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Abstract We have implemented and evaluated a coarse-
grained distributive method for finite-difference Poisson–
Boltzmann (FDPB) calculations of large biomolecular systems.
This method is based on the electrostatic focusing principle of
decomposing a large fine-grid FDPB calculation into multiple
independent FDPB calculations, each of which focuses on only
a small and a specific portion (block) of the large fine grid. We
first analyzed the impact of the focusing approximation upon
the accuracy of the numerical reaction field energies and found
that a reasonable relative accuracy of 10−3 can be achieved
when the buffering space is set to be 16 grid points and the
block dimension is set to be at least (1/6)3 of the fine-grid
dimension, as in the one-block focusing method. The impact
upon efficiency of the use of buffering space to maintain
enough accuracy was also studied. It was found that an
“optimal” multi-block dimension exists for a given computer
hardware setup, and this dimension is more or less indepen-
dent of the solute geometries. A parallel version of thedis-
tributive focusing method was also implemented. Given the
proper settings, the distributive method was able to achieve
respectable parallel efficiency with tested biomolecular sys-
tems on a loosely connected computer cluster.

Keywords Finite difference . Poisson–Boltzmann .

Electrostatic focusing . Distributive computing .

Domain decomposition

Introduction

The Poisson–Boltzmann theory has become well estab-
lished for the modeling of electrostatic solvation interac-
tions in biomolecules [1–14]. In this approach, a molecular
solute is approximated as a continuous cavity with a low
dielectric constant, for example with values in the range of
1–4. The solvent is approximated as a continuous medium
with a different dielectric constant solvent, for example
with a value of ~80 for water. The cavity contains point
charges at atomic centers obtained from a molecular
mechanics representation of the solute. When mobile ions
are present, the ion distribution is also modeled in a mean
field fashion (assumed to obey the Boltzmann distribution).
With such a continuum approximation of the electrostatic
interactions, the electrostatic potential � is characterized by
the Poisson–Boltzmann equation (PBE):

r � (rf ¼ �4pr0 � 4pl
X

i

ezici exp �ezif=kBTð Þ; ð1Þ

where ( is the dielectric constant, ρ0 is the solute charge
density, l is the Stern layer masking function, ezi is the
charge of ion type i, ci is the bulk number density of ion
type i, kB is the Boltzmann constant, and T is the absolute
temperature. If the electrostatic field is weak and ionic
strength is low, the PBE can be linearized as [15]

r � (rf ¼ �4pr0 þ lk2f: ð2Þ
Here k2 ¼ 4pe2

P
i
z2i ci=kBT . Since the early 1980s,

considerable efforts have been devoted to solving the PBE
numerically for biomolecular applications. Many software
packages that can solve either the linear or the nonlinear
PBE have been released, such as Delphi [16–18], UHBD
[19–22], MEAD [23, 24], the CHARMM PBEQ module
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[25, 26], the Jaguar PB module [27], APBS [28, 29], and
the Amber PBSA module [30–35].

Typical numerical methods involve the discretization of
the partial differential equation (PDE) into a system of
linear or nonlinear equations and then the solution of the
linear or nonlinear system with an iterative approach. The
most commonly used discretization approach is the finite-
difference method [16–19, 21, 24, 26, 30, 36–38]. In this
method, the physical properties of the solution, such as
atomic charges and dielectric constants, are mapped onto
rectangular grids, and a discrete approximation to the
governing PDE is produced. The second approach is the
finite-element method [27–29, 39–41], which approximates
the potential with the superposition of a set of basis
functions. A linear or nonlinear system for the coefficients
produced by the weak formulation has to be solved. The
third approach is the boundary-element method [42–55].
One advantage of applying the boundary element approach
lies in the fact that the dimension of the linear or nonlinear
system is much smaller than that from the finite-difference
scheme due to the different dimensionality (3-D vs. 2-D).
However, the corresponding system is much denser.

In this study, we focus our effort on the sparse linear
systems from the finite-difference discretization of the
linear PBE. These methods are often termed finite-
difference Poisson–Boltzmann (FDPB) methods. The
FDPB method converts the PBE to a system of linear
equations Ax = b, where the electrostatic potential (x) on
every grid point is unknown, the charge distribution (b) on
the grid point is the source, and the dielectric constant and
salt-related terms are wrapped into the coefficient matrix A,
which is a seven-banded symmetric matrix [36]. Its
numerical solvers can be categorized into direct methods
and iterative methods. Due to the large number of
unknowns in biomolecular applications, it is not very
practical to use direct methods. Therefore, most solvers
are iterative in nature for biomolecular applications.

The iterative methods can be loosely grouped into two
types: stationary methods and Krylov subspace methods.
The partition is not very strict because many stationary
methods can be used during preconditioning for the Krylov
subspace methods [56]. To implement stationary methods
such as Jacobi, successive over-relaxation, and Gauss–
Seidel for distributive computing environments, the
unknowns are usually reordered with multi-coloring [57]
or multi-splitting approaches [58].

Possible strategies for implementing Krylov subspace
methods in distributive computing environments are do-
main decompositions and distributive preconditioners. The
principle of domain decompositions is to divide the
problem domain into smaller subdomains, solve the sub-
domains independently, and merge the subdomain solutions
in a self-consistent manner. We can decompose a problem

domain into either overlapping or nonoverlapping subdo-
mains with the domain decomposition methods for the
linear systems from FDPB. An overlapping domain
decomposition method normally takes the form of the
multiplicative Schwarz method; for nonoverlapping domain
decomposition, the Schur method is usually used [59].

Most prior efforts to adapt Krylov subspace methods to
distributive computing environments focus on the precon-
ditioning step [60]. These efforts aim at either extracting the
data/instruction independence from a serial method or
modifying or approximating a serial method to increase
the independence [61]. Take the widely used incomplete
factorization methods [62] for example. We cannot simply
convert the algorithm into a distributive method because of
the data dependence in the forward and backward sub-
stitutions [61]. Modifying or approximating the methods
normally leads to slower convergence because there is a
trade-off between the data locality needed for parallelism
and the data global dependence needed for fast conver-
gence. Therefore, a reduction in CPU time is not always
guaranteed in distributive computing environments [63].
Three basic strategies for incomplete factorization methods
such as incomplete Cholesky conjugate gradient (ICCG)
are: reordering, series expansion, and domain decomposi-
tion [61]. Some common practices for reordering include
hyperplane ordering (to change the order of computation)
and multi-color ordering (to reorder the unknowns). The
hyperplane ordering method can be implemented efficiently
for good parallel performance [61, 64–67]. Multi-coloring
methods like red–black ordering were proven to result in
slower convergence [68]. However, the use of more colors
was reported to lead to a good balance between conver-
gence and data/instruction independence [69, 70]. More
recent studies of ordering strategies show that a “blocked”
red–black ordering method can reduce the cost of synchro-
nization or communication [71]. Series expansions were
also attempted to approximate the preconditioners with
truncated expansions that can be evaluated more efficiently
without data dependence. The idea is to split and truncate
the expansions but keep enough terms to ensure that the
convergence rate is not degraded too much. The truncated
Neumann expansion [72] and other polynomial expansions
[73] are often used to approximate the preconditioners.
Interestingly, the domain-decomposition idea can also be
used to implement preconditioning without data depen-
dence. Aside from decomposing the grid then applying
independent incomplete factorization for distributive pro-
cessing, preconditioners can also be domain-decomposed
algebraically [74–76].

Other efforts to solve linear problems include the use of
a two- (or more) level grid-based solution such as multigrid
methods [77, 78]. Multigrid methods usually consist of the
following steps: (1) performing some stages of a basic
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method (i.e., one of the iterative solvers) to smooth out the
error; (2) restricting the current state of the problem to a
subset of coarse grids and solving the resulting smaller
problem; (3) interpolating the coarse-grid solution back to
the original grid and performing a number of stages of the
basic method. These steps are applied recursively to
achieve convergence [79]. Many aspects of multigrid
algorithms are readily implemented in multiple threads for
distributive environments. Indeed, multigrid methods have
become popular for solving linear systems arising from
PDEs [28, 29, 80, 81].

A seemingly related method is electrostatic focusing in
FDPB. The focusing technique is a series of finite-
difference runs that are performed with successively finer
grids. Each run has boundary conditions that are calculated
from the potential map of its predecessor [36]. The focusing
technique ensures reasonable accuracy on the finest grid
without a huge computational overhead, because only a
certain part of the problem domain is solved on the finest
grid. Long-range interactions with the rest of the domain
outside the focusing region can be accurately represented
by the coarser-grid calculations. However, there has been
no theoretical justification of focusing when it is applied in
the finite-difference method [28], though the error due to
the approximation is often extremely small under certain
conditions.

A limitation of the electrostatic focusing calculations
is that the memory usage of the finest grid for the region
of interest may still be unmanageably large in FDPB
calculations of large biomolecular systems. It has been
reported that the fine grids in the focusing technique can
be divided into multiple smaller blocks for distributive
computation [82]. This idea, termed “multi-block” focus-
ing below, is similar to the domain decomposition
concept, but the boundaries of the subdomains are neither
conjugated nor communicated during computation. It is
thus an approximated method. Nevertheless, the method
may be used to lower the memory usage of each focusing
run and is potentially friendly to distributive computing
environments.

In this study, we explored the distributive multi-block
focusing technique in order to analyze what it takes to
achieve an acceptable accuracy and good performance in
numerical FDPB solutions of large biomolecular systems.
A highly scalable parallel version of the method is also
implemented and incorporated into the Amber/PBSA
program [30–35]. In the following, we summarize our
algorithm design and implementation and evaluate its
performance using several challenging test cases. We
conclude with a brief discussion of potentially more
accurate numerical algorithms for future development in
the field of distributive FDPB calculations of large
biomolecular systems.

Methods

Finite-difference Poisson–Boltzmann method

In our implementation of the FDPB method, a uniform
cubic grid is used to discretize the linear PBE [Eq. 2]; i.e.,
the spacing between neighboring grid points is uniformly
set to be h. The grid points are labeled (i, j, k), i=1,....xm,
j=1,....ym, and k=1,....zm, where xm, ym and zm are the
numbers of grid points along the x, y and z axes,
respectively. Electrostatic potential (φ) and atomic charge
(q) are mapped onto the grid points. The dielectric constant
is defined at the midpoint between any two neighboring
grid points: εi(i, j, k) denotes the dielectric constant between
grids (i, j, k) and (i+1, j, k), and εj(i, j, k) and εk(i, j, k) are
used similarly. Finally, κ2 is used to absorb all related
coefficients in the Boltzmann term. The discretized linear
PBE can then be written as

�h�2"iði� 1; j; kÞ½fði� 1; j; kÞ � fði; j; kÞ�
�h�2"iði; j; kÞ ½fðiþ 1; j; kÞ � fði; j; kÞ�
�h�2"jði; j� 1; kÞ½fði; j� 1; kÞ � fði; j; kÞ�
�h�2"jði; j; kÞ ½fði; jþ 1; kÞ � fði; j; kÞ�
�h�2"kði; j; k � 1Þ½fði; j; k � 1Þ � fði; j; kÞ�
�h�2"kði; j; kÞ ½fði; j; k þ 1Þ � fði; j; kÞ�
þ k2 fði; j; kÞ ¼ h�3qði; j; kÞ;

ð3Þ
which is a linear system of xmymzm equations, usually
denoted Ax = b (with the electrostatic potential as the
unknown x, the charge distribution as the source b, and the
dielectric constant and salt-related terms wrapped into a
seven-banded symmetric coefficient matrix A).

One-block versus multi-block electrostatic focusing

As mentioned in the “Introduction,” electrostatic focusing
can be used to obtain an accurate solution in a specific
region of a problem domain. For the sake of simplicity of
presentation, we utilized only a two-level focusing con-
struct in this study; i.e., only two grids (coarse and fine)
were used in all test calculations discussed below. The first
step in the electrostatic focusing method is a coarse-grid
FDPB calculation spanning the entire problem domain. The
problem domain is often set to be large enough to secure a
good free-boundary condition. The coarse-grid solution of
the potential is then used to define the boundary condition
(i.e., the boundary potential) for the fine grid covering only
the region of interest. Here the boundary potential is
computed with the trilinear weighted interpolation method
for a good balance of accuracy and efficiency [31].

Again, as we mentioned in the “Introduction,” there
often is memory limitation in electrostatic focusing calcu-
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lations. For example, an electrostatic focusing calculation
for the complete 70S ribosome requires ~16.6 GB memory
to achieve a resolution of 0.5Å at the fine-grid level. To
overcome this limitation, the fine-grid region can be
divided into multiple subdomains or blocks to be solved
independently, via the so-called divide-and-conquer strate-
gy. Subsequent multiple blocks can be made small enough
to be processed sequentially on a personal workstation or in
a distributive manner on networked workstations or
computing nodes.

In the following we term the extended electrostatic
focusing method the “multi-block” electrostatic focusing
method, and the classical electrostatic focusing method the
“one-block” electrostatic focusing method. One noticeable
feature of the multi-block electrostatic focusing method is that
the adjacent blocks overlap (see Fig. 1) in order to maintain
good overall calculation accuracy. The overlapping region is
termed the buffering space in this study. Its influence upon
the calculation accuracy is analyzed in detail below.

In the current design (Fig. 1), every focusing FDPB
calculation depends on the solution of the coarse-grid
FDPB calculation. There are two choices with how to
proceed in the coarse-grid FDPB calculation if the focusing
blocks are distributed to different computing threads: (1)
only the master thread is used to solve the coarse-grid
FDPB, and the solution is communicated to slave threads
before the fine-grid FDPB starts; or (2) the coarse-grid
FDPB is solved on all threads before starting the assigned
fine-grid FDPB calculations, so the coarse-grid solution is
kept local on each thread. Apparently the second strategy is
slightly better because it reduces the need for communica-

tion among all threads. Of course, the molecular data are
still needed on the slave threads before the coarse-grid
FDPB calculation, and the final electrostatic energies are
communicated back to the master thread after finishing the
assigned fine-grid FDPB calculations. The distributive
multi-block focusing method can then be summarized as
the following pseudo procedure:

1. (a) Discretize the problem domain with the coarse
grid. Discretize the region of interest with the
fine grid.

(b) Decompose the fine grid into blocks.
(c) Distribute blocks to computing threads if multiple

threads are deployed.
2. Solve the linear system for the coarse grid.
3. Solve the linear systems for the assigned fine-grid

blocks in turn.
4. Collect electrostatic energies from blocks.

Since the multi-block focusing method is only an
approximation to the classical one-block focusing method,
it is important to analyze the influence of the approximation
on the calculation accuracy while optimizing the algorithm
for efficiency. We checked three key data structures in the
FDPB algorithm to gain a better understanding of how the
approximation may influence accuracy as follows. (1) The
coefficient matrix (i.e., the dielectric constant and salt
term). It is fairly straightforward to enforce exact numerical
consistency between the matrices of the multi-block
focusing method and the one-block focusing method if the
same grids are used. (2) The constant term (i.e., the atomic
charge term). It is also not difficult to enforce numerical
consistency between the atomic charge terms in the two
focusing methods if the same grids are used. (3) The
boundary condition for the fine-grid iteration. This is where
the inconsistency may be located; i.e., the boundary grid
points are deeply buried inside the solute in the multi-block
focusing method, while the boundary grid points are
exposed in solvent in the one-block focusing method. Since
the boundary potentials are assigned from the coarse-grid
solution, the quality of the boundary potentials on the fine
grid is clearly different from that in the one-block focusing
method, where the boundary grid points are well away from
the heterogeneous dielectrics and atomic charges near the
solute. In the one-block focusing method, it is a very good
approximation to interpolate fine-grid boundary potentials
from the coarse-grid potentials. However, in the multi-block
focusing method, the distortion might be noticeable when
the boundary grid points are buried well inside the solute.
Further analysis is certainly necessary before the method is
recommended for wide applications.

This is why the buffering space is required in each block
to maintain a reasonable accuracy level in the multi-block
focusing method. Note that the fine-grid potentials in the

Fig. 1 Four multi-block focusing subdomains (blocks) on a two-
dimensional grid. The coarse grid is colored black. The fine grid is
covered by four overlapping blocks in different colors. The dimension
of each fine-grid block is 7×7. The buffering space is 2 grid points
thick on all sides of each block. Therefore the actual computed grid
number for each block in this example is 11×11
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buffering space are neither passed to other computing
threads nor used for later energy calculations. Thus, any
large error from the distortion of boundary potentials when
atomic charges and heterogeneous dielectrics are too close
to the edge of the block can be alleviated to a certain
degree. Of course, the use of buffering space leads to an
extra computing cost in the multi-block focusing method.
Thus, on the one hand, the use of smaller fine grid blocks
accelerates each FDPB calculation; on the other hand, the
use of buffering spaces slows down the overall calculation.
In general, there is an optimal block partition scheme that
achieves the best efficiency, as shown below in the “Results
and discussion.”

Distributive implementation of the multi-block electrostatic
focusing method

When implementing the multi-block focusing method as a
distributive program suitable for multi-thread computing
environments, we also paid attention to computing resource
usage, particularly in relation to memory management and
network communication management. As we mentioned in
the “Introduction,” one key benefit of the multi-block
focusing method is that it reduces the memory needed. A
distributive algorithm like the multi-block focusing method
undoubtedly divides a large system into smaller and
manageable pieces. However, strict memory management
is still necessary to achieve the desired benefit (i.e.,
allocating only the memory needed for the current
calculation). Similarly, communication management is also
strictly enforced so that only the smallest amount of data
required for multi-thread implementation is broadcast. We
reduced the communication needs of the distributive multi-
block focusing method to several 1-to-N broadcasts of
working arrays for initialization, and one N-to-1 broadcast
for collecting electrostatic energies in the current
implementation.

MICCG solver

The basic iterative solver used in the multi-block focusing
method is the MICCG method with the following pseudo
program:

where M is the preconditioner matrix, r and p are auxiliary
vectors, and<x, y>represents the inner product of x and y.
The preconditioner matrix M in MICCG can be symboli-
cally written in a factorized form as [83]:

M�1 ¼ ðET þ CT þ BT þ DÞD�1 ðDþ Bþ Cþ EÞ; ð4Þ
assuming a 7-band matrix of A as

A ¼ETþCTþBTþdiagðAÞ þ Bþ Cþ E: ð5Þ
Here B and BT are the bands next to the diag(A), C and

CT are xm away from the diag(A), and E and ET are xmym
away from diag(A). In MICCG, the elements of D are
computed from a recursive relation as

Dijk ¼ diag Að Þijk � bi�1jk bi�1jk þ aci�1jk þ aei�1jk

� �
=Di�1jk

�cij�1k abij�1k þ cij�1k þ aeij�1k

� �
=Dij�1k

�eijk�1 abijk�1 þ acijk�1 þ eijk�1

� �
=Dijk�1;

ð6Þ
where α was suggested to be 0.95 in the original MICCG
implementation [64], while we adopted a value of −0.3 for
biomolecules in this study [30].

Other computation details

Four biomolecular systems with nontrivial sizes were used
as test cases in this study. These are: the 5S ribosomal RNA
of the 70S ribosome (chain B of PDB id: 2J01, denoted
rRNA), the p53 DNA binding domain tetramer in complex
with DNA (PDB id: 2AC0, denoted p53 DBD), the
GROEL heptamer (PDB id: 1SX3, denoted GROEL), and
the complete 70S ribosome (PDB id: 2J01+2J02, denoted
the 70S ribosome). For the 70S ribosome, the missing
residues in the terminal regions were ignored and the gaps
within protein subunits were rebuilt with MODELLER
[84]. The all-atom models of these systems were built
according to the Amber force field, with tRNA and metal
ion parameters obtained from the Amber contributed
parameters database (http://www.pharmacy.manchester.ac.
uk/bryce/amber). All models were subsequently energy-
minimized with the Amber molecular dynamics program
SANDER. More detailed information on the tested biomo-
lecular systems is listed in Table 1.

In this study, the dielectric constants of the internal and
external regions were set to 1 and 80, respectively. The
ionic strength was set to be 200 mM for rRNA and the 70S
ribosome, and 150 mM for p53 DBD and GROEL. The
coarse-grid spacing was 2Å and the fine-grid spacing was
0.5Å, respectively, if not otherwise specified. The conver-
gence criterion for finite-difference iteration was set to
10−9, and a two-level focusing technique was used for all
the calculations, as described above. The boundary poten-
tials for the coarse-grid FDPB calculation were set to zero.
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This is only a reasonable approximation for the free space
boundary condition when the finite-difference grid bound-
ary is far away from the solute. Thus, the dimension of the
coarse grids was set to be at least twice that of the solute to
secure a good boundary condition. The fine-grid boundary
potentials were interpolated using the coarse-grid poten-
tials. All other computational details can be found in our
previous publications on the FDPB method [30–35].

The electrostatic energy was computed as

ΔGelec ¼ 1

2

X

j

qjfj; ð7Þ

where j runs over all charged atoms. The electrostatic
potential φj at atomic charge qj was computed by solving
the linear PBE as in Eq. 2. The reaction field energy was
computed as the difference between the electrostatic energy
in the solvent dielectric and the electrostatic energy in the
uniform solute dielectric. All reported energy values were
averaged from the 64 individual computations with random
grid origins. The relative accuracies were measured as
relative deviations between the mean energy from multi-
block focusing FDPB calculations and the mean energy from
nonfocusing FDPB calculations. The PBSA module in the
Amber 9 package [30–35] was used to implement the multi-
block focusing method. LAM/MPI (http://www.lam-mpi.
org) was used for parallel implementation. All testing runs
were conducted on an Intel Pentium 4 cluster or an Intel
Xeon cluster. All data communications were routed with a
private gigabit ethernet network, which is separated from the
administrative network.

Results and discussion

To assess the accuracy and performance of the distributive
multi-block focusing method for FDPB, we first analyzed
several factors that are likely to impact the agreement
between the multi-block focusing and nonfocusing FDPB
calculations. This was followed by our analysis of the
efficiency of the distributive method on both single-thread
and multi-thread platforms.

Accuracy considerations

To achieve excellent overall numerical quality in the total
electrostatic energy with the focusing method, the grid
boundary should be set far from the surface of the solute.
Otherwise, the potentials on atoms near the grid boundary
are often distorted, leading to inaccurate total electrostatic
energy. However, the focusing method is also used where
only a portion of the solute (i.e., an enzyme active site) is of
interest. In such applications, the focusing grid (i.e., the fine
grid used here) is defined well within the solute interior.
Apparently, for this strategy to be reliable, the focusing grid
should be set large enough to cover the region of interest
with enough buffering space so that all atoms of interest are
located well within the boundary of the focusing grid.

The same consideration also applies to the multi-block
focusing calculations, since the block boundaries are well
inside the solute to partition the domain of interest into
same-sized blocks. Due to this limitation, a thicker
buffering space should reduce the numerical inconsistency
between the multi-block focusing and nonfocusing FDPB
calculations. In addition, a multi-block focusing calculation
with larger blocks generally agrees better with the non-
focusing calculation, since there are few boundaries when
larger blocks are used. In the following, two selected
systems (rRNA and GROEL) were used to assess the
influence of both buffering space and block dimension
upon the accuracy of the new method.

Figure 2 shows that smaller overall errors can be
achieved given a thicker buffering space and/or larger

Table 1 Details for the tested systems. The solute dimensions were
estimated by determining the smallest rectangular bounding box that
the solute could possibly fit in

Systems Number of atoms Solute dimensions (Å3)

rRNA 3846 86×76×77

p53 DBD 13813 86×84×115

GROEL 54922 148×149×80

70S ribosome 244687 220×265×258

Fig. 2 Relative deviation in reaction field energy with respect to
buffering spaces and block sizes. Relative deviation is computed as
the difference between the multi-block focusing FDPB calculation and
the nonfocusing FDPB computation, and is averaged over 64 runs
with random grid offsets. The block size (per dimension) is shown as a
fraction of the fine grid, as in the classical one-block focusing
calculation
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blocks, consistent with our initial estimation above.
Specifically, a buffering space of 16 grid points consis-
tently yields good accuracy for all tested block dimen-
sions. Overall, a reasonable relative accuracy of 10−3 can
be achieved when the buffering space is set to be 16 grid
points and the block dimension is set to be at least (1/6)3

of the fine grid in the classical one-block focusing
method. This accuracy level is quite acceptable consider-
ing that the FDPB convergence error is usually around
10−3 at the grid spacing of 0.5Å often used in biomolec-
ular applications [Wang J, Luo R (2010) Reducing grid-
dependence in finite-difference Poisson–Boltzmann cal-
culations, submitted].

Algorithm efficiency on serial platforms

Apparently there is an extra cost just to maintain enough
accuracy by using buffering space. Thus, one issue is how
to minimize the extra cost while maintaining enough
accuracy. In general, multi-block focusing calculations with
larger blocks waste less time due to the existence of fewer
block boundaries. Of course, the larger blocks have to fit in
the physical memory without accessing virtual memory for
the calculation to be efficient at all. Even if the larger
blocks do fit into the physical memory, in general it takes
more time to compute the resulted linear systems due to the
larger memory requirement of the FDPB solvers. That is
why an “optimal” multi-block size may exist for a given
computer hardware setup, and the size is more or less
independent of the actual solute or grid geometry, as
illustrated in Fig. 3, which shows that the optimal block
dimension is ~733 for the tested hardware, so this is used in
the further testing of the method below. More interestingly,
multi-block focusing calculations can be even faster than
the single-block focusing calculations on a single CPU
when the “optimal” multi-block size is used. For example,
the multi-block focusing calculations with the optimal
block size in Fig. 3 are about 20~30% faster than the
single-block focusing calculations for both geometry
settings.

Algorithm efficiency on multi-thread platforms

Due to the distributive nature of the multi-block
focusing method, a multi-thread version of the algorithm
can be implemented in a straightforward fashion to
distribute the fine-grid blocks over multiple computing
threads. In this implementation, each thread has all of
the necessary data to process the assigned blocks once
the coarse-grid FDPB starts (i.e., each thread processes
the coarse-grid FDPB redundantly. Thus, there is no
cross-thread communication once the coarse-grid FDPB
computation starts. Note that this is more beneficial than

processing the coarse-grid FDPB computation on the
master thread and communicating all data to the slave
threads. Given such a setting, there still are other issues
that may impact the performance of the multi-block
focusing method, as discussed below.

Nonparallel overhead

The multi-block focusing method is meant to divide an
unmanageably large system into manageable smaller pieces
that can be handled by the computer hardware at hand.
However, there is nondistributive overhead; i.e., the coarse-
grid FDPB that is used to assign boundary grid potential for
fine-grid FDPB calculations. Apparently, the computational
cost of the coarse-grid FDPB calculation should be less
than or at least comparable to individual fine-grid FDPB
calculations. Otherwise the coarse-grid FDPB calculation
would become the performance bottleneck. This scenario
can easily be avoided by using a very coarse FDPB grid.
For example, the default coarse grid is eight times as coarse
as the fine FDPB grid in the PBSA program. In addition, it
is also possible to use more than two levels of FDPB grids
if a finer-coarse FDPB grid is desired, a common practice
in focusing calculations.

Cache size issue

Another issue of importance to parallel performance is
the cache size, because the FDPB runs are memory-

Fig. 3 Fine-grid performance defined as number of atoms processed
per second versus block size in the 70S ribosome for a distributive
multi-block focusing computation. Two different geometry settings
were used to divide the fine grid into multiple blocks in order to
analyze the existence of an optimal block size for each grid geometry.
It is possible to observe an optimal block size that yields maximum
efficiency in both tested geometry settings
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intensive jobs. It is rare that a single FDPB run can fit
in the cache memory of a typical machine. This may
reduce efficiency on SMP parallel platforms due to the
cache memory competition among different threads. We
compared the performance of a four-thread calculation
on two platforms: one node with two dual-core Intel
Xeon processors, and four nodes with identical process-
ors but with only one thread on each node. The p53
DBD and 70S ribosome were used to measure the fine-
grid speedups on the two different communication
platforms. The physical memory size was set to be
larger than the size of each thread, so that no virtual
memory was utilized. Table 2 shows that the parallel
computation performance over a network of multiple
nodes is much better than that over an SMP node of
multiple processors, indicating the existence of cache
competition.

To confirm the above finding, we analyzed the compu-
tational times of several multi-block focusing runs with
much smaller grid dimensions on the same hardware.
Indeed, if we set the solver memory usage of each thread
to less than 2 MB (i.e., half of the cache size per processor),
it is possible to observe a noticeable speedup for the SMP
parallel run (Table 3). Of course, parallel efficiency
deterioration already starts to occur at ~1.8 MB due to
other components that may not be 100% swapped out of the
cache memory (Table 3).

Of course, larger cache memory does alleviate the
limitation of an SMP parallel setup, but it is unlikely to
eliminate the limitation because of the large memory usages
for typical biomolecular applications. For example, the
memory usage is ~146 MB for the block dimension (733)
used in our current implementation. Thus, our recommen-
dation is to avoid running more threads than the number of
physical processors on the same nodes if the cache memory
is shared between the different cores on the same physical
processor.

Load balance

The fine-grid FDPB performance also depends on how the
computational load is distributed over threads. One reason
for this is that the number of blocks is not always divisible
by the number of threads: some threads are assigned more
blocks than others. The second reason is related to the
heterogeneity of fine-grid blocks, as shown in Fig. 4, which
shows that the distribution of per-block computation times
is highly scattered for the two tested systems. Indeed, the
variation in computation times can be up to 200%.

Thus, a simple sequential partitioning of blocks does not
guarantee a balanced load for good performance. To
improve load balancing, a randomized partition was used
to assign blocks to computing threads. Comparisons of the
randomized and sequential partition on the test cases of the
p53 DBD and 70S ribosome are shown in Fig. 5. A
noticeable benefit can be observed from the randomized
partition: the scalability of the algorithm clearly improves

Fig. 4 Distribution of computation times for the fine-grid blocks for
the p53 DBD and 70S ribosome, respectively

Table 3 Dependence of parallel efficiency upon the solver memory
size and number of SMP threads

Memory size 1 thread 2 threads 4 threads

1452 kB 100% 99.94% 99.05%

1819 kB 100% 98.77% 94.41%

2243 kB 100% 95.76% 84.07%

2728 kB 100% 90.42% 66.72%

Solver memory sizes were measured as the total size of working
arrays. See Table 2 for the tested hardware. Interestingly, it is still
possible to observe degraded parallel efficiency for two-thread jobs
with memory sizes of between 2 and 4 MB. This is because the
operating system sometimes schedules both threads to the same
processors

Table 2 Fine-grid parallel speedups for the p53 DBD and 70S
ribosome with the SMP and TCP/IP methods, respectively

Communication method (system) 2 threads 4 threads

SMP(p53 DBD) 1.411 1.878

TCP/IP(p53 DBD) 1.880 3.826

SMP(70S ribosome) 1.538 1.721

TCP/IP(70S ribosome) 2.123 4.016

The speedups are represented as the ratios of the parallel to the serial
computation throughputs. Four identical machines (Dell PE1950III)
with two Intel Xeon 5140 processors with two cores were used in the
comparison. There were two cores on each processor, which shared
4 MB of shared cache memory
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when the randomized partition is used. Finally, the overall
performance for both tested systems can be found in Fig. 6,
which shows a more or less linear speedup over the number
of threads used.

Conclusions and future directions

We have implemented and evaluated an approximate
distributive method for FDPB calculations of large
biomolecular systems. This method is based on the
electrostatic focusing principle of decomposing a large
fine-grid FDPB calculation into multiple independent
FDPB calculations, each of which focuses on only a
small and specific portion or block of the large fine
grid.

We analyzed the impact of the approximation upon the
accuracy of the numerical reaction field energies. It was
found that a reasonable relative accuracy of 10−3 can be
achieved when the buffering space is set to be 16 grid
points and the block dimension is set to be at least (1/6)3 of
the fine-grid dimension, as in the classical one-block
focusing method. The impact upon the efficiency of using
buffering space to maintain enough accuracy was also
studied. It was found that “optimal” multi-block dimensions
exist for a given computer hardware setup, and that the
dimensions are more or less independent of the actual
FDPB grid geometry. A multi-thread version of the
distributive multi-block focusing method was also imple-
mented, and its efficiency was analyzed. Interestingly, a
noticeable degradation of parallel efficiency was observed
on the SMP parallel platforms. This can be attributed to the
competition of cache memory. We also evaluated the effect
of load balancing on the parallel efficiency. It was found
that a random shuffling of blocks over computing threads
can be used to improve the scalability of the method on
parallel platforms.

Finally, it is interesting to discuss future directions
for the distributive computation of FDPB, especially
for the MICCG-related FDPB solvers. As reviewed,
there are several competing methods for the MICCG
solvers: hyperplane ordering [61, 64–67], multi-color
ordering [69, 70], and blocked red–black ordering [71].
The beauty of grouping grid points into hyperplanes is
that all grid points in a hyperplane can be computed
independently of each other. More interestingly, the
computation order in the hyperplane ordering is equiva-
lent to that of the natural ordering, which is crucial for
the fast convergence of MICCG methods. However, this
method is probably attractive only on shared memory
parallel platforms, due to the high level of data
dependency. The multi-color ordering was proposed as
an improvement of the red–black ordering, in order to
strike a balance between data independence and conver-
gence [85]. In this strategy, unknowns of the same color
have no data relationship to each other, so that the
substitutions in MICCG can be independently computed.
In the blocked red–black ordering, grid points are labeled
in blocks of colors of both red and black. The natural
ordering is used within each block. Since blocks with the
same color do not have a data dependency, these blocks
can be independently processed. Doing so reduces data
transfer frequencies between blocks of different colors,
especially when the block size is large [71]. Due to the
low data dependency between blocks, this method should
be suitable for distributed parallel platforms. We are
implementing and analyzing all these strategies to
analyze their scaling for the distributive computing of
realistic biomolecular applications.

Fig. 6 Overall parallel scaling in the multi-block focusing calcu-
lations for p53 DBD (288 blocks) and 70S ribosome (512 blocks),
respectively. The scaling of parallel computing is represented by the
speedups versus the number of threads used in the computation

Fig. 5 Comparison of randomized and sequential partitioning in
terms of fine-grid parallel speedups for p53 DBD (288 blocks) and
70S ribosome (512 blocks)
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