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A B S T R A C T   

We developed a cell atlas named LiverSCA on human liver cancer single-cell RNA sequencing data. It has a user- 
friendly web interface and comprehensive functionalities aiming to help researchers to make easy access to 
cellular and molecular landscapes of the tumor microenvironment in liver cancer. LiverSCA includes a complete 
analytical pipeline that allow mechanistic exploration on a wide variety of functionalities, such as cell clustering, 
cell annotation, identification of differentially expressed genes, functional enrichment analysis, analysis of 
cellular crosstalk, and pseudo-time trajectory analysis. Notably, our intuitive web interface allows users, 
particularly wet-lab researchers, to easily explore and undertake data discovery, without the need to handle any 
of the raw data.   

1. Introduction 

Hepatocellular carcinoma (HCC) is the most common form of pri
mary liver cancer, and its incidence is increasing worldwide [1]. It is a 
deadly disease [2–4] and the major risk factors for HCC are infection 
with hepatitis B or hepatitis C viruses and excessive alcohol consump
tion [5]. However, in Western countries, non-alcoholic steatohepatitis 
associated with metabolic syndrome or diabetes mellitus are becoming a 
more frequent risk factor [6–8]. HCC tumor consists of an intricate 
tumor microenvironment (TME) involving the endeavor of malignant 
cells, immune cells and stromal cells to elicit hepatocarcinogenesis 
consequence [6,9]. A better understanding of the TME is crucial for 
identifying immune-related determinants of HCC progression and 
developing novel HCC immunotherapeutics. 

Single-cell RNA sequencing (scRNA-seq) studies in HCC provided 
important insights into the heterogeneity, dynamics, and potential roles 
of TME in HCC progression and response to immunotherapies [10–12]. 
Importantly, sophisticated computational tools have been developed to 
fit various analytical purposes of scRNA-seq, such as CellRanger [13], 
Scanpy [14] and Seurat [15]. Nevertheless, computational/program
ming knowledge is usually the main hurdle for biologists to perform data 
discovery by utilizing scRNA-seq data or even get access to them. They 
heavily rely on computational tools that provide graphical user interface 

[16,17]. Therefore, bioinformaticians collaborate closely with biologists 
to fully comprehend the data discovery and interpretation of findings 
regarding scRNA-seq data. 

There is an urgent need to provide a truly comprehensive and user- 
friendly cell atlas in HCC that can be easily accessible and utilized to 
perform mechanistic exploration. Here, we developed a cell atlas on 
human HCC called LiverSCA (Liver Single-Cell Atlas). It is a user- 
friendly web-based platform for visualizing and analyzing scRNA-seq 
data of HCC. Its intuitive user interface allows users, particularly wet- 
lab researchers, to conveniently explore the data, without the need to 
handle any of the raw data and coding. 

2. Materials and methods 

2.1. Implementation 

This application, LiverSCA, is a code-free, all-in-one web interface 
with a core written in the Python3 programming language. All the charts 
are generated by light-weight JavaScript library and in-house scripts. 
MySQL database engine stores meta information. Detailed instructions 
and user tutorial are available at https://patholiver.hku.hk/liverp/. 
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2.2. Sample cohort and data processing 

We included scRNA-seq data from tissue samples of 35 HCC patients 
and 5 healthy livers sourced from both public and in-house sample co
horts [18–22] (Table 1). Specifically, for the HCC samples, only tumor 
tissue samples were utilized, and they were categorized based on re
ported etiological risk factors of patients (HBV, HCV, or nonviral). 

We obtained the expression matrices from the NCBI GEO database. 
Prior to integration, we conducted uniform quality control procedures, 
excluding cells with a low library size (<800), a high mitochondrial 
genome percentage (>10 %), and genes with low detection (UMI count 
< 200) (Fig.S1a). 

The Harmony method [23] was utilized to eliminate undesirable 
technical variations among cohorts (i.e. batch-effect correction) and we 
combined the datasets of the same risk factor into a single Seurat object. 
Subsequently, the FindNeighbours, FindClusters, and RunUMAP/TSNE 
functions of Seurat (version 4) were employed to cluster and visualize 
the cells within the dataset. Cell-type markers detailed in the original 
papers were referenced during the process of cell type annotation. 

The inferCNV R package (inferCNV of the Trinity CTAT Project. htt 
ps://github.com/broadinstitute/inferCNV) was used to estimate the 
copy number variation (CNV) status of potentially malignant cells. The 
CNV score for each cell was then re-standardized, and values were 
limited to 0 to 1. The CNV score of potential malignant cells of different 
risk factors was compared to normal hepatocytes (Fig.S1c). 

3. Results 

3.1. Overview of LiverSCA cell atlas on HCC 

The LiverSCA includes 40 subjects (35 HCC patients of various 
etiological risk factors and 5 healthy controls) and has a total cell count 
of over 140,000 cells. 

At the main interface, users can start by choosing a dataset (HBV, 
HCV, non-viral or all HCC cases). They can then opt to view the cellular 
landscape by cell type or cluster. Next, users can switch to different 
functional modules for subsequent analyses. LiverSCA’s functionalities 
are organized into modules that provide analytical solutions for sum
marizing cell count/proportions, visualizing gene expression, detecting 
differential gene expression, conducting functional enrichment analysis, 
analyzing cell-cell communication, reconstructing cellular trajectories, 
and checking data quality (Fig. 1). In addition to LiverSCA’s data visu
alization capabilities, all the plots in our cell atlas can be easily 
downloaded. 

The datasets used in LiverSCA are from public and in-house sources. 
We annotated the major cell types in each dataset by using the markers 
reported in the original studies (Fig. 2a-b and supplementary table 1). 

There are malignant cells, normal hepatocytes, endothelial cells, fibro
blasts, dendritic cells, B cells, plasma cells, macrophages, T cells, regu
latory T cells, and natural killer cells. The availability of multiple 
etiological datasets allowed us to compare the cell compositions among 
them (Fig. 2c and Fig. S1 b). 

3.2. Functional modules of LiverSCA 

3.2.1. Dataset selection and cellular landscape 
Users are required to select a dataset according to phenotype. At 

present, We included scRNA-seq data from tissue samples of 35 HCC 
patients and 5 healthy livers sourced from both public and in-house 
sample cohorts (Table 1). Users can examine a specific sample or a 
user-defined list of samples through “Sample ID” selection. After dataset 
selection, users can visualize the cellular landscape by tSNE or UMAP 
dimension reduction method and the cellular distribution can be strat
ified according to cell types or clusters. When users choose to display the 
cellular landscape by cell type, they can view the distribution of a spe
cific cell type or various groups of cell types by selection at the “Celltype 
list”. Similarly, LiverSCA can also display the cellular distribution ac
cording to clusters. 

3.2.2. Cell proportion 
In the cell proportion module, we offer two visualization methods 

(Fig. S2). The first is a bar plot that displays the cell population of each 
cell type/cluster. The second is a box plot that illustrates the distribution 
of gene counts per cell for each cell type/cluster. It should be noted that 
the results displayed by cluster or cell type are in line with the anno
tation methods (either cell type or cluster). 

3.2.3. Marker genes 
The functions of the Marker Genes module vary depending on the 

cellular landscape presented by different cell types or clusters. When 
users select “cell type” for display, this module is capable of analyzing 
differently expressed genes (DEGs) for different cell types (Fig. 3). On 
the other hand, if users choose “cluster”, it can reveal the DEGs of each 
cluster. If users choose to display by "cell type," this module allows for 
conducting differential expression analysis between one etiology and 
another one or the healthy dataset i.e. HBV vs HC or HBV vs healthy. 
Apart from listing out the DEGs in table format, we also offer volcano 
plot visualization of DEGs. Users can perform over-representation 
analysis of DEGs using gene pathway definitions by GO and KEGG for 
the top 10 signatures or all up/down-regulated DEGs. Additionally, gene 
set enrichment analysis (GSEA) using different gene set definitions (GO, 
KEGG, Reactome and MSigDB) are also available in this module. 

Table 1 
Detailed information on datasets used in LiverSCA.  

Tissue Info Etiology Accession Number Sample Info Number of 
patients 

Sample ID in 
LiverSCA 

Cell 
Count 

Total number & 
count 

Healthy Liver 
tissue 

Healthy GSE115469 [18] Liver grafts of five healthy neurologically 
deceased donors 

5 Healthy_N1 8438 Total number of 
patients: 
40 
Total cell count: 
147,142 

HCC tumor 
tissue 

HBV GSE112271 [19] Sequenced four tumor regions 1 HBV_N1 4909 
GSE149614 [20] Each patient collected one primary tumor 

sample 
5 HBV_N2 16386 

GSE156625# [21] Tumor tissue from multiple sectors 9 HBV_N3 8446 
PRJNA932937  
[22] 

Each patient collected one primary tumor 
sample 

9 HBV_N4 51174 

HCV GSE149614 Each patient collected one primary tumor 
sample 

2 HCV_N1 7378 

Non- 
viral 

GSE112271 Sequenced three tumor regions 1 non_viral_N1 12973 
GSE149614 Each patient collected one primary tumor 

sample 
3 non_viral_N2 7720 

GSE156625# Tumor tissue from multiple sectors 5 non_viral_N3 29718 

# Performed CD45 + and CD45- cells sorting then 1:1 mixing them to sequence. So, this dataset was not included in the cell type composition comparison. 
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3.2.4. FeaturePlot and VlnPlot modules 
It is important to mention that the output in these two modules will 

align with the choices made in the previous steps. We provide two 
visualization approaches (FeaturePlot and VlnPlot) to examine the 
expression level of one gene or a set of genes, respectively. For the choice 
of genes to be displayed, we offer two options. The first one is using 
canonical markers, which we used to annotate the cell types. Another 
one is a user-defined marker panel. Users can input the official gene 
name of any genes that are interested to view its expression level. And 
the main difference between these two modules is that in the latter, users 
can check a set of genes at once, and the results will be presented using 
both violin plot and dot plot. 

3.2.5. Cell-cell module 
To perform cell-cell communication analysis, we utilize the algo

rithm of CellphoneDB [24] and CellChat [25] at our cell atlas (Fig. 3). 
This module provides an overview heatmap of cellular crosstalk be
tween different cell types. Besides, it can also display the summary of 
interaction pairs between two specific cell types (users need to select the 
cell types for partner A and partner B in the module). The option 
“Number” means the number of top interacting ligand-receptor pairs to 
be used in making the plot. For example, choosing “10″ in the “Number” 
option indicates the top 10 pairs with the highest interaction scores. 
Besides, users can also depict the dot plot using a specific 
ligand-receptor pairs that specified by the “Interaction Proteins(A|B)” 
option. For users who are interested in examining the immune check
point pairs, they can simply select the “Immune-Checkpoint” option. 
This option not only contains all the functions mentioned in the general 
ligand-receptor pairs but specifically focuses on the immune checkpoint 
pairs between antigen-presented cells (APC) and T cells. In addition, we 
provide a dedicated database containing some well-known immune 
checkpoint pairs that have been reported in literature. 

3.2.6. Trajectory module 
In this module, we provide the functionality of pseudo-time infer

ence analysis (Fig. 3). Users have the option to choose a specific cell type 
and examine the reconstruction of its cell state transition process orga
nized by clusters or subtypes. The results are presented via UMAP plots, 
with one focusing on stratifying cells according to clusters/subtypes 
whereas another one pinpointing the status of pseudo-time. Users can 
take advantage of the output of this module to determine the cellular 
progression of cells and deduce their transitional trajectory. 

3.2.7. QC Metrics module 
In this module, users can verify the quality of the scRNA-seq data. 

Here, we show the data information from three parameters: the number 

of unique genes detected in each cell (nFeature_RNA), the total number 
of molecules detected in a cell (nCount_RNA) and the percentage of 
reads that map to the mitochondrial genome (percentage_MT). The re
sults are shown by the violin plot as well as the bar plot. Users can use 
“Group by” selection to decide the display of results by sample. If users 
prefer to view all samples in a single plot, “horizontal stack” option 
should be selected. 

3.3. Comparison with other web-based tools 

There are not many publicly available cell atlases regarding liver 
tissue and that of liver cancer tissue is particularly scanty. Therefore, we 
conducted a functional comparison and directly compared LiverSCA 
with several other liver/liver cancer-related cell atlases [26,27] 
(Table 2). In general, most of the other tools (LiverSCA, GepLiver, Liver 
Cell Atlas and Liver Single Cell Atlas) have gene expression visualization 
function. In fact, Liver Cell Atlas (https://www.livercellatlas.org) and 
Liver Single Cell Atlas (http://liveratlas-vilarinholab.med.yale.edu/) 
only provide this simple function. Moreover, GepLiver (http://www. 
gepliver.org/) has further functionalities on DEG detection and sur
vival analysis. On the other hand, CancerLiver (https://webs.iiitd.edu. 
in/raghava/cancerliver/) is more focused on functional enrichment 
and it includes GSEA on both GO and KEGG. In summary, LiverSCA 
includes all the aforementioned functionalities (except survival analysis 
due to the current small sample size but we have plan to include more 
cohorts and implement this function in our future update). More 
importantly, LiverSCA also has other unique and important functions 
that distinguish itself from the other existing tools. In the HCC tumor 
microenvironment, there are prominent communications among 
different cell populations that elicit pivotal influence in supporting 
hepatocarcinogenesis and tumor development. Throughout the process, 
the cellular transition is critical to the oncogenic mechanism and they 
also likely contribute immunosuppressive effect in leading to immune 
escape that spares the HCC tumor from immune surveillance. Pin
pointing the above perspectives, LiverSCA includes specific functional 
modules to allow exploration on cell-cell communication and cellular 
trajectory analyses. Apart from the functional comparison that dis
tinguishing the specific emphasis of individual tools, we also included 
the computation time of making analysis plots in the comparison 
(Table S2). Waiting time is an important indicator of user satisfaction 
and it allows objective and fair interpretation of usage experience of 
different tools. LiverSCA were able to complete different tasks within a 
reasonable timeframe, which was also at least comparable to or even 
faster than the other tools in general (Table S2). Taken together, to our 
best knowledge, we believe LiverSCA is currently one of the most 
comprehensive liver-related cell atlases and we will continue to work 

Fig. 1. Overview of LiverSCA cell atlas. Dash lines indicate the only available options for the corresponding stratification method in Step 2.  

R. Long et al.                                                                                                                                                                                                                                    

https://www.livercellatlas.org
http://liveratlas-vilarinholab.med.yale.edu/
http://www.gepliver.org/
http://www.gepliver.org/
https://webs.iiitd.edu.in/raghava/cancerliver/
https://webs.iiitd.edu.in/raghava/cancerliver/


Computational and Structural Biotechnology Journal 23 (2024) 2740–2745

2743

towards future enhancement that pinpointing more sample cohorts, 
larger cell count, more comprehensive annotation of cell types and the 
possibility to identify rare cell subpopulations. 

4. Conclusions 

To sum up, our LiverSCA cell atlas on HCC website tool of scRNA-seq 
analysis pipeline offers a complete analysis pipeline that has compre
hensive set of functions to investigate cellular and molecular landscapes 
in intricate biological systems of HCC. This may help identifying useful 
biomarkers for translational application of HCC surveillance [28] and 
shed light on pinpointing specific interactions or action of cells [29–32]. 
It is user-friendly and adaptable, enabling users to customize their 

analysis to fit their research needs. Our intuitive graphical interface is 
designed to assist researchers in discovering new mechanistic insights 
regarding the complex tumor microenvironment of HCC. We aim to 
make this process easier and more efficient for researchers with so
phisticated computational/programming knowledge. We hope this can 
alleviate the obstacle for clinicians and cell biologists in undertaking 
bioinformatics discovery. Moreover, LiverSCA reduces the knowledge 
gap between different domains of research and accelerates knowledge 
transfer in the scientific community. Since scRNA-seq technology is still 
in rapid development, more functionalities, such as single spatial tran
scriptomics and multimodal omics, will also be considered for future 
updates. With our aims of continuous development and maintenance of 
LiverSCA, we believe that it can provide good and useful user 

Fig. 2. Summary of datasets in LiverSCA. a. UMAP cell type distributions for four phenotypes, respectively. b. The expression levels of representative markers for 
each cell type among phenotypes. c. Cell type composition comparison among etiologies grouped by all cell types, immune cell types, and non-immune cell types, 
respectively. 
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