measured as
relative deviations between the mean energy from multi-
block focusing FDPB calculations and the mean energy from
nonfocusing FDPB calculations. The PBSA module in the
Amber 9 package [30–35] was used to implement the multi-
block focusing method. LAM/MPI (http://www.lam-mpi.
org) was used for parallel implementation. All testing runs
were conducted on an Intel Pentium 4 cluster or an Intel
Xeon cluster. All data communications were routed with a
private gigabit ethernet network, which is separated from the
administrative network.

Results and discussion

To assess the accuracy and performance of the distributive
multi-block focusing method for FDPB, we first analyzed
several factors that are likely to impact the agreement
between the multi-block focusing and nonfocusing FDPB
calculations. This was followed by our analysis of the
efficiency of the distributive method on both single-thread
and multi-thread platforms.

Accuracy considerations

To achieve excellent overall numerical quality in the total
electrostatic energy with the focusing method, the grid
boundary should be set far from the surface of the solute.
Otherwise, the potentials on atoms near the grid boundary
are often distorted, leading to inaccurate total electrostatic
energy. However, the focusing method is also used where
only a portion of the solute (i.e., an enzyme active site) is of
interest. In such applications, the focusing grid (i.e., the fine
grid used here) is defined well within the solute interior.
Apparently, for this strategy to be reliable, the focusing grid
should be set large enough to cover the region of interest
with enough buffering space so that all atoms of interest are
located well within the boundary of the focusing grid.

The same consideration also applies to the multi-block
focusing calculations, since the block boundaries are well
inside the solute to partition the domain of interest into
same-sized blocks. Due to this limitation, a thicker
buffering space should reduce the numerical inconsistency
between the multi-block focusing and nonfocusing FDPB
calculations. In addition, a multi-block focusing calculation
with larger blocks generally agrees better with the non-
focusing calculation, since there are few boundaries when
larger blocks are used. In the following, two selected
systems (rRNA and GROEL) were used to assess the
influence of both buffering space and block dimension
upon the accuracy of the new method.

Figure 2 shows that smaller overall errors can be
achieved given a thicker buffering space and/or larger

Table 1 Details for the tested systems. The solute dimensions were
estimated by determining the smallest rectangular bounding box that
the solute could possibly fit in

Systems Number of atoms Solute dimensions (Å3)

rRNA 3846 86×76×77

p53 DBD 13813 86×84×115

GROEL 54922 148×149×80

70S ribosome 244687 220×265×258

Fig. 2 Relative deviation in reaction field energy with respect to
buffering spaces and block sizes. Relative deviation is computed as
the difference between the multi-block focusing FDPB calculation and
the nonfocusing FDPB computation, and is averaged over 64 runs
with random grid offsets. The block size (per dimension) is shown as a
fraction of the fine grid, as in the classical one-block focusing
calculation

1990 J Mol Model (2011) 17:1985–1996

http://www.lam-mpi.org
http://www.lam-mpi.org

blocks, consistent with our initial estimation above.
Specifically, a buffering space of 16 grid points consis-
tently yields good accuracy for all tested block dimen-
sions. Overall, a reasonable relative accuracy of 10−3 can
be achieved when the buffering space is set to be 16 grid
points and the block dimension is set to be at least (1/6)3

of the fine grid in the classical one-block focusing
method. This accuracy level is quite acceptable consider-
ing that the FDPB convergence error is usually around
10−3 at the grid spacing of 0.5Å often used in biomolec-
ular applications [Wang J, Luo R (2010) Reducing grid-
dependence in finite-difference Poisson–Boltzmann cal-
culations, submitted].

Algorithm efficiency on serial platforms

Apparently there is an extra cost just to maintain enough
accuracy by using buffering space. Thus, one issue is how
to minimize the extra cost while maintaining enough
accuracy. In general, multi-block focusing calculations with
larger blocks waste less time due to the existence of fewer
block boundaries. Of course, the larger blocks have to fit in
the physical memory without accessing virtual memory for
the calculation to be efficient at all. Even if the larger
blocks do fit into the physical memory, in general it takes
more time to compute the resulted linear systems due to the
larger memory requirement of the FDPB solvers. That is
why an “optimal” multi-block size may exist for a given
computer hardware setup, and the size is more or less
independent of the actual solute or grid geometry, as
illustrated in Fig. 3, which shows that the optimal block
dimension is ~733 for the tested hardware, so this is used in
the further testing of the method below. More interestingly,
multi-block focusing calculations can be even faster than
the single-block focusing calculations on a single CPU
when the “optimal” multi-block size is used. For example,
the multi-block focusing calculations with the optimal
block size in Fig. 3 are about 20~30% faster than the
single-block focusing calculations for both geometry
settings.

Algorithm efficiency on multi-thread platforms

Due to the distributive nature of the multi-block
focusing method, a multi-thread version of the algorithm
can be implemented in a straightforward fashion to
distribute the fine-grid blocks over multiple computing
threads. In this implementation, each thread has all of
the necessary data to process the assigned blocks once
the coarse-grid FDPB starts (i.e., each thread processes
the coarse-grid FDPB redundantly. Thus, there is no
cross-thread communication once the coarse-grid FDPB
computation starts. Note that this is more beneficial than

processing the coarse-grid FDPB computation on the
master thread and communicating all data to the slave
threads. Given such a setting, there still are other issues
that may impact the performance of the multi-block
focusing method, as discussed below.

Nonparallel overhead

The multi-block focusing method is meant to divide an
unmanageably large system into manageable smaller pieces
that can be handled by the computer hardware at hand.
However, there is nondistributive overhead; i.e., the coarse-
grid FDPB that is used to assign boundary grid potential for
fine-grid FDPB calculations. Apparently, the computational
cost of the coarse-grid FDPB calculation should be less
than or at least comparable to individual fine-grid FDPB
calculations. Otherwise the coarse-grid FDPB calculation
would become the performance bottleneck. This scenario
can easily be avoided by using a very coarse FDPB grid.
For example, the default coarse grid is eight times as coarse
as the fine FDPB grid in the PBSA program. In addition, it
is also possible to use more than two levels of FDPB grids
if a finer-coarse FDPB grid is desired, a common practice
in focusing calculations.

Cache size issue

Another issue of importance to parallel performance is
the cache size, because the FDPB runs are memory-

Fig. 3 Fine-grid performance defined as number of atoms processed
per second versus block size in the 70S ribosome for a distributive
multi-block focusing computation. Two different geometry settings
were used to divide the fine grid into multiple blocks in order to
analyze the existence of an optimal block size for each grid geometry.
It is possible to observe an optimal block size that yields maximum
efficiency in both tested geometry settings

J Mol Model (2011) 17:1985–1996 1991

intensive jobs. It is rare that a single FDPB run can fit
in the cache memory of a typical machine. This may
reduce efficiency on SMP parallel platforms due to the
cache memory competition among different threads. We
compared the performance of a four-thread calculation
on two platforms: one node with two dual-core Intel
Xeon processors, and four nodes with identical process-
ors but with only one thread on each node. The p53
DBD and 70S ribosome were used to measure the fine-
grid speedups on the two different communication
platforms. The physical memory size was set to be
larger than the size of each thread, so that no virtual
memory was utilized. Table 2 shows that the parallel
computation performance over a network of multiple
nodes is much better than that over an SMP node of
multiple processors, indicating the existence of cache
competition.

To confirm the above finding, we analyzed the compu-
tational times of several multi-block focusing runs with
much smaller grid dimensions on the same hardware.
Indeed, if we set the solver memory usage of each thread
to less than 2 MB (i.e., half of the cache size per processor),
it is possible to observe a noticeable speedup for the SMP
parallel run (Table 3). Of course, parallel efficiency
deterioration already starts to occur at ~1.8 MB due to
other components that may not be 100% swapped out of the
cache memory (Table 3).

Of course, larger cache memory does alleviate the
limitation of an SMP parallel setup, but it is unlikely to
eliminate the limitation because of the large memory usages
for typical biomolecular applications. For example, the
memory usage is ~146 MB for the block dimension (733)
used in our current implementation. Thus, our recommen-
dation is to avoid running more threads than the number of
physical processors on the same nodes if the cache memory
is shared between the different cores on the same physical
processor.

Load balance

The fine-grid FDPB performance also depends on how the
computational load is distributed over threads. One reason
for this is that the number of blocks is not always divisible
by the number of threads: some threads are assigned more
blocks than others. The second reason is related to the
heterogeneity of fine-grid blocks, as shown in Fig. 4, which
shows that the distribution of per-block computation times
is highly scattered for the two tested systems. Indeed, the
variation in computation times can be up to 200%.

Thus, a simple sequential partitioning of blocks does not
guarantee a balanced load for good performance. To
improve load balancing, a randomized partition was used
to assign blocks to computing threads. Comparisons of the
randomized and sequential partition on the test cases of the
p53 DBD and 70S ribosome are shown in Fig. 5. A
noticeable benefit can be observed from the randomized
partition: the scalability of the algorithm clearly improves

Fig. 4 Distribution of computation times for the fine-grid blocks for
the p53 DBD and 70S ribosome, respectively

Table 3 Dependence of parallel efficiency upon the solver memory
size and number of SMP threads

Memory size 1 thread 2 threads 4 threads

1452 kB 100% 99.94% 99.05%

1819 kB 100% 98.77% 94.41%

2243 kB 100% 95.76% 84.07%

2728 kB 100% 90.42% 66.72%

Solver memory sizes were measured as the total size of working
arrays. See Table 2 for the tested hardware. Interestingly, it is still
possible to observe degraded parallel efficiency for two-thread jobs
with memory sizes of between 2 and 4 MB. This is because the
operating system sometimes schedules both threads to the same
processors

Table 2 Fine-grid parallel speedups for the p53 DBD and 70S
ribosome with the SMP and TCP/IP methods, respectively

Communication method (system) 2 threads 4 threads

SMP(p53 DBD) 1.411 1.878

TCP/IP(p53 DBD) 1.880 3.826

SMP(70S ribosome) 1.538 1.721

TCP/IP(70S ribosome) 2.123 4.016

The speedups are represented as the ratios of the parallel to the serial
computation throughputs. Four identical machines (Dell PE1950III)
with two Intel Xeon 5140 processors with two cores were used in the
comparison. There were two cores on each processor, which shared
4 MB of shared cache memory

1992 J Mol Model (2011) 17:1985–1996

when the randomized partition is used. Finally, the overall
performance for both tested systems can be found in Fig. 6,
which shows a more or less linear speedup over the number
of threads used.

Conclusions and future directions

We have implemented and evaluated an approximate
distributive method for FDPB calculations of large
biomolecular systems. This method is based on the
electrostatic focusing principle of decomposing a large
fine-grid FDPB calculation into multiple independent
FDPB calculations, each of which focuses on only a
small and specific portion or block of the large fine
grid.

We analyzed the impact of the approximation upon the
accuracy of the numerical reaction field energies. It was
found that a reasonable relative accuracy of 10−3 can be
achieved when the buffering space is set to be 16 grid
points and the block dimension is set to be at least (1/6)3 of
the fine-grid dimension, as in the classical one-block
focusing method. The impact upon the efficiency of using
buffering space to maintain enough accuracy was also
studied. It was found that “optimal” multi-block dimensions
exist for a given computer hardware setup, and that the
dimensions are more or less independent of the actual
FDPB grid geometry. A multi-thread version of the
distributive multi-block focusing method was also imple-
mented, and its efficiency was analyzed. Interestingly, a
noticeable degradation of parallel efficiency was observed
on the SMP parallel platforms. This can be attributed to the
competition of cache memory. We also evaluated the effect
of load balancing on the parallel efficiency. It was found
that a random shuffling of blocks over computing threads
can be used to improve the scalability of the method on
parallel platforms.

Finally, it is interesting to discuss future directions
for the distributive computation of FDPB, especially
for the MICCG-related FDPB solvers. As reviewed,
there are several competing methods for the MICCG
solvers: hyperplane ordering [61, 64–67], multi-color
ordering [69, 70], and blocked red–black ordering [71].
The beauty of grouping grid points into hyperplanes is
that all grid points in a hyperplane can be computed
independently of each other. More interestingly, the
computation order in the hyperplane ordering is equiva-
lent to that of the natural ordering, which is crucial for
the fast convergence of MICCG methods. However, this
method is probably attractive only on shared memory
parallel platforms, due to the high level of data
dependency. The multi-color ordering was proposed as
an improvement of the red–black ordering, in order to
strike a balance between data independence and conver-
gence [85]. In this strategy, unknowns of the same color
have no data relationship to each other, so that the
substitutions in MICCG can be independently computed.
In the blocked red–black ordering, grid points are labeled
in blocks of colors of both red and black. The natural
ordering is used within each block. Since blocks with the
same color do not have a data dependency, these blocks
can be independently processed. Doing so reduces data
transfer frequencies between blocks of different colors,
especially when the block size is large [71]. Due to the
low data dependency between blocks, this method should
be suitable for distributed parallel platforms. We are
implementing and analyzing all these strategies to
analyze their scaling for the distributive computing of
realistic biomolecular applications.

Fig. 6 Overall parallel scaling in the multi-block focusing calcu-
lations for p53 DBD (288 blocks) and 70S ribosome (512 blocks),
respectively. The scaling of parallel computing is represented by the
speedups versus the number of threads used in the computation

Fig. 5 Comparison of randomized and sequential partitioning in
terms of fine-grid parallel speedups for p53 DBD (288 blocks) and
70S ribosome (512 blocks)

J Mol Model (2011) 17:1985–1996 1993

Acknowledgments This work is supported in part by the National
Institutes of Health (GM079383 & GM093040).

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are
credited.

References

1. Davis ME, McCammon JA (1990) Electrostatics in biomolecular
structure and dynamics. Chem Rev 90:509–521

2. Sharp KA (1994) Electrostatic interactions in macromolecules.
Curr Opin Struct Biol 4:234–239

3. Gilson MK (1995) Theory of electrostatic interactions in macro-
molecules. Curr Opin Struct Biol 5:216–223

4. Honig BH, Nicholls A (1995) Classical electrostatics in biology
and chemistry. Science 268:1144–1149

5. Roux B, Simonson T (1999) Implicit solvent models. Biophys
Chem 78:1–20

6. Cramer CJ, Truhlar DG (1999) Implicit solvation models:
Equilibria, structure, spectra, and dynamics. Chem Rev
99:2161–2200

7. Bashford D, Case DA (2000) Generalized born models of macro-
molecular solvation effects. Annu Rev Phys Chem 51:129–152

8. Baker NA (2005) Improving implicit solvent simulations: A
Poisson-centric view. Curr Opin Struct Biol. doi:10.1016/j.
sbi.2005.02.001

9. Chen J, Im W, Brooks CL III (2006) Balancing solvation and
intramolecular interactions: toward a consistent generalized born
force field. J Am Chem Soc 128:3728–3736

10. Feig M, Chocholousova J, Tanizaki S (2006) Extending the
horizon: towards the efficient modeling of large biomolecular
complexes in atomic detail. Theor Chem Acc. doi:10.1007/
s00214-005-0062-4

11. Im W, Chen J, Brooks CL III (2006) Peptide and protein folding
and conformational equilibria: theoretical treatment of electrostat-
ics and hydrogen bonding with implicit solvent models. Adv
Protein Chem. doi:10.1016/S0065-3233(05)72007-6

12. Koehl P (2006) Electrostatics calculations: latest methodological
advances. Curr Opin Struct Biol. doi:10.1016/j.sbi.2006.03.001

13. Lu BZ, Zhou YC, Holst MJ, McCammon JA (2008) Recent
progress in numerical methods for the Poisson–Boltzmann
equation in biophysical applications. Commun Comput Phys
3:973–1009

14. Wang J, Tan CH, Tan Y, Lu Q, Luo R (2008) Poisson–Boltzmann
solvents in molecular dynamics simulations. Commun Comput
Phys 3:1010–1031

15. Hill TL (1986) Dilute electrolyte solutions and plasmas. In: An
introduction to statistical thermodynamics. Dover, New York, pp
321–339

16. Gilson MK, Sharp KA, Honig BH (1988) Calculating the
electrostatic potential of molecules in solution: method and error
assessment. J Comput Chem 9:327–335

17. Nicholls A, Honig BH (1991) A rapid finite-difference algorithm,
utilizing successive over-relaxation to solve the Poisson–Boltz-
mann equation. J Comput Chem 12:435–445

18. Rocchia W, Alexov E, Honig BH (2001) Extending the
applicability of the nonlinear Poisson–Boltzmann equation:
multiple dielectric constants and multivalent ions. J Phys Chem
B 105:6507–6514

19. Davis ME, McCammon JA (1989) Solving the finite difference
linearized Poisson–Boltzmann equation: a comparison of

relaxation and conjugate gradient methods. J Comput Chem
10:386–391

20. Davis ME, Madura JD, Luty BA, McCammon JA (1991)
Electrostatics and diffusion of molecules in solution—simulations
with the University of Houston Brownian dynamics program.
Comput Phys Commun 62:187–197

21. Luty BA, Davis ME, McCammon JA (1992) Solving the finite-
difference non-linear Poisson–Boltzmann equation. J Comput
Chem 13:1114–1118

22. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A,
Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA
(1995) Electrostatics and diffusion of molecules in solution—
simulations with the University of Houston Brownian dynamics
program. Comput Phys Commun 91:57–95

23. Bashford D, Karplus M (1990) pKa's of ionizable groups in
proteins: atomic detail from a continuum electrostatic model.
Biochemistry 29:10219–10225

24. Bashford D (1997) An object-oriented programming suite for
electrostatic effects in biological molecules—an experience report
on the Mead Project. In: Proc Int Conf Scientific Computing in
Object-Oriented Parallel Environments, Marina del Ray, CA,
USA, 8–11 Dec 1997. doi:10.1007/3-540-63827-X_66

25. Roux B (1997) Influence of the membrane potential on the free
energy of an intrinsic protein. Biophys J 73:2980–2989

26. Im W, Beglov D, Roux B (1998) Continuum solvation model:
computation of electrostatic forces from numerical solutions to the
Poisson–Boltzmann equation. Comput Phys Commun 111:59–75

27. Cortis CM, Friesner RA (1997) Numerical solution of the
Poisson–Boltzmann equation using tetrahedral finite-element
meshes. J Comput Chem 18:1591–1608

28. Holst MJ, Baker NA, Wang F (2000) Adaptive multilevel finite
element solution of the Poisson–Boltzmann equation. I. Algo-
rithms and examples. J Comput Chem 21:1319–1342

29. Baker NA, Holst MJ, Wang F (2000) Adaptive multilevel finite
element solution of the Poisson–Boltzmann equation. II. Refine-
ment at solvent-accessible surfaces in biomolecular systems. J
Comput Chem 21:1343–1352

30. Luo R, David L, Gilson MK (2002) Accelerated Poisson–
Boltzmann calculations for static and dynamic systems. J Comput
Chem 23:1244–1253

31. Lu Q, Luo R (2003) A Poisson–Boltzmann dynamics method with
nonperiodic boundary condition. J Chem Phys 119:11035–11047.
doi:10.1063/1.1622376

32. Cai Q, Wang J, Zhao HK, Luo R (2009) On removal of charge
singularity in Poisson–Boltzmann equation. J Chem Phys.
doi:10.1063/1.3099708

33. Cai Q, Hsieh MJ, Wang J, Luo R (2010) Performance of nonlinear
finite-difference Poisson–Boltzmann solvers. J Chem Theor
Comput. doi:10.1021/Ct900381r

34. Wang J, Tan CH, Chanco E, Luo R (2010) Quantitative analysis
of Poisson–Boltzmann implicit solvent in molecular dynamics.
Phys Chem Chem Phys. doi:10.1039/B917775b

35. Wang J, Luo R (2010) Assessment of linear finite-difference Poisson–
Boltzmann solvers. J Comput Chem. doi:10.1002/Jcc.21456

36. Klapper I, Hagstrom R, Fine R, Honig BH (1986) Focusing of
electric fields in the active site of Cu-Zn superoxide dismutase:
effects of ionic strength and amino-acid modification. Proteins
1:47–59

37. Holst MJ, Saied F (1993) Multigrid solution of the Poisson–
Boltzmann equation. J Comput Chem 14:105–113

38. Forsten KE, Kozack RE, Lauffenburger DA, Subramaniam S
(1994) Numerical solution of the nonlinear Poisson–Boltzmann
equation for a membrane–electrolyte system. J Phys Chem
98:5580–5586

39. Shestakov AI, Milovich JL, Noy A (2002) Solution of the
nonlinear Poisson–Boltzmann equation using pseudo-transient

1994 J Mol Model (2011) 17:1985–1996

http://dx.doi.org/10.1016/j.sbi.2005.02.001
http://dx.doi.org/10.1016/j.sbi.2005.02.001
http://dx.doi.org/10.1007/s00214-005-0062-4
http://dx.doi.org/10.1007/s00214-005-0062-4
http://dx.doi.org/10.1016/S0065-3233(05)72007-6
http://dx.doi.org/10.1016/j.sbi.2006.03.001
http://dx.doi.org/10.1007/3-540-63827-X_66
http://dx.doi.org/10.1063/1.1622376
http://dx.doi.org/10.1063/1.3099708
http://dx.doi.org/10.1021/Ct900381r
http://dx.doi.org/10.1039/B917775b
http://dx.doi.org/10.1002/Jcc.21456

continuation and the finite element method. J Colloid Interf Sci.
doi:10.1006/jcis.2001.8033

40. Chen L, Holst MJ, Xu J (2007) The finite element approximation
of the nonlinear Poisson–Boltzmann equation. SIAM J Numer
Anal. doi:10.1137/060675514

41. Xie D, Zhou S (2007) A new minimization protocol for solving
nonlinear Poisson–Boltzmann mortar finite element equation. BIT
Numer Math. doi:10.1007/s10543-007-0145-9

42. Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of
a solute with a continuum. A direct utilization of ab initio
molecular potentials for the prevision of solvent effects. Chem
Phys 55:117–129

43. Hoshi H, Sakurai M, Inoue Y, Chûjô R (1987) Medium effects
on the molecular electronic structure. I. The formulation of a
theory for the estimation of a molecular electronic structure
surrounded by an anisotropic medium. J Chem Phys 87:1107–
1115

44. Zauhar RJ, Morgan RS (1988) The rigorous computation of the
molecular electric potential. J Comput Chem 9:171–187

45. Rashin AA (1990) Hydration phenomena, classical electrostatics,
and the boundary element method. J Phys Chem 94:1725–1733

46. Yoon BJ, Lenhoff AM (1990) A boundary element method for
molecular electrostatics with electrolyte effects. J Comput Chem
11:1080–1086

47. Juffer AH, Botta EF, van Keulen BAM, van der Ploeg A,
Berendsen HJC (1991) The electric potential of a macromol-
ecule in a solvent: a fundamental approach. J Comput Phys
97:144–171

48. Zhou HX (1993) Boundary element solution of macromolecular
electrostatics: interaction energy between two proteins. Biophys J
65:955–963

49. Bharadwaj R, Windemuth A, Sridharan S, Honig BH, Nicholls A
(1995) The fast multipole boundary-element method for molecular
electrostatics—an optimal approach for large systems. J Comput
Chem 16:898–913

50. Purisima EO, Nilar SH (1995) A simple yet accurate boundary
element method for continuum dielectric calculations. J Comput
Chem 16:681–689

51. Liang J, Subramaniam S (1997) Computation of molecular
electrostatics with boundary element methods. Biophys J
73:1830–1841

52. Vorobjev YN, Scheraga HA (1997) A fast adaptive multigrid
boundary element method for macromolecular electrostatic com-
putations in a solvent. J Comput Chem 18:569–583

53. Totrov M, Abagyan R (2001) Rapid boundary element
solvation electrostatics calculations in folding simulations:
successful folding of a 23-residue peptide. Biopolymers
60:124–133

54. Boschitsch AH, Fenley MO, Zhou HX (2002) Fast boundary
element method for the linear Poisson–Boltzmann equation. J
Phys Chem B. doi:10.1021/jp013607q

55. Lu BZ, Cheng XL, Huang JF, McCammon JA (2006) Order n
algorithm for computation of electrostatic interactions in biomo-
lecular systems. Proc Natl Acad Sci USA. doi:10.1073/
pnas.0605166103

56. Strang G (1988) Iterative method for ax=b. In: Linear algebra and
its application, 3rd edn. Brooks/Cole, Pacific Grove, pp 380–387

57. Evans DJ (1984) Parallel S.O.R. iterative methods. Parallel
Comput. doi:10.1016/S0167-8191(84)90380-6

58. O'Leary DP, White RE (1985) Multi-splittings of matrices and
parallel solution of linear systems. SIAM J Alg Discr Meth 6:630–
640

59. Meurant G (1999) Computer solution of large linear systems.
Elsevier, Amsterdam

60. Dongarra JJ, Duff IS, Sorensen DC, Vorst HVD (1991) Iterative
solution of sparse linear systems. In: Solving linear systems on

vector and shared memory computers. Society for Industrial &
Applied Mathematics, Philadelphia, pp 143–190

61. van der Vorst HA, Chan T (1996) Parallel preconditioning for
sparse linear equations. Z Angew Math Mech. doi:10.1002/
zamm.19960760315

62. Meijerink JA, van der Vorst HA (1977) An iterative solution
method for linear-systems of which coefficient matrix is a
symmetric m-matrix. Math Comput 31:148–162

63. Chan TF, Kuo CJ, Tong C (1989) Parallel elliptic preconditioners:
Fourier analysis and performance on the connection machine.
Comput Phys Commun. doi:10.1016/0010-4655(89)90163-X

64. van der Vorst HA (1989) High performance preconditioning.
SIAM J Sci Stat Comput 10:1174–1185

65. Traar KP, Mader W, Heinreichsberger O, Selberherr S, Stiftinger
M (1990) High performance preconditioning on supercomputers
for the 3D device simulator MINIMOS. Supercomputing ’90
(Proc 1990 ACM/IEEE Conf on Supercomputing), New York,
USA, 12–16 Nov 1990. doi:10.1109/SUPERC.1990.130024

66. Fujino S, Mori M, Takeuchi T (1991) Performance of hyperplane
ordering on vector computers. J Comput Appl Math 38:125–136

67. Dongarra JJ, Duff IS, Sorensen DC, van der Vorst HA (1998)
Preconditioning and parallel preconditioning. In: Numerical linear
algebra for high-performance computers. Society for industrial
and Applied Mathematics, Philadelphia, pp 215–230

68. Kuo CJ, Chan TF (1990) Two-color Fourier analysis of iterative
algorithms for elliptic problems with red/black ordering. SIAM J
Sci Stat Comput 11:767–793

69. Doi S (1991) On parallelism and convergence of incomplete LU
factorizations. Appl Numer Math 7:417–436

70. Ma S (2008) A performance comparison of the parallel precondi-
tioners for iterative methods for large sparse linear systems arising
from partial differential equations on structured grids. Ieice T
Fund Electr. doi:10.1093/ietfec/e91-a.9.2578

71. Iwashita T, Shimasaki M (2002) Block red–black ordering method
for parallel processing of ICCG solver. High Perf Comput
2327:297–300. doi:10.1007/3-540-47847-7_16

72. van der Vorst HA (1982) A vectorizable variant of some ICCG
methods. SIAM J Sci Stat Comput 3:350–356

73. Bruaset A (1995) A survey of preconditioned iterative methods.
Longman, New York

74. Radicati di Brozolo G, Robert Y (1989) Parallel conjugate
gradient-like algorithms for solving sparse nonsymmetric
linear-systems on a vector multiprocessor. Parallel Comput
11:223–239

75. Chen W, Poirier B (2006) Parallel implementation of efficient
preconditioned linear solver for grid-based applications in
chemical physics. I. Block Jacobi diagonalization. J Comput
Phys. doi:10.1016/j.jcp.2006.04.012

76. Chen W, Poirier B (2006) Parallel implementation of efficient
preconditioned linear solver for grid-based applications in
chemical physics. II. QMR linear solver. J Comput Phys.
doi:10.1016/j.jcp.2006.03.031

77. Brandt A (1973) Multi-level adaptive technique (MLAT) for fast
numerical solution to boundary value problems. Proc Third Int
Conf on Numerical Methods in Fluid Mechanics, Universities of
Paris VI and XI, 3–7 July 1972. doi:10.1007/BFb0118663

78. Brandt A (1977) Multi-level adaptive solutions to boundary-value
problems. Math Comput 31:333–390

79. Barrett R, Berry M, Chan TF, Demmel JW, Donato JM, Dongarra
JJ, Eijkhout V, Pozo R, Romine C, van der Vorst HA (1994)
Templates for the solution of linear systems: building blocks for
iterative methods. SIAM, Philadelphia

80. Briggs WL, Henson VE, McCormick SF (2000) A multigrid
tutorial, 2nd edn. SIAM, Philadelphia

81. Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid.
Academic, London

J Mol Model (2011) 17:1985–1996 1995

http://dx.doi.org/10.1006/jcis.2001.8033
http://dx.doi.org/10.1137/060675514
http://dx.doi.org/10.1007/s10543-007-0145-9
http://dx.doi.org/10.1021/jp013607q
http://dx.doi.org/10.1073/pnas.0605166103
http://dx.doi.org/10.1073/pnas.0605166103
http://dx.doi.org/10.1016/S0167-8191(84)90380-6
http://dx.doi.org/10.1002/zamm.19960760315
http://dx.doi.org/10.1002/zamm.19960760315
http://dx.doi.org/10.1016/0010-4655(89)90163-X
http://dx.doi.org/10.1109/SUPERC.1990.130024
http://dx.doi.org/10.1093/ietfec/e91-a.9.2578
http://dx.doi.org/10.1007/3-540-47847-7_16
http://dx.doi.org/10.1016/j.jcp.2006.04.012
http://dx.doi.org/10.1016/j.jcp.2006.03.031
http://dx.doi.org/10.1007/BFb0118663

82. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001)
Electrostatics of nanosystems: application to microtubules and the
ribosome. Proc Natl Acad Sci USA 98:10037–10041

83. van der Vorst HA (1989) ICCG and related methods for 3D
problems on vector computers. Comput Phys Commun.
doi:10.1016/0010-4655(89)90162-8

84. Fiser A, Do RKG, Săli A (2000) Modeling of loops in protein
structures. Protein Sci 9:1753–1773

85. Doi S, Washio T (1999) Ordering strategies and related
techniques to overcome the trade-off between parallelism and
convergence in incomplete factorizations. Parallel Comput
25:1995–2014

1996 J Mol Model (2011) 17:1985–1996

http://dx.doi.org/10.1016/0010-4655(89)90162-8

	Exploring a coarse-grained distributive strategy for finite-difference Poisson–Boltzmann calculations
	Abstract
	Introduction
	Methods
	Finite-difference Poisson–Boltzmann method
	One-block versus multi-block electrostatic focusing
	Distributive implementation of the multi-block electrostatic focusing method
	MICCG solver
	Other computation details

	Results and discussion
	Accuracy considerations
	Algorithm efficiency on serial platforms
	Algorithm efficiency on multi-thread platforms
	Nonparallel overhead
	Cache size issue
	Load balance

	Conclusions and future directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

