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ABSTRACT

Breast cancer (BC) remains a significant threat to women's health worldwide. The oncology field had an exponential growth in

the abundance of medical images, clinical information, and genomic data. With its continuous advancement and refinement,
artificial intelligence (AI) has demonstrated exceptional capabilities in processing intricate multidimensional BC-related data.
Al has proven advantageous in various facets of BC management, encompassing efficient screening and diagnosis, precise

prognosis assessment, and personalized treatment planning. However, the implementation of AI into precision medicine and

clinical practice presents ongoing challenges that necessitate enhanced regulation, transparency, fairness, and integration of

multiple clinical pathways. In this review, we provide a comprehensive overview of the current research related to Al in BC,

highlighting its extensive applications throughout the whole BC cycle management and its potential for innovative impact.
Furthermore, this article emphasizes the significance of constructing patient-oriented Al algorithms. Additionally, we explore
the opportunities and potential research directions within this burgeoning field.

1 | Introduction

Seventy years after its inception, artificial intelligence (AI) is
being developed at an unprecedented pace. Predominantly re-
lying on machine learning (ML) and deep learning (DL)
methods, AI has demonstrated remarkable superiority in
advancing contemporary medicine, particularly, within the
oncology field, through continuous innovation [1, 2]. ML en-
compasses a compilation of intricate algorithms that can
effectively handle tasks arising from exponentially growing data

by acquiring patterns through iterative processes, resulting in
enhanced performance over time [3, 4]. The traditional ML
algorithms involve a variety of forms, including random forest,
k-nearest neighbor, and support vector machine [5]. DL meth-
ods fall within the realm of ML and use artificial neural net-
works composed of multiple layers of simulated neurons,
rendering them, particularly, well-suited for image and video
processing. The commonly employed DL architectures en-
compass recurrent neural networks, convolutional neural net-
works, transformers, and others. DL primarily focuses on

Abbreviations: ADC, antibody-drug conjugate; Al, artificial intelligence; AUC, area under the receiver operating characteristic curve; BC, breast cancer; CAD, computer-aided detection; CDS,
clinical decision support; cfDNA, circulating cell-free DNA; ctDNA, circulating tumor DNA; DL, deep learning; LN, lymph node; ML, machine learning; MRI, magnetic resonance imaging; NAC,

neoadjuvant chemotherapy; TNBC, triple-negative breast cancer.
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acquiring cancer image data-related knowledge by employing
convolutional neural networks to learn rules and representa-
tions, while iteratively updating the specific parameters to es-
tablish accurate and reliable models [1].

AT applications have become widely used for the comprehen-
sive management of all steps of the cancer process, thus es-
tablishing new possibilities for cancer research. By leveraging
innovative self-supervised learning methods, developing fun-
damental models capable of encoding intricate medical data has
become feasible [6]. The AI field excels in the integration of
diverse data models to enable comprehensive tumor screening,
diagnosis, drug optimization, and clinical prognostic evaluation
through the analysis and assimilation of multidimensional data,
including patient clinical information, image data, and molec-
ular characteristics. Furthermore, the capacity for Al to con-
tinuously learn from novel data fosters adaptive and iterative
enhancements in diagnostic accuracy and treatment effective-
ness over time. Although AI clinical applications in oncology
are still in the developmental stage with anticipated limited
penetration, the continuous integration of AI and medical
technology will propel the implementation of technological
advancements in precision oncology [2].

Breast cancer (BC) remains a significant global health challenge
because of its high incidence and mortality rates [7]. Fortu-
nately, advancements in screening, diagnosis, systematic treat-
ment, and personalized therapy have led to improved survival
rates for BC patients [8]. Correspondingly, these patients also
face longer treatment and follow-up times, posing challenges

for integrated BC management. Additionally, the growing un-
derstanding of BC biology and the rapid development of mul-
tiomics technologies have comprehensively enhanced patient
information with rich imaging data, complete pathological
records, deep genomic insights, and more [9]. Given the high
prevalence of BC and the need for multivariate data processing
and precision treatment approaches, applying AI for early
diagnosis, prognostic prediction, and individualized therapy is
at the forefront of Al-assisted disease management. These ap-
plications have garnered significant attention in clinical prac-
tice (Figure 1). However, numerous challenges remain in
diagnosing and treating BC, particularly, triple-negative breast
cancer (TNBC) and advanced-stage disease, which lack effective
treatments and have higher associated mortality rates [10].
Early detection and accurate treatment strategies are crucial for
improving patient prognosis and overall quality of life [11]. In
the future, further research, enhanced practices, and appropri-
ate regulation will facilitate the broader clinical translation of
patient-centered AI to benefit a larger population of BC
patients.

Here, we searched the PubMed database (https://pubmed.ncbi.
nlm.nih.gov/) for studies published from January 2014 to
October 2024 using the terms “breast cancer” and either “deep
learning” or “machine learning.” The results suggest that the
number of articles related to AI applications in BC has been
increasing exponentially over recent years (Figure 2). After
carefully reviewing a list of over 3000 papers from the past
3 years, we narrowed down our selection to more than 1000 by
eliminating repetitive or unrelated articles, as well as reviews
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Overview of the whole-cycle involvement of AI in BC management. The application of AI has become prevalent in BC diagnosis,

prognosis, and treatment methods. By processing and analyzing clinical information, medical images, and other patient-related data, AI aids

healthcare professionals in implementing personalized health management for patients. Furthermore, Al encounters numerous challenges in its
clinical applications. AE, autoencoder; Al, artificial intelligence; BC, breast cancer; CNN, convolutional neural network; DRL, deep reinforcement
learning; GAN, graph adversarial network; GNN, graph neural network; NN, neural network; RNN, recurrent neural network.
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decade. The PubMed database was searched using the terms “cancer,” “breast cancer,” “diagnosis,

learning.” Al, artificial intelligence; BC, breast cancer.

and systematic reviews. To ensure comprehensive coverage, we
included approximately 20 articles under each subheading
using factors, such as patient population size, training set size,
and test set size.

The objective of this review is to provide a comprehensive
overview of the latest advancements and challenges in BC Al
applications, as these emerging technologies gradually transi-
tion from behind-the-scenes operations to prominent roles,
facilitating data translation into clinical applications. This
review primarily focuses on the application status and potential
of AI in various aspects of BC management, specifically
addressing diagnosis, prognosis, and treatment separately.
Notably, numerous studies have explored diverse application
scenarios rather than focusing on a singular aspect.

2 | BC Diagnosis and Risk Assessment

2.1 | Medical Imaging

There is a long history of computer-assisted improvements in
medical imaging performance for BC screening and diagnosis.
Computer-aided detection (CAD) was approved in 1998 by the
Food and Drug Administration for use in mammography, with

1400

Breast cancer

1000 /
800 /

[
(=3
(=}

Count of relevant publications

600 —
400
200 —
0 T T T T T T T T T T T
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Time (year)
240

[Breast cancer, prognosis]

200 »‘&/

120

Count of relevant publications

40

T T T T T T T T T T T
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Time (year)

Number of published articles related to the application of AI in cancer and BC, as well as BC diagnosis and prognosis, over the past

»

prognosis,” “deep learning,” and “machine

widespread adoption following [12, 13]. However, because of
limitations, such as false positives and increased recall rates,
CAD cannot meet the increased demand for mammography
performance [14]. Early detection and diagnosis are key for
improving BC patient survival rates. In general, the BC mor-
tality rate has been significantly reduced with mammography-
based screening and more effective treatment methods. The
5-year survival rate of early-stage BC is more than 90%. How-
ever, the decline in BC mortality has slowed over the past
decade [15], likely because the current screening technologies
are gradually stabilizing. This suggests that early detection rates
are still insufficient, especially for women with dense breast
tissue. ML and DL models have showed high accuracy,
robustness, and performance for cancer screening and risk
prediction in the medical imaging field [2, 16]. DL-based Al
algorithms can improve the mammography detection rate and
diagnostic accuracy for BC. In a retrospective study, radiologists
from multiple institutions found excellent performance when
evaluating more than 30,000 pathology-proven cancer-positive
mammograms by adding AI. This demonstrates that AI can
improve the diagnostic performance of radiologists by over-
coming the problems associated with traditional CAD [17].
Another study noted that a system consisting of pretrained
black-box predictive AI and learning-delay AI reduced the false
positive rate by 25% with the same rate of false negatives, while
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reducing the clinician workload by 66%, compared with double-
read arbitration in a screening program [18].

In addition to mammography, unique features and rich imaging
data, such as ultrasound, magnetic resonance imaging (MRI),
and positron emission tomography/computed tomography
(PET/CT) scans, can provide opportunities for clinically
meaningful Al The preliminary results of applying Al in these
fields have shown advantages [19-21]. Although ultrasound
partially compensates for the limitations of mammography, it
also faces certain issues, including high false positive and recall
rates [22]. Shen et al. showed that an AI system was able to
detect cancer with the same sensitivity and higher specificity
than radiologists [23]. A hybrid diagnostic model combining
predictions from both radiologists and this AI system maintains
test sensitivity while reducing the false positive rate by 37.3%
and required biopsies by 27.8% [23]. Moreover, using
ensemble DL models can identify subtle elements on breast
lesion images, further improving the performance and read
time of ultrasound images [19, 24]. DL can also combine
ultrasound and elastography to predict axillary lymph node
(LN) metastasis, which may reduce false positive diagnoses and
unnecessary biopsies [25].

There is great potential in applying Al-based risk models
derived from medical imaging data to analyze unstructured
information, which can enable an accurate assessment of BC
risk. AI can be leveraged to directly predict a patient's short-
term or lifetime probability of developing cancer [26, 27].
Comprehensive risk prediction models are able to identify high-
risk women while reducing interventions for low-risk women,
with high discrimination [27]. Currently, the major models
used for BC risk prediction are Gail, Tyrer-Cuzick, BOADICEA,
and BRCAPRO. Among them, the Tyrer-Cuzick model, which
integrates personal history and multigenerational family his-
tory, can effectively predict cancer risk [28]. According to a
study with a 10-year follow-up period, Al-based risk model
images for mammography showed that the AI model was
superior to the Tyrer—Cuzick model for both short-term and
long-term assessments [29]. An image-based DL method dem-
onstrated superior discrimination of individual risk in a 5-year
cancer risk prediction study using breast MRI scans. The area
under the receiver operating characteristic curve (AUC) values
ranged from 0.544 to 0.732, surpassing the AUC range of
0.401-0.585 achieved with the Tyrer-Cuzick model [30]. For
carcinoma in situ, AI supports a higher detection rate than
standard screening [31]. Of note, a proportion of patients with
early or interval BC may later develop advanced or metastatic
disease characterized by refractory, aggressive, and poor prog-
nosis. Therefore, early risk assessment and prediction are nec-
essary for these patients. Vachon and colleagues evaluated
mammograms captured within a period of 2 years preceding BC
onset, with a maximum of 5.5 years. They showed that Trans-
para Al algorithms combined with breast density can contribute
to improved detection and long-term risk prediction for invasive
BC [32]. AI algorithms can identify suspicious areas that may
develop into advanced BC, providing screening opportunities
for people at high risk of cancer to support early intervention or
prevention. This is, particularly, important for predicting cancer
with poor prognosis. In another study, an AI model was found
to be a powerful predictor for BC risk stratification within

3-6 years after a negative mammogram, providing a better
strategy for early screening intervals [33].

The rapid advancement of Al in the breast imaging field presents
numerous possibilities for addressing the limitations associated
with clinical diagnostic accuracy, time to diagnosis, and consist-
ency. However, careful consideration is still required before its
widespread implementation in clinical practice. In the future,
integrating Al with comprehensive clinical data and multiple
radiomics may potentially surpass the constraints of the current
analytical methods for BC screening and risk assessment. This will
aid in reducing false positive results, effectively detecting interval
cancers, and assisting physicians in achieving accurate diagnoses.

2.2 | Pathology

Pathology has long played a central role in tumor diagnosis. As
with noninvasive imaging, the integrated development of Al
and pathology has had a positive impact [34]. Overall, the
introduction of novel pathological techniques, such as whole-
slide imaging, has provided more comprehensive and intricate
large-scale data sets that encompass breast fine-needle aspira-
tion specimens or tissue specimens [3, 35]. Applying Al-based
digital pathology technology can overcome the inherent limi-
tations associated with the subjective nature of pathologists,
including variations in data perception and judgment, thereby
effectively reducing their workload. A notable example is the
significant improvement in detection sensitivity for micro-
metastatic BC from 83% to 91%, accompanied by a remarkable
reduction in the average detection time by pathologists from
116 s to 61s through the assistance of DL algorithms [36].
The DL field offers precise and efficient tools to assist pathol-
ogists with tasks, such as tumor diagnosis, molecular typing, LN
metastasis identification, immune infiltration analysis, and
prognosis assessment [37]. The quantitative analysis of tissue
markers, such as Ki-67 and HER2, plays a crucial role in BC
assessment. However, the evaluation of these markers is
somewhat subjective. Abele et al. evaluated biopsy specimens
from 204 women with invasive BC. The average intraobserver
agreement for Ki-67 between manual interpretation and Al-
assisted interpretation was 87.6% (95% confidence interval [CI]:
85.0-89.8) [38]. For ER/PR, it was 89.4% (95% CI: 87.6-91.0).
Furthermore, the impact of Al assistance on the interobserver
reliability was investigated, with Krippendorffs « slightly
increasing from 0.69 (95% CI: 0.65-0.73) to 0.72 (95% CI:
0.68-0.76) [38]. Correctly interpreting the HER2 immuno-
histochemistry staining results is crucial for the personalized
treatment of patients [39]. It can be challenging to distinguish
between HER2 0 and 1+ cases. Wu et al. showed that the
accuracy of Al-assisted interpretation increased by 13%, with
the AI algorithm improving the overall consistency. In HER2
1+ cases, the accuracy was significantly increased by 21% in the
case of heterogeneity [40]. Furthermore, AI can address some of
the limitations of the current concomitant diagnostic analysis
methods that use genomic or tissue biomarkers. The heteroge-
neity within tumors allows for different spatial locations to
generate different diagnostic and prognostic information. Al-
based interrogation tools can help overcome this limitation by
analyzing all tumor tissue slides to generate comprehensive,
consistent features that represent the entire lesion.
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Currently, AI methods are mainly used to analyze two-
dimensional (2D) pathology images. In contrast, three-
dimensional (3D) pathology techniques can generate high
amounts of data from cancer specimens in a nondestructive
manner, providing a potential opportunity for AI analysis to
provide a high-quality comprehensive presentation of the tissue
microstructure over a large region of interest [41]. In molecular
oncology diagnostic research, especially in the context of ex-
tensive data sets and single-cell sequencing-driven high-
throughput genomics, data containing high levels of genetic
variation need to be supported by a combination of comprehen-
sive molecular analysis and ML to be processed and interpreted at
the genetic and clinical levels. This must also be done within
a reasonable time frame to assist in clinical decision-making
[42, 43]. In addition, analysis of other omics data containing
complex and important information, such as proteomics and
methylome data, will be inseparable from AI use in the future.

2.3 | Liquid Biopsy

In recent years, using liquid biopsy of body fluid samples, which
encompass a diverse range of tumor derivatives, has gained sig-
nificant traction for BC management. Circulating cell-free DNA
(cfDNA), circulating tumor DNA (ctDNA), and circulating tumor
cells in peripheral blood have become promising biomarkers for
the early diagnosis and dynamic monitoring of disease response
and prognosis [44]. One study assessed the use of cfDNA
methylation profiling for identifying tumor components and
detecting potential tumors with a semireference deconvolution
algorithm leveraging tumor scores and ML models, which
achieved 86.1% sensitivity and 94.7% specificity for early cancer
detection [45]. Methylation sequencing has the potential to
improve current cfDNA testing methods. Indeed, abnormal
methylation of CpG islands is often widespread during cancer
initiation, reflecting early tumor changes. The methylation pat-
tern of cfDNA is consistent with the cell or tissue of origin, but
the blood concentration is usually very low. Although the current
detection and analysis methods have broad clinical application
prospects, there are still many challenges and difficulties, such as
the screening specificity and sensitivity [46]. However, using Al-
assisted methylation sequencing offers distinct advantages from
its ability to detect low-abundance ctDNA information at dilution
factors as low as 1/10,000, as demonstrated by Liang et al. [47].
Furthermore, cancer patients often exhibit unique cfDNA frag-
mentary patterns, and traditional clinical fragmentary studies
have focused on genome-wide fragmentation patterns using
whole-genome sequencing methods. A recent study used an ML
model of the fragmentary patterns of a targeted cfDNA
sequencing panel to distinguish multiple cancer types, including
BC, and to discriminate cancer from noncancer at very low
ctDNA fractions [48]. Predictably, incorporating the cfDNA
sequence, methylation status, and fragmentation patterns into
the classifier can potentially augment ML cancer detection
models, enhance classifier performance, elevate the diagnostic
and predictive capabilities of liquid biopsy, and facilitate real-
time monitoring of a cancer patient's health status.

Accurate and timely diagnosis and risk prediction are impera-
tive for efficacious treatment and prolonged survival of in-
dividuals with BC, representing persistent challenges in the

field [49]. The potential of AI for clinical applications, such as
imaging, histopathology, and liquid biopsy, is noteworthy.
Nevertheless, applying Al often faces issues, such as overfitting
and model generalization. The successful clinical translation of
Al and provision of optimal patient service necessitate large-
scale, multicenter, high-quality prospective studies to suffi-
ciently validate AI models. Moreover, enhanced transparency,
improved interpretation, and appropriate regulation are all
required.

3 | BC Prognosis Prediction

BC patient prognosis is influenced by a multitude of intricate
factors, including age, family history, lifestyle, and pathological
characteristics. Promptly predicting cancer prognosis poses a
multifaceted challenge [50]. By integrating various data sources
to construct survival prediction models, Al can assist clinicians
with more accurately forecasting patient outcomes. A study
conducted by Xiao et al. revealed that the random survival
forest model exhibited a slightly significant improvement over
the traditional Cox regression model for discrimination power,
which was potentially attributed to its enhanced capability of
detecting and elucidating higher-order interactions, as well as
nonlinear relationships [51]. Random forest is a commonly used
model for BC survival prediction, as it is easy to adjust and
interpret and can handle high-dimensional nonlinear features
with high generalization [52, 53]. In addition, the ML algorithm
XGBoost model has demonstrated significant clinical utility for
predicting the prognosis of BC patients with brain metastases.
This model exhibited excellent performance in external inde-
pendent data sets, with a survival AUC value exceeding 0.8
from 6 months to 3 years [54]. Of note, the widespread appli-
cation of these models remains to be carefully considered. A
recent large cohort study in the United Kingdom reported that
statistical regression models performed similarly to or better
than ML models in predicting the 10-year risk of BC-related
death among women at any stage. Compared with Cox pro-
portional hazards and competing-risk regression methods,
XGBoost or neural networks showed complex miscalibration
patterns and unstable calibration of cancer stage groups [55].
Although the study did not adequately incorporate other data
sources that could potentially enhance its predictive capabili-
ties, its results still suggest that certain limitations of the ML
predictive model necessitate further refinement for enhanced
clinical utility. This also underscores the need for cautious
implementation of open-bag AI and acknowledges its current
inability to fully supplant traditional prognostic prediction
methods. Early prediction of recurrence in BC patients is
helpful for developing personalized treatment plans and post-
operative follow-up strategies, as well as for improving survival
rates [52]. TNBC patients are more likely to experience meta-
static recurrence and death than patients with other BC sub-
types [52, 56]. An advanced DL-based image analysis model has
enabled the objective and highly reproducible assessment of
tumor-infiltrating lymphocytes. A multiscale embedded DL
framework can capture and quantify cancer-related LN changes
that are not limited to the presence and size of cancer cell
deposits. Furthermore, using ML workflows to assess tertiary
lymphoid structure and tumor budding, as well as the com-
prehensive analysis of their correlation, holds significant value
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in prognosticating recurrence and evaluating TNBC patient
prognosis. These methods hold significant value in predicting
recurrence and evaluating prognosis for these individuals
[57, 58].

Exploring potential survival predictors through large-scale data
analysis is also an important reflection of the involvement of AI
in personalized prognosis prediction [59]. Traditional patho-
logical factors, such as tumor type, LN metastasis status, and
serological indices, are insufficient to meet the needs of per-
sonalized treatment. Multiomics, including genomics, has
played an important role in the development of BC biomarkers
[60]. However, manually exploring the key genes or gene
clusters in a large set of high-dimensional data has remained a
challenge. Mirza et al. integrated multiple microarray data sets
by employing a variety of ML methods, using disease-free sur-
vival and overall survival analyses to identify eight key genetic
prognostic biomarkers (CCNE2, NUSAP1, TPX2, S100P,
ITM2A, LIFR, TNXA, and ZBTB16) [61]. Zheng et al. combined
clinical features and transcriptome analysis with ML screening
of prognostic biomarkers and applied the LASSO-Cox regres-
sion coefficient to construct a risk model [62]. Prognostic
models with more patient information and clinical trials can
help achieve better clinical data practicability and more efficient
and accurate treatment planning and clinical decision-making.

4 | BC Treatment

41 | Drugs

Drug therapy for BC treatment is rapidly evolving, including the
use of endocrine inhibitors, targeted therapeutics, immuno-
therapy, and antibody-drug conjugates (ADCs). Therefore, it is,
particularly, important to predict treatment response, explore
drug combinations, or discover new drugs to prevent resistance
and improve prognosis. Multitasking model suites using inte-
grated genomes, targets, drug structures, bionetwork data, and
effect-based characteristics help to personalize drug or combi-
nation response prediction and guide treatment selection to
maximize efficacy and minimize toxicity [63, 64]. The objective
tumor response rate of first-line treatment with CDK4/6
inhibitors is less than 50%, and conducting a comprehensive
analysis with the construction of interpretable DL for the tumor

gene profile can predict the effectiveness and resistance of
palbociclib for BC [65]. Sammut et al. used ML approaches that
integrated clinical, molecular, and digital pathology data to
predict treatment responses [63]. These models were externally
validated and showed excellent discrimination over models that
used clinical variables [63].

Neoadjuvant chemotherapy (NAC) has become the established
standard of care for BC treatment for tumor size reduction,
downstaging, and improved rates of breast conservation sur-
gery. A patient's response to NAC also plays a pivotal role in
predicting treatment efficacy and guiding subsequent thera-
peutic decisions. However, because of inherent tumor hetero-
geneity, responses to NAC often exhibit significant variability
[66]. The early and accurate prediction of treatment response
can facilitate timely treatment regimen adjustments, which
would benefit patients with poor response to NAC. Multiple DL
models have demonstrated superior overall performance in
evaluating the effects of NAC compared with some conven-
tional response prediction methods (Table 1). In a retrospective
study, one model focused on MRI-based quantitative in-
tratumor heterogeneity measures, combined with clinico-
pathological variables and conventional radiomics. This model
displayed excellent performance in predicting the pathological
complete response to NAC (AUC =0.83-0.87) [72]. Yu et al.
integrated DL radiomics and clinicopathological information to
construct an outstanding NAC response prediction model,
using transfer learning to address overfitting issues in small
sample size and imbalanced medical image data set [71].

The drug discovery field is associated with challenges charac-
terized by exorbitant costs, lengthy development cycles, and a
low success rate in drug development. Moreover, less than 5%
of drugs successfully pass oncology clinical trials to gain
approval of the Food and Drug Administration [75]. Al has
emerged as an invaluable tool across various stages of the drug
discovery pipeline, encompassing novel drug design, analysis of
drug reactions and reverse synthesis, and molecular optimi-
zation and screening (Figure 3) [76]. By analyzing and inter-
preting vast amounts of biological, chemical, and clinical data,
Al can be trained to accurately identify compound hits and
drug molecular structures. It can also rapidly verify drug tar-
gets and optimize drug structure designs. A recent study has
demonstrated that an Al-based Linear design tool was highly

TABLE 1 | Recent studies that employed Al for predicting BC patient responses to neoadjuvant therapy.
Data sources Method Training cohort (n) Testing cohort (n) AUC Refs.
Ultrasound Automated and reusable DL 1727 685/144 0.83 [67]
PET/CT Deep semisupervised transfer learning 1019 (all) 0.76 [68]
Pathology CNN 926 126 0.88 [69]
MRI KNN, SVM, and so on 70 70 0.96 [70]
Ultrasound Four different deep CNNs 420 183 0.94 [71]
MRI Imaging-based decision tree models 335 1254 0.87 [72]
MRI Multilayer perception, and so on 409 343/170/340 0.93 [73]
Pathology Federated learning 449 237 0.78 [74]

Note: The selected AUC refers to the optimal value obtained from the validation set mentioned in the citation. Please refer to the original for the exact value.
Abbreviations: AUC, area under the receiver operating characteristic curve; CNN, convolutional neural network; DL, deep learning; KNN, k-nearest neighbor; MRI,
magnetic resonance imaging; PET/CT, positron emission tomography/computed tomography; SVM support vector machine.
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development, and registration, offer notable advantages, such as enhanced
olism, excretion, and toxicity; Al, artificial intelligence.

efficient in vaccine development. The messenger RNA (mRNA)
vaccines and drugs generated using this AI tool exhibited ex-
ceptional accessibility, optimized stability, and encoded the
necessary epitopes. Consequently, they can provide valuable
support for further advancements in mRNA-based anticancer
drug research [77]. Additionally, the continuous advancement
of DL offers enhanced prospects for protein structure predic-
tion and drug design [78, 79]. For example, the AlphaFold
tool has successfully elucidated the structures of approximately
200 million proteins, encompassing nearly all known proteins
[80, 81]. In recent years, ADCs, which can exert both the
cytotoxic effects of small molecule chemotherapy drugs and
tumor-targeting effects of antibody-based drugs, have attracted
wide attention [82, 83]. Drugs, including trastuzumab emtan-
sine and trastuzumab deruxtecan that target HER2, as well as
sacituzumab govitecan that targets TROP2, have demonstrated
significant clinical therapeutic efficacy [84-86]. However, these
novel and efficient third-generation ADCs also face various
challenges, such as complex pharmacokinetic characteristics
and toxic side effects [82]. Applying AI in ADC development
and innovation is worth exploring further. The use of AI in
large-molecule drug discovery is also rapidly increasing. In
oncology, large-molecule drugs are expected to account for
about 50% of market revenue by 2030, suggesting that AI may
establish additional opportunities for developing BC ther-
apeutics [87]. With the advent of the Al-driven drug discovery
era, Al-derived drugs are being increasingly implemented in
clinical research, which may significantly alter the BC treat-
ment landscape and further improve patient prognosis. The
efficient resolution of complex chemical and biological spaces
and adverse reactions will continuously improve the overall
quality of drug design research and benefit the clinical trans-
lation of Al-based drug discovery.

efficiency and cost savings. ADME/T, absorption, distribution, metab-

4.2 | Surgery

Al is gradually revolutionizing the surgical field and holds
significant value in tumor esthetics, preoperative planning, in-
traoperative guidance, and postoperative evaluation. The inte-
gration of radiomics, pathology, and other data sets has enabled
more precise, safe, efficient, and satisfactory surgical decision-
making [88]. One study used ML algorithms to predict breast
satisfaction during follow-up for women considering mastec-
tomy and reconstruction as part of their BC treatment plan [26],
which provided a personalized reference. Furthermore, patterns
and associations are employed for anatomical visualization and
surgical navigation to assist surgeons in achieving accurate
procedures and optimizing postoperative outcomes [89]. ML
algorithms also play a crucial role in the timely prediction of
postoperative complications or prognosis, such as lymphedema,
with improved accuracy and effective anticipation of post-
operative pain levels. They can also facilitate the assessment of
postoperative risks and mortality rates, allowing for timely
interventions to enhance treatment efficacy and optimize
postoperative care protocols, while extending survival time
[90-92]. AI has broad application prospects in the surgical
scene, such as being applied to surgical training to improve the
experience of young surgeons and increase their understanding
and depth perception [93, 94]. When applied to surgical implant
materials, Al-driven 3D printing technology has accelerated the
construction of new engineered tissue structures and promoted
personalized organ substitutes for patients. 3D/4D printed im-
plants loaded with chemotherapeutic drugs, such as paclitaxel
and fluorouracil, have shown high customization ability and
good anticancer activity [95, 96]. We infer that in the future, Al
models integrating breast shape and size with patient clinical
treatment information may produce surgical materials that
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better fit the natural shape of the patient's breast and person-
alize their treatment plan. There is currently a gradual increase
in robotic surgery research for BC, especially for breast-
conserving surgery and minimally invasive surgery [97]. The
integration of ML, machine vision, and haptic control into
surgical robots can facilitate human—computer interactions and
intelligent task planning and operation [98]. In summary, Al
applications in various emerging technologies are reshaping
surgical treatment approaches for BC.

4.3 | Radiotherapy

Radiotherapy plays a pivotal role in the standard management
of cancer. In the BC clinical setting, Al research has primarily
focused on precise image segmentation and treatment planning
[99, 100]. Effectively delineating the region of interest and
accurately segmenting the clinical target volume are increas-
ingly crucial to align with the evolving trend of precise dose
distribution and minimize the risk of locoregional recurrence,
as well as side effects. However, various limitations have
resulted in a high reliance on clinicians for breast clinical target
volume segmentation [99]. DL algorithms for regions, bound-
aries, dosimetry, and other indicators have been empirically
demonstrated to be effective, consistent, and time-saving in the
context of automatic segmentation tasks [101, 102]. In general,
Al-based automation has emerged as a prevailing trend in BC
radiotherapy planning [103]. In the forthcoming years, diverse
advanced radiation and delivery technologies, along with mul-
tiomics integration, will serve as guiding factors for further
advancements in radiotherapy [104]. These factors will pose
challenges to the personalized selection of radiotherapy plans
encompassing appropriate methods of treatment delivery
accuracy and planning efficiency. However, they also present
opportunities for leveraging Al capabilities.

44 | Immunotherapy

Immunotherapy, particularly, immune checkpoint inhibitor
therapy, has displayed promising results for BC treatment.
However, the response rates vary among individual patients
[105]. The KEYNOTE-355 trial revealed that the combination of
pembrolizumab with chemotherapy resulted in longer overall
survival compared with chemotherapy alone, especially for
patients with a programmed death-ligand 1 (PD-L1) combined
positive score of 10 or higher. Notably, within the intention-to-
treat population, 40.8% of patients receiving the combination
therapy achieved a confirmed objective response [106]. The
aforementioned trials provide evidence of the potential efficacy
of immunotherapy and justify further investigation. Moreover,
it is crucial to promptly assess patient responses to ongoing
treatment for clinicians to properly adjust their therapeutic
strategies [107]. Digital pathology analysis and AI methods have
been used to accurately examine programmed cell death protein
1/PD-L1 expression levels, tumor mutational burden, and
tumor microsatellite instability status [108]. An Al-driven
approach also further enhanced the potential of predictive
biomarker discovery in immuno-oncology [109]. Additionally,
Al integrated with high-dimensional data, such as single-cell

transcriptomics and spatial transcriptomics, has been employed
for predicting the composition and spatial distribution of cells
within the tumor microenvironment (Table 2), thereby aiding
in antibody design and immunotherapy prediction [64].

4.5 | Clinical Decisions

The increasing availability of therapeutic options and the pro-
liferation of patient clinical imaging methods and pathological
information have posed a challenge in selecting the appropriate
individualized treatment plan for patients [63]. The proactive
identification of patients who are most suitable for a specific
treatment can help mitigate the risk of adverse clinical out-
comes. In traditional clinical practice, clinicians often use a
comprehensive analysis of clinical information, combining their
experience, clinical guidelines, and trial guidance, to select and
formulate appropriate treatment plans for BC patients. The
clinical decision support (CDS) algorithm integrates cutting-
edge medical knowledge and calculates the probability of
patient outcomes using input digital variables, which en-
compass the comprehensive medical information of relevant
patients. The algorithm integrates cutting-edge medical
knowledge and uses input digital variables, namely patient
medical information, to calculate the probability of patient
outcomes [115], primarily simulating the clinical thinking
process. The DL-based CDS that facilitates physician decision-
making in an interactive manner between humans and com-
puters can provide reliable evidence-based recommendations
and real-time capabilities. This can empower clinicians to make
timely and effective treatment decisions for BC, particularly
among high-risk patients. Li et al. developed a knowledge
graph-based CDS that outperformed clinicians in terms of
adherence to first-line therapy [116]. Furthermore, modeling
patient trajectories has the potential to enhance CDS [117]. ML
algorithm-based CDS methods can facilitate the early identifi-
cation and implementation of tailored psychological interven-
tions for high-risk women [118]. In addition to supporting
clinical decision-making, CDS also plays a pivotal role in the
development of smart hospitals, encompassing various aspects
of enhancing care quality, such as medication monitoring,
medical record quality control, clinical warning alerts, and
patient experience surveys [119-122]. CDS is gradually being
integrated into clinical practice and expanding its reach to
primary healthcare institutions. To effectively adapt to the
intricate realities of medical environments, CDS strives to en-
hance physician autonomy, safeguard privacy, improve trans-
parency, and continuously update itself among other areas that
require further refinement. While algorithms cannot entirely
replace clinical judgment, their judicious application can help
mitigate malpractice risks and further enhance medical
services.

There is still a long way to go before AI can guide the full-scale
management of BC. The construction of simple and efficient
AT models that can be adapted to a variety of scenarios and
manage multiple clinical processes is conducive to the pro-
motion of clinical practice, homogenization of medical
resources, and efficient management of BC in underdeveloped
regions. To better serve patients both pre- and posttreatment,
it is also necessary to improve the clinical fit and integrate
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multiple AT models combined with their comprehensive clin-
ical information.

5 | Conclusions

From early diagnosis and risk prediction to treatment plan
formulation, treatment response evaluation, vaccine/drug
discovery, and prognosis assessment, Al has been extensively
employed across all facets of BC management. The deep
integration and mutual facilitation of AI and oncology,
including BC, have emerged as the future direction of the field.
However, numerous challenges and obstacles still hinder its
widespread clinical adoption. Further innovations using Al
will enhance the efficiency of tumor diagnosis and precision
treatment while offering greater possibilities for improving
human survival rates and quality of life. To optimize the
benefits for BC patients, it is crucial to develop and implement
Al technologies in a manner that ensures safety, trustworthi-
ness, and patient-centricity.
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