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Most Parkinson’s Disease (PD) patients experience gastrointestinal (GI) dysfunction
especially the gastroparesis, but its underlying mechanism is not clear. We have
previously demonstrated that the neurons in the substantia nigra (SN) project to the
lateral hypothalamic nucleus (LH) and the dorsal motor nucleus of vagus (DMV) receives
the neural projection from LH by the means of anterograde and retrograde neural
tracing technology. Orexin A (OXA) is predominately expressed in the LH. It has been
reported that OXA can alter the gastric motility through the orexin receptor 1 (OX1R)
in DMV. We speculated that this SN-LH-DMV pathway could modulate the motility of
stomach because of the important role of LH and DMV in the regulation of gastric
motility. However, the distribution and expression of dopamine receptors (DR) in the LH is
unknown. In the present study, using a double-labeling immunofluorescence technique
combined with confocal microscopy, we significantly extend our understanding of the
SN-LH-DMV pathway by showing that (1) a considerable quantity of dopamine receptor
1 and 2 (D1 and D2) was expressed in the LH as well as the OX1R was expressed in the
DMV; (2) Nearly all of the D1-immuoreactve (IR) neurons were also OXA-positive while
only a few neurons express both D2 and OXA in the LH, and the DR-positive neurons
were surrounded by the dopaminergic neural fibers; In the DMV, OX1R were colocalized
with choline acetyltransferase (ChAT)-labeled motor neurons; (3) When the gastroparesis
was induced by the destruction of dopaminergic neurons in the SN, the decreased
expression of D1 and OXA was observed in the LH as well as the reduced OX1R
and ChAT expression in the DMV. These findings suggest that SN might regulate the
function of OXA-positive neurons via D1 receptor, which then affect the motor neurons
in the DMV through OX1R. If the SN is damaged the vagal pathway would be affected,
which may lead to gastric dysfunction. The present study raises the possibility that the
SN-LH-DMV pathway can regulate the movement of stomach.

Keywords: dopamine receptor, lateral hypothalamic nucleus, orexin receptor 1, gastroparesis, Parkinson’s
disease
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INTRODUCTION

Parkinson’s disease (PD) is characterized by loss of dopaminergic
neurons in the substantia nigra (SN) and decrease of dopamine
level in the striatum of basal ganglia (Lees et al., 2009). Over
80% of PD patients experience gastrointestinal (GI) dysfunctions
including gastroparesis (Jost and Eckardt, 2003; Jost, 2010).
Accumulating evidence demonstrates that cholinergic neuron
degeneration contributes to gastroparesis in PD (Travagli and
Anselmi, 2016). We previously have reported the reduced
cholinergic markers in the dorsal motor nucleus of vagus (DMV)
and gastric muscularis in rats with bilateral SN lesion by 6-
hydroxydopamine (6-OHDA). However, it is unknown how the
SN influences the DMV.

The lateral hypothalamic nucleus (LH) in diencephalon
has been identified as an important brain region that
innervates multiple brain regions and regulates many important
physiological processes including feeding, reward behaviors and
autonomic function (Berthoud and Munzberg, 2011). Orexin
(OX) neurons are primarily located in the LH (Sakurai et al.,
1998; Takahashi et al., 2015). The OX neuropeptide family
consists of orexin A (OXA) and B (OXB), which are encoded by
the same pre-mRNA (Date et al., 1999; Sakurai et al., 1999). OXA
regulates food intake (Dube et al., 1999) and gastric emptying
in rats (Ehrstrom et al., 2005; Bulbul et al., 2010b). The OXA
neurons stimulation or destruction will alter the movement of
the stomach (Guo et al., 2018). Both the dopamine receptor 1
and 2 (D1 and D2) mRNA were reported to be expressed in
LH neurons. OX neurons regulate GI functions through the
brain-gut axis (Kirchgessner, 2002; Kukkonen et al., 2002).
Microinjection of OXA into the DMV increased intragastric
pressure and antral motility in anesthetized rats (Krowicki et al.,
2002). Thus, OXA may regulate GI motility through the DMV
(Grabauskas and Moises, 2003).

The DMV regulates upper GI functions, such as gastric
motility. The orexin receptor 1 (OX1R) is highly expressed in
the neurons of DMV, especially in the preganglionic neurons that
innervate the stomach (Krowicki et al., 2002; Bulbul et al., 2010a).
We previously have demonstrated that the SN and the DMV can
contact with each other indirectly through the LH. By means of
anterograde and retrograde neural tracing technology, we found
that the neurons in the SN can project to the LH and the DMV
receives neural projection from the LH (Wang et al., 2014). It is
reported that a large number of OX neurons were lost in the LH
of PD patients (Thannickal et al., 2007, 2008).

Based on the above results, we speculated that the OXA
neurons in the LH could be regulated by dopaminergic
projections from the SN through D1 or D2, destruction of the
SN might change the expression of dopamine receptors (DR)
in the LH and then orexin receptor (OXR) in the DMV. In the
present study, double-labeling immunofluorescence procedures
were performed to detect the distribution of tyrosine hydroxylase
(TH), D1 and D2 in the LH and their co-localization with OXA
neurons. The alternations of D1, D2, and OXA in the LH, and
OX1R and choline acetyltransferase (ChAT) in the DMV were
observed in the rats with bilateral SN injection of 6-OHDA.
The present study may provide morphological evidences for

DA/DR and OXA/OXR promoting gastric motility through SN-
LH-DMV pathway.

MATERIALS AND METHODS

Animals
Twenty-five adult male Sprague-Dawley rats (180–220 g)
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. All experiments were performed in
accordance with the guidelines established by the National
Institutes of Health (NIH, United States) and were approved
by the Animal Care and Use Committee of Xinxiang Medical
University, Xinxiang, China. All efforts were made to minimize
animal suffering, and the minimal number of animals necessary
to produce reliable scientific data was used.

6-OHDA Animal Models
The methods used have been previously described (Zheng et al.,
2014). Rats were anesthetized by intraperitoneal injection with
chloral hydrate (0.4 g/kg) and placed on stereotaxic instrument.
Two small areas of the skull were exposed (coordinates: AP,
−5.6 mm; ML,± 2.0 mm; DV,−7.5 mm), and 6-OHDA (4 µg in
2 µl of 0.9% saline containing 0.05% ascorbic acid) was injected
with a 10 µl Hamilton syringe. Control groups were injected with
0.05% ascorbic acid/saline. The rats injected with 6-OHDA in the
SN were referred to as 6-OHDA rats. Subsequent experiments
were conducted at 6 weeks after 6-OHDA administration.

Tissue Preparation
After deep anesthetization with chloral hydrate, rats received a
thoracotomy and were perfused through the left ventricle with
250 ml of saline followed by 250 ml 4% paraformaldehyde in
0.01 M PBS (pH 7.4). The brains were immediately removed
and immersed into 4% paraformaldehyde for a 12 h post-fixation
period and then placed in 30% sucrose in 0.01 M PBS (pH
7.4) for at least 48 h until the dehydration achieved. The serial
coronal sections which were 20 µm in thickness were made with
a cryostat (Leica CM1850, St. Gallen, Switzerland). The tissue
sections were air-dried overnight at room temperature and then
stored at −80◦C. In some experiments, the samples of dorsal
medulla were collected (as descripted in our previous reports) on
ice and immediately frozen in liquid nitrogen.

Immunofluorescence Staining
The methods used have been described previously (Wang
et al., 2016). The brain sections were permeabilized with PBS
containing 0.3% Triton X-100, then blocked for unspecific
binding with 5% goat serum for 30 min. Sections were then
incubated overnight in a mixture of two primary antibodies
derived from different host species for 12–16 h at 4◦C
(Table 1, TH/D1, TH/D2, OXA/TH, OXA/D1, OXA/D2, and
OX1R/ChAT) and then incubated with the secondary antibodies
for 1 h at room temperature. Micrographs were obtained using a
confocal microscope (Olympus, FV1000).

The OXA-IR, D1R-IR, and D2R-IR neurons in the LH were
counted from every three LH-containing section per animal
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(n = 3). Five different fields (150 pixel ∗150 pixel) of each section
(512 pixel ∗512 pixel, 200×) were selected randomly for the
neuron count. The average number of neurons in each section
was calculated from nine sections of three rats in total. To reduce
the counting error, the number of line pressing cells was only
counted on one side and moves arduously.

Western Blot Analysis
As in our previous reports (Zheng et al., 2014), tissues were
homogenized in 300 µl cold lysis buffer supplemented
with protease inhibitors for protein extraction. Proteins
(100 µg) were loaded in a 10% SDS-PAGE gel and transferred
onto a nitrocellulose membrane (NC membrane, Millipore,
United States) at 4◦C. After blocking with 10% non-fat dry milk
in TBST for 2 h, the membranes were incubated with primary
antibodies against ChAT (Rabbit polyclonal, Proteintech/20747-
1-AP, 1:1,000), OX1R (Rabbit polyclonal, Abcam/ab68718,
1:500), or GAPDH (Rabbit polyclonal, Sigma/G9545, 1:5,000)
overnight at 4◦C. After washing, the membranes were incubated
with horseradish-peroxidase-conjugated IgG (Pierce, Rockford,
IL, United States) for 1 h at room temperature, then washed in
TBST. Finally, the membranes were scanned with an Odyssey
Infrared Imager (LI-COR, NE, United States), and analyzed
using Odyssey software (version 1.2).

Gastric Emptying
The methods used have been described previously (Zheng
et al., 2014). Following a 24-h fast, a 2.5 ml barium meal was
administrated to each rat through oral gavage. Plain radiographs
of the GI tract were obtained using a KODAK in vivo Imaging
System FX with the focus distance manually fixed to 50 ± 1 cm.
The exposure time was adjusted to 30 s. Images were recorded at

TABLE 1 | Antibodies used in the immunofluorescent study.

Antigen Antibody Dilution Source/Catalog
No.

TH Mouse monoclonal 1:5000 Sigma/T1299

TH Rabbit polyclonal 1:500 Abcam/ab112

OXA Mouse monoclonal 1:50 Santa
cruz/SC-80263

ChAT Mouse monoclonal 1:100 Abcam/ab35948

OX1R Rabbit polyclonal 1:250 Abcam/ab68718

D1 Rabbit polyclonal 1:100 Alomone/ADR-001

D2 Rabbit polyclonal 1:100 Alomone/ADR-002

Alexa fluor
488-labeled
anti-mouse IgG

Goat 1:500 Beyotime/A0428

Alexa fluor
488-labeled
anti-rabbit IgG

Goat 1:500 Beyotime/A0423

Cy3-labeled
anti-mouse IgG

Goat 1:500 Beyotime/A0521

Cy3-labeled
anti-rabbit IgG

Goat 1:500 Beyotime/A0516

TH, tyrosine hydroxylase; ChAT, choline acetyltransferase; D1, dopamine 1
receptor; D2, dopamine 2 receptor; OXA, orexin A; OX1R, orexin receptor 1.

different time points (30, 60, and 90 min) after the consumption
of the barium meal. Gastric emptying (GE) was calculated
according to the following formula:

GE(%) = [1− (barium meal at Time 90 min/

barium meal at Time zero)] × 100.

Anterograde Tracing
Approximately 4 µl of 20% Biotinylated Dextran Amines (BDA)
(Eugene/n7167) (3 mg dissolved in 15 µl 0.01 M PBS, pH
7.4) was injected into the left SN (coordinates: AP, −5.6 mm;
ML, −2.0 mm; DV, −7.5 mm) with the same Hamilton
microsyringe. Seven days later, the animals were killed by
decapitation, and the brains were removed for detection of the
anterograde tracing fibers.

The sections from the anterograde tracing group were
processed for observation of the injection site in the SN and
the distribution of BDA-labeled fibers in the diencephalon and
brainstem. The sections were incubated in 0.3% Triton X-100
in 0.01 M PBS (pH 7.6) for 15 min prior to incubation in
fluorescent isothiocyanate (TEX RED)-labeled avidin D (1:200,A-
2001,Vector Laboratories, Burlingame, CA, United States) at
room temperature for 2 h. After incubation, all sections were
rinsed in 0.01 M PBS, mounted onto gelatin-coated glass slides,
air-dried, and cover-slipped with a mixture of 50% (v/v) glycerin
and 2.5% (w/v) triethylene diamine (anti-fadingagent) in 0.01 M
PBS. The injection sites and distribution of BDA-labeled fibers
were examined under a fluorescence microscope.

Statistical Analysis
The values are presented as the means ± S.E.M. (standard error
of the mean) from at least three independent experiments; “n”
refers to the number of animals or tissue samples from different
animals. Statistical analysis was conducted using unpaired t-tests.
The level of significance was set at P < 0.05.

RESULTS

Neural Projection From the SN to the LH
and the Distribution of TH-, D1-, D2-, and
OXA-IR Neurons and Their
Colocalization in the LH
The anterograde tracer BDA was microinjected into the
left SN to determine whether BDA-labeled fibers could
be observed in the DMV. After 7 days, a dense BDA
stained area was located at the injection area, the left SN
pars compacta (Figure 1Aa). Dense puncta and irregular
curved BDA positive nerve fibers were observed in the LH
(Figures 1Ac,d). However, no BDA positive fibers were found in
the DMV (Figure 1Ab).

Double-label immunofluorescence was performed to assess
the distribution patterns of OXA, TH, D1, and D2 in the LH.
The results suggested that a considerable quantity OXA-IR,
D1-IR, and D2-IR neurons were clearly observed throughout
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FIGURE 1 | Neural projection from the SN to the LH and distribution of TH-, D1-, D2- and OXA-IR neurons and their colocalization in the LH. (Aa) Injection site
(white dotted lines) of BDA in the SN; (b) No BDA-labeled fibers were observed in the DMV; (c) The expression of BDA-stained anterograde traced fibers in the LH;
(d) The magnified areas of the white dotted boxes in (c). (B–F) Representative confocal photomicrographs of double-immunofluorescence of TH (green) and D1
(red), TH (green)and D2 (red), OXA (green), and TH (red), D1 and OXA, D2, and OXA in the LH. (d) Shows a magnified area of the white dotted box in (c). Scale bars
in (B–F): 50 µm. TH, tyrosine hydroxylase; D1, dopamine 1 receptor; D2, dopamine 2 receptor; OXA, orexin A.
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FIGURE 2 | Decreased expression of D1 and OXA in the LH of 6-OHDA rats. (A) Expression of TH-IR neurons within the SN in control and 6-OHDA rats;
(B) Representative images of gastric emptying (GE) at 0 and 90 min after a barium meal in control and 6-OHDA rats; (C) GE of barium meals was significantly
delayed in 6-OHDA rats compared to control animals; (D) Representative alterations in D1, D2, and OXA expression within the LH in control (upper panel) and
6-OHDA rats (lower panel); (E) Summary histogram shows a significant decrease number of D1-IR or OXA-IR neurons in the LH, while no significant change of D2-IR
neurons in 6-OHDA rats. Scale bars in (D): 50 µm. ∗∗∗P < 0.001.

the LH and surrounded by TH-IR fibers. The TH-IR fibers
were punctiform or short-bar in shape, and the distribution
was not arranged in any particular manner (Figures 1B–
D). The OXA was expressed in cytoplasm. We observed that
OXA expression was cuneate, gracile, deltoid, buninoid or
oval in shape (Figures 1Db,Ea,Fa). In the same slice, D1
expression displayed a similar shape as OXA (Figures 1Bb,Eb),
while D2 expression was buninoid (Figures 1Cb,Fb). The
numbers of D1-IR, OXA-IR and double-labeled neurons in
the LH (n = 3) were 1206, 969, and 895, respectively, which
were counted from nine sections of three rats in total. The
double-labeled neurons accounted for 74.2% of total D1-
labeled neurons and 92.3% of total OXA-labeled neurons.
However, only a few neurons were both D2-IR and OXA-
IR (Figure 1F). The numbers of D2-IR, OXA-IR and their
double-labeled neurons in the LH were 1289, 1116, and
334, respectively. The double-labeled neurons accounted for
25.9% of total D2-labeled neurons and 29.9% of total OXA-
labeled neurons.

Decreased Expression of D1 and OXA in
the LH of 6-OHDA Rats
Distribution of TH-IR neurons in the SN was detected in
control and 6-OHDA rats. TH-IR neurons in the SN was
considerably reduced in 6-OHDA rats compared with control
ones (Figure 2A). We further evaluated gastric emptying using
an in vivo digital X-ray imaging system. The results showed that

67.78 ± 5.0% of the stomach contents were emptied at 90 min in
control rats. Meanwhile, only 34.01 ± 3.3% was emptied in the
6-OHDA rats (n = 6, P < 0.001) (Figures 2B,C).

Compared with control rats (Figures 2D,E), the number of
D1-IR neurons decreased from 134.0 ± 10.14 to 77.11 ± 5.69
in the 6-OHDA rats (n = 3, P < 0.001). The number of
OXA-IR neurons was also decreased from 111.6 ± 10.38 to
62.00 ± 5.68 (n = 6, P < 0.001) in the LH of 6-OHDA
rats. However, the change of D2-IR neurons number was not
significant (n = 3, P = 0.14), slightly increased from 143.2± 15.21
to 170.9± 10.14 in 6-OHDA rats.

Reduced Expression of OX1R and ChAT
Protein in the Dorsal Medulla of 6-OHDA
Rats
ChAT-IR neurons were densely distributed throughout the DMV,
and the distribution was not arranged in any particular manner.
Nearly all ChAT-IR neurons were also OX1R-IR (Figure 3A).
Western blot results showed a significant decrease in the level of
OX1R and ChAT protein in the dorsal medulla of 6-OHDA rats,
from 1.53± 0.07 to 0.42± 0.10 (n = 4, P < 0.001) and 0.62± 0.10
to 0.10± 0.01 (n = 4, P < 0.01), respectively (Figures 3B,C).

DISCUSSION

Most PD patients experience GI dysfunction especially the
gastroparesis (Goetze et al., 2006), but its underlying mechanism
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FIGURE 3 | Reduced expression of OX1R and ChAT protein in the dorsal medulla of 6-OHDA rats. (A) Colocalization of OX1R and ChAT in the DMV neurons; (B)
Representative Western blot of OX1R and ChAT in the dorsal medulla from control and 6-OHDA rats. GAPDH was used as a loading control; (C) Summary histogram
shows that the OX1R and ChAT expression in the dorsal medulla was significantly reduced in 6-OHDA rats. Scale bars: 100 µm. ∗∗P < 0.01; ∗∗∗P < 0.001.

is not clear. Our previous study has demonstrated that the
neurons in the SN could project into the LH and the neurons
in the DMV receives the neural projection from the LH (Wang
et al., 2014). We speculate that this SN-LH-DMV pathway could
modulate the gastric motility since the important role of LH and
DMV in the regulation of gastric motility (Travagli et al., 2003,
2006; Stuber and Wiser, 2016). In the present study, we have
demonstrated that a considerable quantity of D1 and few D2 was
expressed in the OXA-positive neurons in the LH, and OX1R was
expressed in the cholinergic neurons of the DMV.

Here we significantly extend our understanding of the SN-
LH-DMV pathway by showing that (1) a considerable quantity
of D1 and D2 was expressed in the LH, and the OX1R was
expressed in the DMV; (2) Nearly all of the D1-IR neurons were
also OXA-positive, while only a few neurons expressed both
D2 and OXA in the LH, meanwhile the DR-positive neurons
were surrounded by the catecholaminergic neural fibers; In the
DMV, OX1R was colocalized with ChAT-labeled motor neurons;
(3) When dopaminergic neurons in the SN were destroyed,
the decreased expression of D1 and OXA in the LH, and
the reduced OX1R and ChAT expression in the DMV were
observed. These findings suggest that neurons from the SN might
regulate the function of OXA-positive neurons in the LH via
D1 receptor. The dysfunction of the OXA-positive neurons in
turn affects the motor neurons in the DMV through OX1R,
ultimately leads to the gastric dysmotility. This study provides
a morphologic possibility for the SN-LH-DMV pathway in
regulating gastric movement.

LH is one of the functional zones in the hypothalamus,
and plays an important role in regulating feeding, sleep and

wakefulness (Saper, 2002). A lot of OXA-IR neurons exist in
the LH, and most of them are lost in the progression of PD
(Thannickal et al., 2008). However, the underlying mechanism
regulating OXA release from LH remnant neurons in PD patients
is not clear. The SN-LH-DMV neural pathway has been observed
in our previous study. In the present study, co-labeling of D1 with
OXA in the LH provides an evidence that OXA-IR neurons in
the LH might be regulated by the dopaminergic fibers from the
SN via D1 receptors, which is further confirmed by surrounding
dopaminergic fibers located around the D1-IR neurons in the
LH. Moreover, OX1R was highly expressed in the DMV neurons.
Specifically, it was presented in retrograde labeled preganglionic
neurons from the DMV innervating the stomach. OXA can excite
neurons by binding to OX1R of the DMV in rats (Krowicki et al.,
2002). The OXA plays a stimulatory effect on the gastric emptying
in rats (Ehrstrom et al., 2005; Bulbul et al., 2010b). These data
support our idea that lesion of dopaminergic neurons in the
SN impairs gastric motility might be mediated by the SN-LH-
DMV pathway, in which OXA is a connecting factor between
the LH and the DMV.

In the present study, after the dopaminergic neurons in the
SN are destroyed by the 6-OHDA, the expressions of both D1
and OXA in the LH, and OX1R and ChAT in the DMV were
significantly decrease, suggesting that the excitatory effect from
the SN on OXA-positive neurons of the LH and in turn on the
vagal cholinergic motor neurons of the DMV would be lowered,
which subsequently resulted to gastroparesis in 6-OHDA rats.
D1 receptor is a classic subtype of DR family that belongs to
G protein-coupled receptors. D1 activates adenylyl cyclase and
upregulates intracellular cAMP signaling pathway, whereas D2
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inhibits the adenylyl cyclase and downregulates cAMP levels
(Baldessarini and Tarazi, 1996). It seems that the decreased D1
in the LH and OX1R in the DMV, respectively, contribute to
attenuated OXA and acetylcholine release, respectively. However,
detailed mechanism of alteration of the D1, OX1R, OXA, and
ChAT needs to be further studied.

In summary, our present study demonstrates that the down-
regulated D1 and OX1R might be involved in the process
of gastroparesis in PD through the SN-LH-DMV pathway.
The SN-LH-DMV pathway has a potential effect on regulating
gastric motility.
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