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1  | INTRODUC TION

A total of 28,000 Americans will fall victim to an aneurysmal subarach‐
noid hemorrhage (SAH) this year, and one third of the survivors will 
have a poor cognitive outcome (Bederson et al., 2009; Etminan et al., 
2019). While this is a small number compared to the total number that 
will have a stroke, SAH accounts for a disproportionately large health 
care cost because many of the patients are relatively young compared 
to other kinds of stroke (Bosetti et al., 2017; Reaven, Lovett, & Funk, 
2009; Taylor et al., 1996). Furthermore, 65% of SAH patients will have 
severe constriction of their cerebral vasculature, otherwise known 
as vasospasm (Dankbaar, Rijsdijk, et al., 2009; Dankbaar, Rooij, et al., 
2009; Rooij, Rinkel, Dankbaar, & Frijns, 2013; Vergouwen, 2011). In 
these studies, vasospasm has been found to be independently associ‐
ated with mortality and poor neurological outcome. Remarkably, clinical 

trials that succeeded in reducing vasospasm showed no improvement 
in mortality or neurological outcome of SAH patients (Macdonald  
et al., 2011, 2012, 2008; Vergouwen, Ilodigwe, & Macdonald, 2011). 
Perhaps this is not surprising when one realizes that vasospasm could 
be an epiphenomenon of disease severity, and that treatments aimed 
solely at this sequalae of SAH do not address the underlying red blood 
cell (RBC)‐induced cerebral inflammation that persists.

The neuronal damage seen after SAH could be indirectly caused 
by an immune response initiated by danger proteins from lysed RBCs. 
Several pro‐inflammatory molecules such as heme, methemoglobin, 
and high mobility group box 1 bind to TLR4 and induce an inflammatory 
response (Figueiredo et al., 2007; Kwon et al., 2015; Takizawa et al., 
2017). On the other hand, the presence of heme oxygenase‐1 (HO‐1) 
in microglia reduces inflammation by degrading heme and producing 
carbon monoxide (CO). CO has been found to play an important neuro‐
protective role by clearing subarachnoid blood (Schallner et al., 2015).
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Abstract
This review on the mechanisms of neuroinflammation following subarachnoid hem‐
orrhage will focus mainly on toll‐like receptor 4 (TLR4), Heme Oxygenase‐1 (HO‐1), 
and the role of microglia and macrophages in this process. Vasospasm has long been 
the focus of research in SAH; however, clinical trials have shown that amelioration 
of vasospasm does not lead to an improved clinical outcome. This necessitates the 
need for novel avenues of research. Our work has demonstrated that microglial TLR4 
and microglial HO‐1, not only affects cognitive dysfunction, but also circadian dys‐
rhythmia in a mouse model of SAH. To attempt to translate these findings, we have 
also begun investigating macrophages in the cerebrospinal fluid of SAH patients. The 
goal of this review is to provide an update on the role of TLR4, HO‐1, and other signal 
transduction pathways in SAH‐induced neuroinflammation.
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2  | INNATE IMMUNE RESPONSES TO SAH

Macrophages are a member of the innate immune system, and one of 
the professional antigen presenting cells (APCs). Until recently, it was 
thought that all macrophages were derived from circulating mono‐
cytes, which in turn were generated by the bone marrow. Elegant 
experiments now reveal that tissue resident macrophages, such as 
Kupffer cells, Langerhans cells, and microglia are derived from the 
embryonic yolk sac, whereas circulating monocytes which after in‐
vasion of tissues become macrophages, are derived from the bone 
marrow (Gomez Perdiguero et al., 2015). Our work has shown that 
in a mouse model of SAH, microglia seem to have both protective 
and deleterious roles, depending on the time frame. Early in SAH, 
microglia seem to have a more deleterious role and eliminating them 
decreased neuronal apoptosis. Later on, neuronal apoptosis seemed 
to be independent of the existence of microglia (Hanafy, 2013). 
Furthermore, at least with respect to microglial heme oxygenase, a 
protective role was observed, which will be described in detail in 
the following section (Schallner et al., 2015). Using mouse chimeras, 
where only peripheral marrow was ablated and reconstituted with 
green fluorescent protein‐tagged leukocytes, our group found no 
significant GFP infiltrate 7 days after SAH induction (Schallner et al., 
2015). This would suggest that microglia, at least at 7 days, are the 
only critical mediators of neuroinflammation in SAH.

On the other hand, others have shown an important role for neu‐
trophils in SAH. Early in SAH, neutrophil depletion via Ly‐6G demon‐
strated normal cortical perfusion compared to neutrophil‐intact, SAH 
mice (Provencio, Altay, Smithason, Moore, & Ransohoff, 2011). This 
neutrophil‐induced cortical hypoperfusion is thought to be mediated 
by prostaglandin F2α (Neulen et al., 2019). Other studies have shown 
that the myeloperoxidase produced by neutrophils is found in human 
cerebral aneurysms and facilitates rupture of cerebral aneurysms in 

a mouse model. Other groups have found macrophages to be critical 
in aneurysm formation and rupture. None of these observations are 
mutually exclusive. Likely, many, if not all, components of the innate 
immune system have a part in neuroinflammation and possibly even 
neuroprotection,	at	different	times,	after	SAH	(Jassam,	Izzy,	Whalen,	
McGavern, & El Khoury, 2017; Kanazawa, Ninomiya, Hatakeyama, 
Takahashi, & Shimohata, 2017; Qin et al., 2017; Yao et al., 2017).

3  | ADAPTIVE IMMUNE RESPONSES TO 
SAH

In contrast to innate immune responses, the adaptive immune system 
is based on antigen‐specific receptors such as T‐cell receptors and 
immunoglobulins. Therefore, several days are required to allow for 
memory of specific antigen and antigen‐driven clonal cell expansion 
(Abbas, 2010). In ischemic stroke, adaptive immune responses can 
be activated by multiple mediators generated by the innate immune 
system, leading to autoimmunity. With respect to hemorrhagic stroke, 
little has been done with respect to the adaptive immune system. Only 
one preclinical study has shown neuroprotective effects of statins via 
upregulation of regulatory T lymphocytes in rodent SAH models (Ayer 
et al., 2013). Furthermore, only two clinical studies have shown prolif‐
eration of CD4+ and CD8+ T cells in CSF and peripheral blood of SAH 
patients (Mathiesen, Andersson, Loftenius, & Holst, 1993; Moraes et 
al., 2015). Due to the paucity of research, the clinical implications of 
the adaptive immune system in SAH remain unexplored.

4  | DEL AYED NEUROLOGIC AL DEFICITS

About 30% of surviving SAH patients will have delayed neurological def‐
icits (DND) (Vergouwen, 2011). DND generally occurs 3–14 days after 
aneurysm rupture and carries a high morbidity and mortality (Bederson 
et al., 2009; Diringer et al., 2011). While DND was thought to be a  
direct result of large vessel vasospasm, evidence now exists that vasos‐
pasm can occur independently of DND (Macdonald et al., 2011, 2012, 
2008; Pegoli, Mandrekar, Rabinstein, & Lanzino, 2015; Vergouwen 
et al., 2011). Likewise, DND can occur in the absence of vasospasm; 
this is where RBC‐induced cerebral inflammation, as well as cortical 
spreading depression and microcirculatory dysfunction could be cul‐
prits in DND, based on both clinical and preclinical studies (Hanafy, 
2013; LeBlanc, Chen, Selim, & Hanafy, 2016; Macdonald et al., 2011, 
2012, 2008; Schneider et al., 2015; Vergouwen, 2011; Vergouwen et 
al., 2011).

5  | TOLL‐LIKE RECEPTOR 4 PATHWAY

Toll‐like receptors (TLRs) are membrane‐bound proteins that belong 
to the pattern recognition receptor (PRR) family, are ubiquitously ex‐
pressed, and trigger an innate immune response when bound to their 
respective ligands (Vaure & Liu, 2014). Toll‐like Receptor 4 (TLR4), in 

Significance
For the past 50 years, research in subarachnoid hemor‐
rhage (SAH) has focused on angiographic vasospasm with 
the assumption that this was cause of delayed cerebral is‐
chemia (DCI). After much research, this hypothesis has been 
debunked for the most part. Ameliorating angiographic 
vasospasm does not necessarily improve outcome after 
SAH, nor does all injury in the brain after SAH relate to is‐
chemia. With this realization, came the understanding that 
alternate sources of injury after SAH must be sought, and 
thus neuroinflammation was targeted. Neuroinflammation 
after SAH has many monikers: Early Brain Injury, Cerebral 
Inflammatory Response, delayed neurological injury, et cet‐
era. This review will focus on these alternative mechanisms 
of neuroinflammation after SAH and hopefully provide 
some insights to other researchers to allow us all to move 
the SAH research field forward.
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an SAH mouse model, is predominantly expressed on APCs, such as 
microglia and macrophages, although it is also expressed to a lesser 
extent on astrocytes and neurons (Hanafy, 2013).

TLR4 recognizes a wide range of pathogenic components known 
as damage‐associated molecular patterns (DAMPs), with lipopoly‐
saccharide (LPS) being the canonical agonist, as well as endogenous 
molecules such as heme and fibrinogen which are released during 
SAH (Vaure & Liu, 2014). The activation of TLR4 leads to the synthe‐
sis of pro‐inflammatory cytokines, chemokines, and the expression 
of co‐stimulatory molecules (Vaure & Liu, 2014). Thus, since neuroin‐
flammation is a consequence of SAH, the study of TLR4‐mediated 
inflammation has drawn interest. Of note, heme has been shown to 
be a specific agonist of TLR4 expressed on APCs, stressing the need 
for further understanding of microglia in the heme‐induced cerebral 
inflammatory response (CIR) after SAH (Yao et al., 2017). Heme also 
has TLR4‐independent effects that could contribute to the CIR after 
SAH such as an oxidative burst, increased neutrophil recruitment, 
and increased HO‐1 expression (Yao et al., 2017). Our lab has shown 
that heme induces a significant amount of neuronal apoptosis in a 
mouse model of SAH, compared to LPS stimulation. These findings 
are not entirely surprising given that the toll receptor‐associated ac‐
tivator of interferon (TRIF) pathway, via interferon expression, does 
exert antiapoptotic effects (Blander, 2014; Hanafy, 2013; Shim et al., 
2005).

Among all the TLRs, TLR4 is unique in the sense that it can signal 
through both the myeloid differentiation primary response protein 88 
(MyD88) and the TRIF pathways to induce inflammatory responses 
(O'Neill & Bowie, 2007). Using an SAH mouse model, it was shown 
that in the early phase of SAH, neuronal apoptosis was mostly TLR4–
MyD88‐dependent and microglial‐dependent, whereas, during late 
phase of SAH, neuronal apoptosis was largely TRIF dependent and 
microglia independent. This bimodal pattern of cerebral injury is im‐
portant because it demonstrates that delayed neurological injury can 
occur in a mouse model of SAH as well (Hanafy, 2013; Vergouwen et 
al., 2011).

Both MyD88 and TRIF pathways trigger the expression of nuclear 
factor‐κB (NF‐κB), a key transcriptional regulator of inflammatory‐re‐
lated genes (O'Neill & Bowie, 2007). However, unlike MyD88, TRIF 
also has the ability to induce interferon response elements, thereby 
producing anti‐apoptotic interferons. This antiapoptotic effect of TRIF 
ensures that inflammation from NF‐kB activation will be long lasting 
(O'Neill & Bowie, 2007). NF‐κB, in turn, triggers the transcription of 
pro‐inflammatory genes such as tumor necrosis factor (TNF‐α), in‐
terleukin‐1β (IL‐1β), and intercellular adhesion molecule‐1 (ICAM‐1). 
TNF‐α can induce (RAS‐related C3 Botulinum Toxin Substrate‐1) 
Rac‐1‐mediated oxidative stress and vasoconstriction (Vecchione et 
al., 2009). Moreover, increased levels of TNF‐α in brain interstitial fluid 
were found to correlate with worsened cerebral vasospasm (Hanafy et 
al., 2010). IL‐1β can also induce apoptosis and cyclooxygenase‐2‐fa‐
cilitated inflammation. Finally, increased ICAM‐1 is but one of a mul‐
titude of endothelial proteins that can be upregulated in response to 
inflammation and is thought to have a critical role in microcirculatory 
dysfunction	(Kong,	Kim,	Kim,	Jang,	&	Lee,	2018).

6  | MITOGEN‐AC TIVATED PROTEIN 
KINA SES (MAPKS)

The MyD88‐dependent pathway also has effects on cell survival via the 
activation of mitogen‐activated protein kinases (MAPKs), such as the 
signal‐regulated	kinase	(ERK),	p38,	and	c‐Jun	N‐terminal	kinase	(JNK),	
which in turn leads to stimulation of the transcription factor activator 
protein‐1 (AP‐1) (Fang, Wang, Zhou, Wang, & Yang, 2013). MAPKs are 
directly involved in many cellular responses to a vast range of stimuli 
such as mitogens, heat shock, and inflammation (Pearson et al., 2001). 
Furthermore, the MAPK pathway seems to play a crucial role in the CIR. 
In a rat model of SAH, the MAPK pathway was critical to the regula‐
tion of cerebral blood flow (Maddahi, Ansar, Chen, & Edvinsson, 2011; 
Sun	&	Nan,	2016).	Conversely,	both	the	p38	and	JNK	MAPK	pathways	
were also found to induce post‐SAH neuronal and endothelial cell ap‐
optosis, inflammatory cytokine expression, and facilitate the CIR along 
with delayed neuronal injury (Huang et al., 2013; Sun & Nan, 2016; 
Zhang, Zhao, Shi, & Yin, 2011). To elucidate the role of MAPK path‐
ways in post‐SAH injury, recombinant osteopontin (r‐OPN) was used 
in a rodent model. r‐OPN enhances the endogenous MAPK inhibitor, 
MKP‐1, which suppresses the phosphorylation of MAPKs, caldesmon, 
and heat shock protein 27 in spastic cerebral arteries of a rat model at 
24‐hr post‐SAH (Suzuki, Hasegawa, Chen, Kanamaru, & Zhang, 2010). 
Interestingly, it was shown that administration of r‐OPN prior to SAH 
prevents vasospasm and neurological impairments at 24–72‐hr post‐
SAH, in a rat model (Suzuki et al., 2010).

7  | HIGH MOBILIT Y GROUP BOX 1

HMGB1 is a DNA‐binding protein that regulates gene expression. It is 
passively released during necrosis by cells in order to alert neighboring 
cells of cellular damage (Scaffidi, Misteli, & Bianchi, 2002). Some im‐
mune cells such as monocytes, macrophages, and dendritic cells secrete 
HMGB1 in an active manner, in response to various cellular stresses 
(Abraham, Arcaroli, Carmody, Wang, & Tracey, 2000; Lotze & Tracey, 
2005; Wang et al., 1999). Important receptors such as the receptor for 
advanced glycation end products (RAGE), TLR2, TLR4, and TLR9 have 
been found to participate in HMGB1 signaling. RAGE is a receptor found 
at low levels in normal tissues, but upregulated at sites where its ligands 
concentrate (Chavakis, Bierhaus, & Nawroth, 2004). HMGB1 signaling 
through RAGE upregulates the production of chemotaxins and cytokines 
via NF‐kB (Palumbo et al., 2007; Park et al., 2003). The activation of TLR2 
and TLR4 by HMGB1 leads to the upregulation of NF‐kB (Kokkola et al., 
2005; Park et al., 2006, 2004); hence, HMGB1 likely leads to the release 
of pro‐inflammatory cytokines through these pathways. Furthermore, 
the interaction of IL‐1β, IFNγ, and TNFα with HMGB1 leads to an ampli‐
fied inflammatory response compared with HMGB1 stimulation alone 
(Sha, Zmijewski, Xu, & Abraham, 2008). In addition, HMGB1 stimulates 
the release of reactive oxygen species by neutrophils via a TLR4‐depend‐
ent activation of (Nicotinamide adenine dinucleotide phosphate) NADPH 
oxidase (Fan et al., 2007) which results in further release of cytokines 
(Lotze & Tracey, 2005; Palumbo et al., 2007). HMGB1 also mediates the 
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adhesion of inflammatory cells to the endothelial lumen by increasing 
the expression of ICAM‐1 and vascular cell adhesion molecule (VCAM‐1) 
(Fiuza et al., 2003; Treutiger et al., 2003).

It has been shown that HMGB1 is released from the nucleus of 
neuronal cells to the extracellular space during ischemic and traumatic 
brain injuries, and that the targeting of HMGB1 with monoclonal an‐
tibodies (mAb) reduces brain injury by preventing the breakdown of 
the blood–brain barrier (BBB) and reducing the inflammatory response 
(Liu et al., 2007; Okuma et al., 2012; Zhang, Takahashi, et al., 2011) In 
addition, data from several clinical studies indicate that HMGB1 could 
play a critical role in CIR and DND after SAH due to the high levels of 
HMGB1 found in plasma during the post‐SAH period (Murakami et al., 
2011; Nakahara et al., 2009; Zhu et al., 2012).

Finally, in a rat SAH model, administration of anti‐HMGB1 anti‐
bodies decreased vasospasm by inhibiting HMGB1 translocation into 
arterial smooth muscle cells, thereby suppressing vasoconstriction and 
vascular inflammatory responses (Haruma et al., 2016).

8  | HEME OX YGENA SE (HO)

HO is an enzyme that catalyzes the degradation of heme. There are two 
isoforms of heme oxygenase (HO): HO‐1 and HO‐2. HO‐1, the induc‐
ible form, is found in neuronal cells, glial cells, and macrophages such as 
microglia, whereas HO‐2 is constitutively expressed in neuronal cells and 
vascular endothelial cells (Sutherland et al., 2009). Our lab demonstrated 
that microglial HO‐1 is necessary to alleviate neuronal cell death and cog‐
nitive dysfunction, as well as facilitate erythrophagocytosis (Schallner et 
al., 2015). Free heme released into the subarachnoid space during SAH 
is metabolized by HO‐1, releasing iron (Fe2+), biliverdin, and carbon mon‐
oxide (CO) (Kikuchi, Yoshida, & Noguchi, 2005).Free iron is thought to 
cause cell membrane damage via free radicals and the Fenton reaction 
(Loftspring, 2010). Previous studies have shown a causal relationship 
between free iron and brain injury following SAH (Gomes et al., 2014). 
Moreover, it has been shown that treatment with the iron‐chelating 
agent, deferoxamine (DFX), decreases brain edema, oxidative stress, and 
neuronal	apoptosis	(Lee	et	al.,	2010;	Yu,	Jia,	&	Chen,	2014);	further	cor‐
roborating the damaging role of free iron (Loftspring, 2010; Selim, 2009). 
Our lab has shown that intrathecal administration of DFX may mediate 
some of its neuroprotective effects by increasing the expression of micro‐
glial HO‐1, as well as reducing neuronal apoptosis, reactive mitochondrial 
species, and improving cognitive function (LeBlanc et al., 2016).

To further elucidate the neuroprotective role of microglial HO‐1 
after SAH, we investigated one of the by‐products of heme metab‐
olism: CO. Despite the nefarious reputation of CO, we found it to 
be the neuroprotective by‐product of heme catabolism by microglial 
HO‐1 (Schallner et al., 2015). This was elucidated by exposing mice 
lacking microglial HO‐1 to gaseous CO, after SAH, which resulted in 
reduced injury, and improved cognitive function. This could be due to 
increasing erythrophagocytosis, although CO's effects are pleiotropic 
due to its gaseous nature. To this end, we found that administration 
of gaseous CO aids in normalizing circadian dysrhythmia after SAH 
(Schallner et al., 2017). We found that SAH induced at dawn compared 

to sunset resulted in worse cognitive function, more neuronal apop‐
tosis, and an increased inflammatory milieu; all this correlated with 
reduced microglial HO‐1 expression at dawn and was rescued with 
exogenous CO administration (Schallner et al., 2017).

Additionally, CO seems to function similarly to nitric oxide (NO) as a 
vasodilator, neurotransmitter, and platelet aggregation inhibitor, as well 
as serving other anti‐inflammatory roles (Hanafy, Oh, & Otterbein, 2013). 
It is thought to act via soluble guanylyl cyclase (sGC), as well as cyclic 
GMP (cGMP), and BKca channels leading to vasodilation in the vascular 
smooth	muscle	cells	(Hou,	Xu,	Heinemann,	&	Hoshi,	2008;	Jaggar	et	al.,	
2005; Kaide et al., 2001; Wang, Wu, & Wang, 1997; Wu, Cao, Lu, & Wang, 
2002), and thus the reduction of vasoconstriction. In addition, CO seems 
to inhibit TLR 2, 4, 5, and 9 signaling pathways in macrophages by inter‐
rupting their recruitment to membrane rafts (Nakahira et al., 2006). These 
rafts, are specialized lipid domains that contribute to immune signal trans‐
duction. CO was shown to inhibit TLR trafficking to lipid rafts by suppress‐
ing NADPH oxidase‐dependent ROS generation (Nakahira et al., 2006).

9  | CD163

Haptoglobin is a protein found in the plasma that binds free hemoglobin 
(Hb) released from RBCs forming the hemoglobin–haptoglobin complex 
(Kristiansen et al., 2001). Cluster of differentiation 163 (CD163) was 
found to be a specific receptor of the hemoglobin–haptoglobin complex 
and is exclusively expressed on monocytes and macrophages. CD163 is 
involved in the clearance and endocytosis of hemoglobin–haptoglobin 
complexes, and thus it may protect tissues from hemoglobin‐mediated 
oxidative damage, serving as an alternative to the heme‐TLR4/HO‐1 
pathway. To determine the potential role of CD163 in SAH patients, our 
lab performed flow cytometry on the cerebrospinal fluid (CSF) from SAH 
patients and found increased expression of CD163 on macrophages 
from SAH patients compared to unruptured aneurysm controls. To 
verify these findings, we then performed immunohistochemistry on the 
CSF macrophages from SAH patients with increasing modified Fisher 
scales, where the Fisher scale refers to the RBC burden of an SAH 
patient noted on CT scan. As expected, we found increased CD163 
expression on macrophages which had phagocytosed more blood. 
Surprisingly, we found an inverse correlation between CSF macrophage 
CD163 expression measured on day 1 after SAH, and 90 day outcome 
of these patients as measured by the modified Rankin Scale (mRS). That 
is, increasing CD163 expression seemed to correlate with improved 
neurological outcome, or a lower mRS. With further study, CSF mac‐
rophage CD163 expression may prove to be an important biomarker for 
SAH prognostication (Thomas, Ogilvy, Griessenauer, & Hanafy, 2018). 
Understanding why this is so might lead to novel immunotherapies.

10  | ANTI‐ INFL AMMATORY TRE ATMENTS 
IN SAH PATIENTS

There is great interest in identifying an inflammatory biomarker that 
is associated with DND. Despite the fact that no biomarker has been 
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validated to this end, a number of small scale clinical trials have at‐
tempted to use various anti‐inflammatory agents in SAH, but to no 
avail. Acetylsalicylic acid (Dorhout Mees, Bergh, Algra, & Rinkel, 
2007), steroids (Chyatte, Fode, Nichols, & Sundt, 1987; Gomis et al., 
2010; Mohney et al., 2018), various nonsteroid anti‐inflammatory 
agents (Nassiri et al., 2016), immunosuppressants (Manno, Gress, 
Ogilvy, Stone, & Zervas, 1997; Ryba, Pastuszko, Iwanska, Bidzinski, & 
Dziewiecki, 1991), and IL‐1 receptor antagonists (Singh et al., 2014) 
have all been failures. There are many potential explanations for these 
failures, but perhaps a more directed immune‐based approach might 
be necessary, mirroring novel therapies in the oncology world like chi‐
meric antigen receptor T cells, but for the innate immune system.

11  | CONCLUSION

The mechanisms behind the adverse sequalae of SAH are still poorly 
understood; although a summary of the cerebral inflammatory sig‐
nal transduction pathways highlighted in this review are presented in 
Figure 1. While neuroinflammation itself is well known to cause cogni‐
tive dysfunction in diseases such as multiple sclerosis, poststroke recru‐
descence, and even systemic bacteremia; an exact mechanism behind 

the cognitive dysfunction in SAH has yet to be elucidated. Moreover, 
the high mortality rate of SAH patients makes it imperative to find new 
and better therapeutic treatments. SAH neuroinflammation seems to 
be caused primarily by the breakdown of hemoglobin in the subarach‐
noid space, which leads to the release of heme. Heme works as a po‐
tent TLR4 activator, and also activates the MyD88 and TRIF cascades. 
Microglia, macrophages, and neutrophils likely all have roles in poten‐
tiating heme‐mediated inflammation. While the involvement of the 
adaptive immune system in hemorrhagic stroke is not well understood, 
it could be important as well. RAGE, MAPK, and HMGB1 are involved 
in the initiation and propagation of inflammation, while CD163 and CO 
quell the inflammatory response. Despite the recent discovery of the 
neuroprotective effects presented by DFX and CO, there is still a clear 
need to further understand the neuroinflammation in SAH.
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F I G U R E  1   Heme metabolism and the microglial toll‐like receptor 4 (TLR4) signaling pathway following SAH: In the subarachnoid space, 
free heme is metabolized by heme oxygenase (HO)‐1, releasing iron (Fe2+), biliverdin, and carbon monoxide (CO). Deferoxamine (DFX), 
an iron‐chelating agent, decreases the oxidative toxicity of free iron and increase the HO‐1‐mediated neuroprotective effect. Low‐dose 
CO also has neuroprotective effect by increasing erythrophagocytosis. Heme initiates microglial TLR4 signaling and activates the myeloid 
differentiation primary response protein 88 dependent (MyD88) in early phase of SAH and the toll receptor associated activator of 
interferon‐dependent (TRIF) cascade in late phase of SAH. MyD88 triggers the expression of nuclear factor‐κB (NF‐κB) and mitogen‐activate 
protein kinase (MAPK), resulting in apoptosis and pro‐inflammatory gene expression. BBB, brain–blood barrier; ICAM‐1, intercellular 
adhesion molecule 1; and VCAM‐1, vascular cell adhesion molecule 1 [Color figure can be viewed at wileyonlinelibrary.com]
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