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H I G H L I G H T S  

• Current machine learning algorithms for pelvic bone tumor image segmentation have limited accuracy. 
• Our proposed algorithm combines a fully convolutional neural network and a conditional random field to achieve more accurate segmentation of pelvic bone tumor 

images. 
• FCNN-4s is used to improve the precision and convergence speed of pelvic bone tumor segmentation. 
• FCNN-4s adopts operations like Crop and Fuse, padding, ReLU activation, and SoftMax loss with optimized hyperparameters for better performance. 
• Our algorithm demonstrated an improvement of 6.69% in terms of the Dice coefficient compared to other algorithms, with an average enhancement of 9.33%  
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A B S T R A C T   

Background and objective: Pelvic bone tumors represent a harmful orthopedic condition, encompassing both 
benign and malignant forms. Addressing the issue of limited accuracy in current machine learning algorithms for 
bone tumor image segmentation, we have developed an enhanced bone tumor image segmentation algorithm. 
This algorithm is built upon an improved full convolutional neural network, incorporating both the fully con
volutional neural network (FCNN-4s) and a conditional random field (CRF) to achieve more precise 
segmentation. 
Methodology: The enhanced fully convolutional neural network (FCNN-4s) was employed to conduct initial 
segmentation on preprocessed images. Following each convolutional layer, batch normalization layers were 
introduced to expedite network training convergence and enhance the accuracy of the trained model. Subse
quently, a fully connected conditional random field (CRF) was integrated to fine-tune the segmentation results, 
refining the boundaries of pelvic bone tumors and achieving high-quality segmentation. 
Results: The experimental outcomes demonstrate a significant enhancement in segmentation accuracy and sta
bility when compared to the conventional convolutional neural network bone tumor image segmentation al
gorithm. The algorithm achieves an average Dice coefficient of 93.31 %, indicating superior performance in real- 
time operations. 
Conclusion: In contrast to the conventional convolutional neural network segmentation algorithm, the algorithm 
presented in this paper boasts a more intricate structure, proficiently addressing issues of over-segmentation and 
under-segmentation in pelvic bone tumor segmentation. This segmentation model exhibits superior real-time 
performance, robust stability, and is capable of achieving heightened segmentation accuracy.  
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1. Introduction 

Pelvic bone tumors account for about 4 % of bone tumors in the 
whole body, and the morphology of the lesions is complex and 
changeable, which can involve one or more pelvic divisions of the pelvis, 
and there is significant heterogeneity [1]. Pelvic tumors, whether benign 
or malignant, can affect the local bony structure, as an axial weight- 
bearing bone, there is a potential risk of pathological fracture. Malig
nant tumors can also occur local destructive growth, further invade 
adjacent organs, and are prone to recurrence and metastasis, resulting in 
limb dysfunction of patients. If it cannot be fully, timely and standard
ized treatment, it will endanger the lives of patients. 

The determination of tumor boundary is the focus of imaging pre- 
academic planning. The accurate determination of the image bound
ary of pelvic tumor requires some practice and experience, and the 
images of different modes have their own advantages: CT images have 
clear bone structure, can clearly show the characteristic changes such as 
bone destruction, periosteal reaction, tumor bone and calcification, and 
have high spatial resolution, which is convenient for the three- 
dimensional modeling of bony anatomical structure. MRI soft tissue 
resolution is very high, so it is regarded as the “gold standard” for tumor 
boundary determination. Combined with CT and MRI angiography, the 
anatomical relationship between the focus area and the surrounding 
vessels can be observed. According to the signal characteristics and 
pathological tissue characteristics of MRI images, tumors can be roughly 
divided into tumor central area, tumor marginal zone, surrounding 
edema area and surrounding transitional zone, and different MRI se
quences have different sensitivity to different regions, and the mani
festations of soft tissue masses inside and around the bone marrow of the 
tumor are different. 

In recent years, due to the rapid development of computer technol
ogy, computer vision, image processing, and pattern recognition, digital 
image segmentation technology has played an increasingly important 
role in quantitative analysis of medical images. Digital image segmen
tation is the process of dividing an image into multiple regions based on 
specific attributes (such as color, texture, density, etc.). Accurate image 
segmentation is the foundation of quantitative analysis of medical im
ages. Despite the relatively recent emergence of digital image process
ing, research on image segmentation technology has made considerable 
progress and success. Zhou et al. [2] proposed a method for recognizing 
precancerous lesions and cancers in gastric cancer based on the fusion of 
shallow and deep features in endoscopic images. However, to date, there 
is still no segmentation methods are suitable for a particular class of 
images. 

Due to the similar X-ray absorption coefficients between pelvis tu
mors and surrounding tissues, as well as the effects of X-ray scattering, 
uneven light intensity, and different irradiation angles, the edges of bone 
tumors in X-ray images appear blurry, and the distribution of tumor and 
background features overlap. Therefore, it is difficult to obtain satis
factory segmentation results using various global thresholding tech
niques reviewed in the literature [3,4] alone. It is necessary to fully 
consider the local characteristics of the images. 

With the rapid development of computer technology, computer 
vision, image processing, and pattern recognition, digital image seg
mentation plays an increasingly important role in quantitative analysis 
of medical images. Among them, MRI and computed tomography (CT) 
are widely used imaging techniques for detecting abnormalities in tumor 
shape, size, or location, which help in detecting tumors. Zhao et al. [5] 
proposed a novel GAN that utilizes its synthesized CT images to visually 
resemble the reference CT (RCT) images and achieve desirable results on 
local mismatched tissues. In quantitative evaluation, it outperforms 
other compared methods. In addition, MRI-guided radiotherapy is a 
current research hotspot in radiotherapy. Brown et al. [6] used radiation 
features extracted from MR images to establish a model to distinguish 
radiation necrosis from tumor progression in brain metastases after 
gamma knife radiosurgery. 

2. Materials and methods 

2.1. Framework for diagnostic medical image analysis using deep learning 

2.1.1. Enhanced fully convolutional neural network 
In 1998, LeCun et al. [7] first applied CNN to image recognition, and 

in 2012, the AlexNet network structure proposed by Krizhevsky et al. [8] 
made significant breakthroughs in the field of CNN object classification. 
In 2015, Long et al. [9] proposed a pixel-level image semantic seg
mentation network called Fully Convolutional Neural Network (FCNN), 
which improved upon AlexNet by performing end-to-end pixel-wise 
classification and achieving image segmentation tasks. FCNN converted 
the two fully connected layers of AlexNet into convolutional layers, 
allowing the network’s final output to remain a two-dimensional matrix, 
thus preserving spatial information between pixels and facilitating 
feature extraction. To make the output of the network the same size as 
the input, the original FCNN simply upsampled the output of the last 
convolutional layer to the same size as the input image, but this oper
ation only utilized information from the 5th pooling layer, resulting in a 
coarser target feature that made it difficult to achieve precise 
segmentation. 

This algorithm will use feature information from different pooling 
layers to achieve multi-level feature fusion. After upsampling the output 
of the last convolutional layer, the first fusion will be performed with the 
feature vector matrix from the fourth pooling layer, and then the 
resulting feature fusion matrix will be upsampled and fused with the 
feature vector matrix from the third pooling layer. Then, the fusion 
feature matrix will be upsampled and fused with the feature vector 
matrix from the second pooling layer, and finally, the feature matrix 
from the third fusion will be upsampled to obtain a feature matrix the 
same size as the original image, resulting in a better feature information 
matrix. At the same time, the algorithm adds the batch normalization 
(BN) layer proposed by Ioffe et al. [10] after each convolutional layer to 
speed up network training and improve segmentation accuracy. The 
network structure with multi-level feature fusion is shown in Fig. 1, 
where Conv represents a convolutional layer that can extract various 
features of the image such as edges and positions, Pool represents a 
pooling layer that can achieve feature dimensionality reduction and 
preserve the main features extracted by the convolutional layer, BN 
represents a batch normalization layer that ensures that the weight 
distribution of the network after convolution does not change signifi
cantly, Up represents an upsampling layer that mainly increases the size 
of the feature matrix through deconvolution, Crop_Fuse performs crop
ping and fusion operations on the feature matrix, and Pixelwise Pre
diction is the pixel-wise classification prediction layer that achieves 
image segmentation by classifying each pixel. 

2.1.2. Conditional random field 
Conditional Random Field (CRF) based image semantic segmenta

tion is one of the classic probabilistic graphical segmentation algo
rithms, which can remove noise in the segmentation result and enhance 
the boundary segmentation of the image. This algorithm integrates the 
fully connected CRF model proposed by Zheng et al. [11] into the 
improved FCNN network for post-processing bone tumor boundary 
segmentation, thereby improving the segmentation accuracy of bone 
tumor images. 

In the fully connected CRF model, the energy function that assigns 
pixels to their respective labels can be represented as: 

E(x) =
∑

i
φu(xi)+

∑

i∕=j
φp
(
xi, xj

)
(1) 

In Eq. (1), E(x) represents the total energy of assigning pixels to their 
respective labels; φu(xi) is a unary energy potential function that rep
resents the energy of assigning pixel i to label xi without considering the 
relationship between pixels; φp(xi, xj) is a pairwise energy potential 
function that represents the energy of assigning pixels i and j to labels xi 
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and xj based on the difference in grayscale values and spatial position 
distances between pixels, and describes the relationships between 
pairwise pixels, such that similar pixels are assigned the same label. The 
unary energy potential function φu(xi) can be obtained from the initial 
coarse segmentation result of FCNN, and the pairwise energy potential 
function φp(xi, xj) can be represented as: 

φp
(
xi, xj

)
= μ
(
xi, xj

)∑M

m=1
W(m)k(m)

G
(
fi, fj
)

(2) 

In Eq. (2), μ
(
xi, xj

)
is the label compatibility matrix, which represents 

the penalty for assigning different labels to different pixels. When 

xi ∕= xj, the penalty μ
(
xi, xj

)
= 1; k(m)

G

(
fi, fj

)
is the Gaussian filter kernel, 

where fi, and fj are the feature vectors of the filter, determined by the 
spatial position between pixels and their grayscale values, and m is the 
number of filters; W(m) is the weight of each filter. 

In the CRF model, a bilateral Gaussian filter is used to assign pixels 
that are close in space and have similar grayscale values to the same 
label; a spatially smooth Gaussian filter is used to remove isolated small 
regions in the bone tumor segmentation result. Therefore, Eq. (2) can be 
further represented as: 

φp
(
xi, xj

)
= μ
(
xi, xj

)[
W(1)exp

(
−
|Pi − Pj|

2θ2
α

−

⃒
⃒Ri − Rj

⃒
⃒

2θ2
β

)

+W(2)exp

(

−

⃒
⃒Pi − Pj

⃒
⃒

2θ2
γ

)]

(3) 

In Eq. (3), Ri and Rj represent the grayscale feature value vectors of 
pixels i and j; Pi and Pj represent the spatial position relationship feature 
vectors of pixels i and j; θα,θβ and θγ represent the weights of the gray
scale, position, and other factors on the potential functions of the pixels. 
Zheng et al. [9] have conducted a large number of experiments and 
found that when the bilateral filter weight W(1) = 5, the control pa
rameters θα = 160, θβ = 3, the smoothing filter weight W(2) = 3, and 
the control parameter θγ = 5, the boundary of the image can be better 
segmented. 

2.2. The methodologies employed in this paper 

In this paper, the algorithm flow of pelvis bone tumor image seg
mentation using the improved full convolutional neural network is 
shown in Fig. 2. Firstly, the collected images are preprocessed. Then, 
part of the processed data is used as the training set and the rest as the 
test set. This training set is used to train FCNN and CRF fusion algorithm. 
Finally, the model is tested on the test set, and the segmentation results 
are evaluated using performance indicators. 

2.2.1. Image pre-processing 
Each pixel in the original CT pelvis bone tumor image is stored in the 

computer as 16 bits, but in digital image processing, 8-bit images are 
commonly used. Therefore, in this study, the CT images were first 
normalized in terms of gray level, with the gray values of each pixel 
uniformly compressed to the range of 0–255. 

2.2.2. Enhanced FCNN-4s initial segmentation algorithm 
This paper introduces an improved FCNN algorithm, called FCNN-4s, 

which aims to improve the accuracy and convergence speed of pelvis 
bone tumor segmentation. In order to obtain good tumor features, this 
paper proposes a fine feature fusion model and adds a BN layer to the 
network (as shown in Fig. 3). The FCNN-4s algorithm includes a data 
layer, convolution layer, pooling layer, activation function layer, 
upsampling layer, and output probability map layer. The feature fusion 
operation (Fuse) is used to fuse the features of high-dimensional feature 
matrices and low-dimensional feature matrices, and the data of the 
corresponding dimensions of the two matrices are added together under 
the premise of the same dimension and size. If the dimensions and sizes 
of the two target matrices are not the same, the FCNN-4s algorithm will 
perform a matrix cropping operation (Crop) to make their dimensions 
and sizes the same, so that the network can smoothly learn the features. 
In the matrix cropping operation, if the dimensions are different, the 
low-dimensional feature matrix is convolved to make the two matrices 
have the same dimensions; if the sizes are different, the same size as the 
high-dimensional feature matrix is extracted symmetrically from the 
center of the low-dimensional feature matrix. These operations are all 
designed to improve the performance of the network and achieve better 
pelvis bone tumor segmentation results. To prevent the feature infor
mation matrix from becoming too small after pooling, this paper per
forms a padding operation on the original pelvis bone tumor image (240 
× 240) with a padding size of 100. The output size indicates the 
dimension and size of the output feature matrix. The algorithm performs 
three fusion operations on the feature matrices of different dimensions 
to obtain more refined bone tumor features. Meanwhile, the BN layer 
can keep the weight distribution of the parameters during each iteration 
from changing significantly, thereby accelerating the convergence 
speed. 

2.2.3. Refined fusion algorithm for FCNN-4s and CRF fine segmentation 
This paper describes the process of determining whether each pixel 

in an CT pelvis bone tumor image is a tumor point, using a binary 
classification approach where the label “0” represents non-tumor pixels 
and “1” represents tumor pixels. After obtaining two initial probability 
maps from FCNN-4s, the energy function is initialized to obtain the 
original probability values for each pixel. The following steps are used to 

Fig. 1. The network structure chart of the multilevel features information fusion.  
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calculate the CRF model and iteratively adjust the two-class probability 
maps predicted by FCNN-4s using a fusion algorithm. 

Step 1: Involving filtering the probability maps for both classes using 

a Gaussian filter k(m)

G

(
fi, fj
)

to obtain two filtered results Q̃
(m)

(l) for labels 

“0″ and ”1″, respectively. 

Step 2: Assigning weights W(m) to Q̃
(m)

(l) and calculates the pairwise 
energy potential function φp(xi, l) for each class probability map based 
on the label compatibility matrix μ(m)(xi, l). 

Step 3: Calculating the unary energy potential function φu(xi) for the 
output of the FCNN-4s network, and then integrates it with the pairwise 
energy potential function φp(xi, l) from Step 2 to obtain the overall en

ergy function Q̂i(xi). 
Step 4: Normalizing Q̂i(xi) to obtain the probability values for each 

pixel’s label, denoted as Qi(xi). and selects the label with the highest 
probability for each pixel. The algorithm loop continues until the 
probability values for each pixel’s label converge to 90 % or more, at 
which point the algorithm stops. If the convergence threshold is not met, 
the pixel loss is back-propagated to the FCNN-4s algorithm for further 
learning and parameter adjustment. 

The pseudo-code for the algorithm is shown below, which results in a 
fusion network structure of CRF and FCNN-4s. The end-to-end calcula
tion of the loss and parameter updates for each pixel can be performed 
using the back-propagation algorithm.  

Begin 

Qi(xi)←
1
Zi

exp( − φu(xi)) for all xi, Z is the normalization factor. 

While not converged Qi(xi) ≥ 90% do 

(continued on next page) 

Fig. 2. The flow chart of algorithm.  

Fig. 3. The network structure chart of the improved FCNN-4s.  
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(continued ) 

Q̃
(m)

i (l)←
∑

j∕=ik
(m)

G

(
fi, fj

)
Qj(l) for m = 2; 

φp(xi, l)←
∑

l∈Lμ(m)(xi, l)
∑2

m=1W(m)Q̃
(m)

i (l);

Q̂i(xi)←φu(xi) + φp(xi, l);

Qi(xi)←
1
Z

exp( − Q̂i(xi) );

end while 
End  

2.3. Segmentation using U-Net 

Other types of deep learning algorithms such as U-Net [12–14] may 
also be implemented for tumor segmentation. U-Net is a popular deep 
learning algorithm that has shown promising results in various medical 
image segmentation tasks, including tumor segmentation. It is a type of 
convolutional neural network that is designed to learn from both low- 
level and high-level features of the image, allowing for more accurate 
and robust segmentation. U-Net has been used in several studies for 
tumor segmentation, and its performance has been shown to be com
parable or even superior to other segmentation methods. Its ability to 
handle complex and irregular shapes of tumors makes it a suitable 
choice for many medical image analysis applications. 

Compared to typical CNN (Convolutional Neural Network) archi
tectures, this network requires fewer training images and produces more 
accurate results. The U-Net processes input training images through a 
patch-based approach, equivalent to data augmentation. This charac
teristic reduces the demand for a large training dataset [15], enabling it 
to achieve excellent segmentation outcomes even with a small number 
of input samples. As illustrated in Fig. 4, the U-Net structure consists of 5 
layers, primarily composed of convolution, pooling, and upsampling 
operations. The gray arrow operations in the diagram indicate the 
duplication and cropping of feature maps from the downsampling 
layers, which are then connected to corresponding upsampling layers. 

2.4. Training procedure for the model 

During the training stage, the mature Caffe deep learning framework 
was used to learn the model parameters on the training set. Considering 
that Sigmoid and Tanh activation functions easily cause gradient 
disappearance, ReLU was chosen as the activation function for the 
network, and the conventional SoftMax classification loss function was 
used. 

Since the selection of learning rate is crucial to the network and 
determines whether the network can converge and to what degree, it 
cannot be too large or too small. In this paper, the convergence of the 

network under different learning rates was compared using the original 
training set. According to the experimental results, when the network 
selects relatively large learning rates such as 10e− 08 and 10e− 09, the 
training loss cannot converge. When the learning rate is 10e− 10, the 
training loss can converge and the convergence is better than that of 
smaller learning rates such as 10e− 11. Therefore, a learning rate of 
10e− 10 was ultimately adopted. 

The weight decay coefficient has a certain impact on the degree of 
overfitting of the network. This paper compared the training accuracy of 
the network under different weight decay coefficients. The experimental 
results showed that when the weight decay coefficient is too small, it has 
not played a role in weight decay and the training accuracy of the 
network is poor. When the weight decay coefficient is too large, the 
network will be overfitting to some extent and the training accuracy will 
decrease. Therefore, a weight decay coefficient of 0.0005 was ultimately 
adopted. 

To verify the effectiveness of adding BN layers, this paper compared 
the training loss and accuracy of the network before and after adding BN 
layers using the original training set. The network with BN layers had a 
loss of about 5000 after 8000 iterations, and the network had basically 
converged after 1.2 × 105 iterations. In contrast, the network without 
BN layers had a loss of about 5000 after 2.0 × 104 iterations, and the 
network converged after nearly 1.6 × 105 iterations, which fully dem
onstrates that BN layers can speed up the convergence of the network 
and reduce the loss value. Adding BN layers also improves the accuracy 
of the trained model to some extent. 

2.5. Dataset and image pre-processing 

The images used in the experiments were collected from The Second 
Affiliated Hospital of Fujian Medical University. The size of each CT 
image is 250 × 250 pixels, and the ground truth segmentation to be 
superimposed onto the CT image.are manually annotated by five 
experts. 

In this experiment, 1500 CT images of pelvis bone tumors were 
randomly selected as the training set. The image preprocessing tech
niques and data augmentation techniques described in Section 2.2.1 
were used to obtain a total of 48,000 training images with a size of 240 
× 240 pixels. This paper mainly performed data augmentation on the 
pelvis bone tumor images, including horizontal and vertical flipping, as 
well as counterclockwise rotation by 90◦, 180◦, and 270◦, to improve the 
accuracy of the trained model. 

Fig. 4. U-Net Network Architecture.  
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3. Results and discussion 

3.1. Evaluation criteria 

This paper evaluates the segmentation results of bone tumors using 
indicators such as the Dice Similarity Coefficient (DSC), sensitivity, and 
positive predictive value (PPV). The DSC represents the similarity be
tween the experimental segmentation results and the labels, sensitivity 
represents the ratio of correctly segmented tumor points to the true 
tumor points, and PPV represents the ratio of correctly segmented tumor 
points to the total segmented tumor points. The equations are as follows: 

Dice =
|P ∧ T|

(|P| + |T|)/2
(4)  

Sensitivity =
|P ∧ T|
|T|

(5)  

Positive =
|P ∧ T|
|P|

(6) 

In the equations, P represents the segmentation results obtained 
using the algorithm proposed in this paper, while T represents the labels 
generated by experts for the bone tumors. 

3.2. Training results 

After correctly selecting the network architecture and parameters, to 
verify the impact of augmented datasets on model accuracy, this study 
compared the pelvis bone tumor classification accuracy across different 
datasets. As the dataset augmentation progressed, there was a noticeable 
improvement in training accuracy. Both the accuracy values and loss 
values during training are depicted in Fig. 5. This observation suggests 
that increasing the training samples can mitigate network overfitting 
and enhance the model’s generalization capability. This ensures that the 
trained model can achieve robust pelvis bone tumor segmentation re
sults on the test set. 

3.3. Comparison between initial and refined segmentation 

Our proposed pelvis bone tumor segmentation model operates in two 

distinct stages. In the initial stage, we employ the enhanced FCNN-4s 
algorithm for coarse segmentation. In the subsequent stage, we inte
grate the CRF model to perform fine segmentation, thereby enhancing 
the precision of our segmentation. Fig. 6 provides a visual representation 
of our algorithm’s performance in both coarse and fine segmentation. 
Notably, our algorithm accurately identifies and segments the pelvis 
bone tumor, meticulously outlining its boundaries with minimal devi
ation when compared to the ground truth segmentation. This compari
son, as depicted by the lines superimposed on the CT image in Figs. 6 and 
7, illustrates our algorithm’s exceptional accuracy. 

To further quantify our results, we employed three key metrics for a 
comprehensive analysis, as summarized in Table 1. Our fine segmenta
tion model significantly improved segmentation accuracy across various 
metrics, including the similarity index, sensitivity, and positive predic
tive value. Notably, our fine segmentation model achieved a 6.20 % 
improvement in positive predictive value (PPV). 

Fig. 5. Training model loss/accuracy curve graph.  

Fig. 6. The results of coarse segmentation based on FCNN-4s and fine seg
mentation based on FCNN-4s + CRF are compared. 
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3.4. Comparison with other existing segmentation methods 

In order to validate the superiority of our enhanced algorithm, we 
conducted comparisons with alternative segmentation methods. This 
included a simple segmentation algorithm, FCNN-8s, which in
corporates only two rounds of feature fusion, as well as FCNN-4s without 
CRF fusion. Additionally, we compared our method to traditional CNN 
algorithms such as U-Net. Fig. 7 provides a visual comparison of the 
segmentation results achieved by these methods. Notably, the U-Net 
algorithm exhibited pronounced over-segmentation, resulting in unclear 
boundaries of pelvis bone tumors and numerous isolated points. The 
FCNN-8s algorithm, due to its limited feature fusion, yielded less refined 
tumor boundaries and reduced segmentation accuracy. In contrast, our 
FCNN-4s model, enriched with feature fusion and an end-to-end algo
rithmic structure that incorporates CRF fusion, consistently delivered 
satisfactory results. It effectively addressed issues associated with over- 
segmentation and under-segmentation of pelvis bone tumors. 

Furthermore, as highlighted in Table 2, our proposed algorithm 
consistently demonstrated higher segmentation accuracy in comparison 
to alternative methods. Notably, when compared to the U-Net algo
rithm, our method achieved a 6.69 % improvement in Dice coefficient. 
Moreover, when compared to FCNN without CRF fusion, our algorithm 

showcased an average enhancement of 9.33 %. Additionally, in terms of 
the average time required for segmenting pelvis bone tumor images, our 
algorithm exhibited exceptional real-time performance during the pre
diction phase, completing the segmentation process within an average of 
1 s. 

Looking ahead, our future work may involve simulating bone cancer 
growth using discrete element methods [16] on high-performance 
computing platforms. Additionally, we can explore visually analyzing 
cancer spread and treatment using state-of-the-art graphical and mesh
ing algorithms [17,18]. These computational simulations have the po
tential to enhance pelvis bone cancer diagnosis, thereby advancing 
orthopedic diagnostics. It is worth noting that deep learning will 
continue to play a crucial role in computer-aided diagnostics, offering 
promising technological advancements [19,20]. The future of medical 
image processing, coupled with advanced computational algorithms 
[21–24], holds great promise and is poised to deliver clinically viable 
diagnostic techniques for evaluating complex orthopedic conditions. 

4. Conclusion 

In this study, we present an enhanced pelvis bone tumor image 
segmentation algorithm designed to overcome the limitations of con
ventional Convolutional Neural Network (CNN) approaches, which 
often suffer from elevated computational complexity and diminished 
accuracy. Our novel algorithm leverages an improved Fully Convolu
tional Neural Network (FCNN-4s) for the preliminary segmentation of 
bone tumor pixels. Additionally, it incorporates a probabilistic graphical 
model that capitalizes on label correlations within the images and em
ploys Conditional Random Field (CRF) to create a trainable, end-to-end 
segmentation framework. 

Compared to conventional CNN-based segmentation methods, our 
algorithm, denoted as FCNN-4s + CRF, offers a more refined structural 
design. This refinement effectively addresses the issues of over- 
segmentation and under-segmentation encountered in pelvis bone 
tumor segmentation. Furthermore, it enhances segmentation prediction 
in terms of real-time performance and stability while achieving superior 
segmentation accuracy. 

Our experimental findings underscore the superiority of the pro
posed algorithm, surpassing the performance of alternative methods. 
Notably, it excels in real-time performance, requiring an average of just 
1 s to complete the segmentation of a pelvis bone tumor image. 

Fig. 7. Comparison of the segmentation results of based on four machine learning methods using fully Convolutional neural networks and conditional random field.  

Table 1 
Segmentation performance evaluation of different segmentation algorithms.  

Different segmentation algorithm Dice Sensitivity Positive 

Improved FCNN-4s coarse segmentation 
algorithm  

0.8831  0.8487  0.8589 

The proposed method fine segmentation  0.9098  0.9401  0.9157  

Table 2 
The segmentation performance evaluation of five algorithms.  

Different 
segmentation 
algorithm 

Dice Sensitivity Positive The average time to 
complete an image 
segmentation 

U-Net  0.8544  0.8123  0.8269  2.8324 
FCNN-4s  0.8684  0.8636  0.8663  0.9779 
FCNN-8s  0.8020  0.8283  0.8693  0.8673 
The proposed 

method  
0.9100  0.8982  0.9257  1.0062  
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