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In the kidney, lesions mediated by antibodies against glomerular basement 
membrane antigens or by circulating or in situ-formed immune complexes have 
been extensively studied. Much less is known about similar pathogenic mecha- 
nisms in the lung. In laboratory animals it appears difficult to induce antibody- 
mediated pneumonitis. The endothelium of the alveolar capillary wall is, in 
contrast to that of the glomerular capillary wall, nonfenestrated. It has been 
proposed that this type of endothelium prevents easy access of macromolecules 
such as IgG or immune complexes to the alveolar basement membrane (ABM) t 
(1). Support for this view has come from experiments in rabbits (1) and in rats 
(2) where it was found that under normal physiological conditions heterologous 
antibodies against ABM do not bind to this structure. If, however, the endothe- 
lium is damaged by exposure of animals to 100% oxygen, both heterologous 
antibodies (1, 2) and autologous IgG (1) localize along the ABM and induce 
pneumonitis. 

In patients with Goodpasture's disease there is evidence that autoantibodies 
reacting with the ABM cause hemorrhagic pneumonitis. However, the sequence 
of events resulting in this injury is not clearly defined (3). Patients with high 
concentrations of serum antibodies strongly reacting with ABM in vitro may not 
develop signs of lung injury. In contrast, patients with low levels of antibodies 
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reacting weakly with ABM in vitro occasionally develop fulminating lung disease 
(3-5). The pulmonary component of Goodpasture's disease is often precipitated 
by secondary events such as infections (5). These observations in man are 
consistent with the hypothesis that factors increasing the permeability of the 
alveolar capillary wall have an important role in the induction of antibody- 
mediated lung disease. 

The aim of the present study was to explore the effects of the interaction of 
antibodies with the endothelium of the alveolar capillary wall. To this purpose 
rabbits were repeatedly injected with heterologous antibodies specific for angi- 
otensin-converting enzyme (ACE), a well-defined antigen expressed on the 
plasma membrane of lung endothelial cells (6, 7). It was found that on the first 
day of injection, anti-ACE antibodies induce fatal pulmonary edema in the 
majority of rabbits and cause redistribution of ACE on the plasma membrane of 
alveolar capillary wall endothelial cells and local fixation of complement. Contin- 
ued administration of antibodies to surviving rabbits resulted in disapperance of 
ACE from the surface of lung endothelial cells. This "immunological enzymec- 
tomy" appeared to render the rabbits refractory to the damaging effects of anti- 
ACE antibodies. The results indicate that IgG antibody reacting in vivo with an 
antigen expressed on the plasma membrane of lung endothelial cells causes an 
antigenic modulation similar to that observed in other systems characterized by 
interaction of plasma membrane receptors with soluble ligands. The clinical and 
immunopathological events appear relevant for the understanding of the path- 
ogenesis of antibody-mediated injury in the lung and, probably, in other organs. 

Materials and  Methods  
Animals. Female New Zealand white rabbits (Beckens Farms, Sanborn, NY), each 

weighing 2.5-3 kg, were used. They were allowed free access to water and Purina rabbit 
pellets. 

Goat Anti-rabbit ACE (Gt Anti-RbACE) Antibody Preparations. Rabbit pulmonary ACE 
was purified by a modification of earlier published methods (8, 9). Frozen rabbit lungs 
(PeI-Freeze Biologicals, Rogers, AR) were homogenized in a buffer containing 20 mM 
Tris-HCl, pH 7.8, 30 mM KCI, 5 mM magnesium acetate, and 0.025 M sucrose and 
centrifuged at 16,000g for 1 h. The pellet was dispersed in 10 mM Tris-HCl, pH 7.8, 
and 0.5% Nonidet-P40, stirred vigorously for 3 h, and centrifuged at 16,000g for 1 h. 
The resulting supernatant containing solubilized enzyme was mixed with a slurry of DEAE 
cellulose equilibrated in 10 mM potassium phosphate, pH 6.5, 0.5% Nonidet-P40 and 
filtered. The filter cake was resuspended in potassium phosphate buffer containing 0.025% 
Nonidet-P40, mixed, and refiltered. The enzyme was eluted with 0.2 M and 0.35 M KCI 
containing 0.025% Nonidet-P40, concentrated, dialyzed extensively in 1 mM potassium 
phosphate, pH 7.5, 0.025% Nonidet-P40, and sequentially fractionated in a series of 
negative adsorption steps with calcium phosphate gel. The concentrated eluate was diluted 
with 10 mM Tris-HCI, pH 7.8, reconcentrated six times to eliminate residual detergent, 
and then applied to a Sephadex G-200 column under vacuum. Two peaks of activity in 
the eluate were combined and the final purification step was performed with a glycerol 
gradient (5-20% in 10mM Tris-HCl) run at 38,000 rpm, with a Beckman SW 40 Ti 
rotor, for 18 h at 4°C in a Beckman L2-65B ultracentrifuge (Beckman Instruments, Inc., 
Spinco Div., Palo Alto, CA). The activity was resolved in a single peak that was assayed 
according to the method of Cushman and Cheung (10). The protocol resulted in a 1,000- 
fold purification with a final specific activity consistent with previous experience (8, 9, 
11). The purified enzyme showed a single band on polyacrylamide gel electrophoresis 
under both native and reducing conditions. 
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Antibodies to RbACE were raised in goats by immunization with the purified enzyme 
in complete Freund's adjuvant (11). In all experiments the same pool of Gt anti-RbACE 
77-globulin isolated by ammonium sulfate precipitation was used. Isolation of IgG from 77- 
globulin was achieved by fractionation by DEAE cellulose chromatography (12). The 
pooled IgG fractions were dialyzed in 0.1 M sodium acetate, pH 4.5, and treated with 
pepsin (Sigma Chemical Co., St. Louis, MO) at a ratio of 1 mg pepsin/100 mg protein at 
37°C for 18 h (13). The digest was centrifuged and divided into two aliquots. The first 
aliquot was dialyzed in 0.1 M Tris-HCl, 0.2 M NaCI, 2 mM EDTA, pH 7.8, and applied 
to a 4-cm × 100-cm column of Sephacryl S-200 (Pharmacia Fine Chemicals, Piscataway, 
NJ) at a flow rate of 11 mi/h. The F(ab')2 was recovered in the second protein peak, 
concentrated, dialyzed in phosphate-buffered saline (PBS), and then applied to a column 
of Protein A Sepharose CL4B (Pharmacia) in 0.1 M sodium phosphate, pH 7.6. The 
second aliquot of pepsin digest was dialyzed in 0.1 M sodium phosphate, pH 7.5, and 
treated with papain (Sigma), at a ratio of 1:100 (wt/wt) in the presence of 1 mM EDTA 
and 10 mM L-cysteine at 37°C for 18 h (14). The digestion was terminated with iodacetic 
acid at a final concentration of 15 mM. The digest was dialyzed in 0.1 M Tris-HCl, 0.2 
M NaCI, 2 mM EDTA, pH 7.8, and applied to the Sephacryl S-200 column as described. 
The eluted Fab was recovered from the third protein peak, dialyzed in PBS, and applied 
to a column of Protein A Sepharose as described above. There was no detectable IgG in 
either the F(ab')2 or the Fab preparations as determined by polyacrylamide gel electro- 
phoresis with a loading of 100 ~g protein, Both F(ab')~ and Fab gave single arcs against 
Rb anti-GtlgG by immunoelectrophoresis in agarose. IgG and F(ab')~ formed precipitin 
bands against purified converting enzyme by the Ouchterlony immunodiffusion technique, 
whereas Fab did not. 

Preparation of Radiolabeled Antibodies to Rabbit ABM and to Keyhole Limpet Hemocyanin 
(KLH). Rabbit ARM was prepared according to a modification (1) of a method described 
by Meezan et al. (15). Rabbit lung pairs were purchased from PeI-Freeze Biologicals. 
Purified KLH was obtained from Calbiochem-Behring Corp., San Diego, CA. Antisera to 
rabbit ARM and KLH were raised in rats by immunization with the antigenic preparations 
in complete Freund's adjuvant. The 7-globulin fraction of the immune sera was isolated 
by ammonium sulfate precipitation. The rat anti-RbABM and anti-KLH antibodies were 
purified from the 77-globulin preparations by affinity column chromatography with the 
antigens coupled to cyanogen bromide-activated Sepharose 4 B (Pharmacia Fine Chemi- 
cals). The purified antibody preparations were iodinated by the chloramine-T method 
(16). 

Design of Experiments. A. Rabbits treated with intravenous injections of Gt anti-RbACE 
77-globulin: (a) 49 normal rabbits were started on a daily schedule of 3 doses of 7 mg of 
Gt anti-RbACE 77-globulin in 3 ml of PBS, injected in a lateral ear vein for a maximum 
of 4 d. 1 5 normal rabbits were similarly injected with normal Gt 77-globulin. At autopsy 
of rabbits that died or were sacrificed, fragments of lung, kidney, liver, spleen, adrenal, 
and choroid plexus were removed for immunopathologic studies. Before processing, lungs 
were inflated with a solution of 0.5% bovine serum albumin in PBS delivered via a cannula 
inserted in the trachea (1). (b) 1 5 rabbits were depleted of polymorphonuclear leukocytes 
by the administration of 1.75 mg/kg body weight of NH~ (Mustargen HCI, Merck, Sharp 
and Dohme, West Point, PA) (1 7). These rabbits were then also started on a schedule of 
3 intravenous doses of 7 mg of Gt anti-RbACE 77-globulin per day. 

B. Rabbits injected with horse radish peroxidase (HRP)-labeled Gt anti-RbACE 3'- 
globulin: Immunoelectron microscopic studies were performed according to a methodol- 
ogy proposed by Vogt et al. (18) and modified by Abrahamson and Caulfield (19). One 
normal and one polymorphonuclear leukocyte-depleted rabbit were intravenously in- 
jected, over a 5-h period, with 20 mg of HRP-labeled Gt anti-RbACE 77-globulin. As 
controls, one polymorphonuclear leukocyte-depleted rabbit was injected with 20 mg of 
HRP-labeled normal Gt v-globulin and another polymorphonuclear leukocyte-depleted 
rabbit was injected simultaneously with 20 mg of unlabeled Gt anti-RbACE 77-globulin 
and 20 mg of HRP-labeled normal Gt 77-globulin. After completion of the injections, the 
animals were sacrificed and their lung tissue processed for immunoelectron microscopy 
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(see below). The -),-globulin preparations were labeled with HRP as described by Nakane 
and Kawaoi (20). 

C. Rabbits injected with Gt anti-RbACE IgG, or F(ab')~ or Fab fragments of Gt anti- 
RbACE IgG: One rabbit received 52 mg of Gt anti-RbACE IgG, two rabbits 18 mg each 
of Gt anti-RbACE F(ab')2, and three rabbits 25 mg each of Gt anti-RbACE Fab. The 
injections were given intravenously over a period of 5 h. After termination of the injection, 
the animals were sacrificed and various organs were immediately removed for immuno- 
pathologic studies. In two additional rabbits the injection in one of 25 mg of Gt anti- 
RbACE Fab and in the other of  25 mg of Fab fragments of  normal GtIgG was followed 
by the intravenous administration over a 15-rain period of 3 ml of a Rb anti-GtIgG 
antiserum (Cappel Laboratories, Cochranville, PA). These latter two animals were sacri- 
riced 10 min later. 

D. Rabbits to which, following a single injection of Gt anti-RbACE ~,-globulin, radio- 
labeled-rat anti-RbABM antibodies were administered: Immediately following an intra- 
venous injection of 7 mg of Gt anti-RbACE "),-globulin, seven rabbits received a mixture 
of ~e'~I-labeled, purified rat anti-RbABM antibodies and 13q-labeled, purified rat anti- 
KLH antibodies. The animals were sacrificed half an hour later and their lungs, livers, 
and kidneys prepared for measurement of  the specific uptake of the anti-ABM antibodies 
(1). Seven other rabbits were similarly treated, except that instead of Gt anti-RbACE 7- 
globulin they were injected with 7 mg of normal Gt 7-globulin. The specific uptake of 
the anti-ABM antibodies in various organs was calculated as described in an earlier 
publication (1). For statistical analysis, the Student's t-test was used. 

Determination of ACE Activity in Serum, and in Lung and Kidney Tissue Homogenates. After 
removal of standardized sized specime~ls from lung (one specimen from each lobe) and 
kidney for immunopathologic studies, the remaining tissue was homogenized in PBS and 
assayed for ACE activity according to the method of Cushman and Cheung (10). ACE 
activity was also determined in serum samples obtained before sacrifice of the rabbits. 

Immunofluorescence (IF) Microscopy. Direct IF tests on tissues obtained at autopsy of all 
rabbits were performed according to methods described in an earlier publication (21). 
FITC-conjugated antisera to GtIgG, RblgG, RbC3, and Rbfibrin were purchased from 
Cappel Laboratories. They were found to be monospecific by immunoelectrophoresis as 
well as by immunodiffusion. Gt anti-RbACE IgG was conjugated with FITC by a standard 
method (21). To determine whether polymorphonuclear leukocytes were present in 
sections of frozen lung tissue from NH2-treated rabbits that died on the first day of 
administration of Gt anti-RbACE 7-globulin, an FITC-conjugated antiserum to rabbit 
polymorphonuclear leukocyte cationic proteins was used. This antiserum was prepared as 
described in an earlier publication (22). In indirect IF tests frozen sections of  normal 
rabbit tissues were incubated with serial dilutions of Gt anti-RbACE and normal Gt 3'- 
globulin preparations, followed by incubation with FITC-labeled antiserum to GtIgG. 
Sections for IF microscopy were examined with Leitz Ortholux microscope equipped with 
epifluorescence optics and appropriate filters for FITC. 

Light Microscopy. Tissue specimens removed at autopsy were fixed in 10% buffered 
formalin and embedded in paraffin. 3-t~m thick sections were stained wtih hematoxylin- 
eosin and periodic acid Schiff. 

Electron Microscopy. Fragments of lung and kidney tissue were fixed by submersion in 
Karnovsky's fixative (23), postfixed in 1% osmium tetroxide, and embedded in Epon 812- 
Araldite. Perfusion-fixation of the lungs was not performed to avoid removal of inflam- 
matory cells from vascular lumina. Thin sections stained with uranyl acetate and lead 
citrate were examined with a JEOL 100S electron microscope. 

hnmunoelectron Microscopy. Fragments of lung of rabbits injected with HRP-iabeled 7- 
globulin preparations were fixed by submersion in Karnovsky's fixative. ,~40 micron- 
thick sections of lung were obtained using a Smith-Farquhar tissue chopper. HRP was 
visualized by incubation of the sections in diaminobenzidine hydrochloride (Sigma) fol- 
lowed by addition of 0.003% H202 (24). The sections were "flat embedded" in Epon 812- 
Araldite and thin sectioned for electron microscopy (25). 
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Results 
In Vitro Reactivity of the GT Anti-RbACE Preparations. Testing of the Gt anti- 

RbACE preparations in vitro by indirect IF microscopy showed the following 
reactivity: linear binding of GtIgG, F(ab')~, and Fab along the endothelium of 
alveolar capillaries of the lung (Fig. 1 A), of  capillaries of the choroid plexus (Fig. 
2A), of periportal vessels of  the liver, and, though weakly, of  the sinusoidal wall 
of the adrenal; in addition, binding was observed to the brush border of  proximal 
tubules of  the kidney. 

Rabbits Treated with Intravenous Injections of Gt Anti-RbACE 3,-Globulin. 1) 
Normal rabbits: On the first day of the antibody injections the majority of the 
rabbits showed signs of  respiratory distress and 69% died from pulmonary edema. 
On the following days the mortality fell dramatically (Table I) and the rabbits 
tolerated the injections of the anti-ACE 3,-globulin without overt symptoms. 

The  results of IF microscopy studies of the lung are summarized in Table I. 
The  deposits of GtIgG and RbC3 found along the alveolar capillary walls on the 
first 3 d of antibody administration were granular in appearance (Figs. 1 B and 
3). The  granular pattern of  binding of anti-ACE antibodies in vivo contrasted 
with the linear pattern observed in vitro (Fig. 1A). Furthermore,  in direct IF 
microscopy the distribution of ACE in the lungs of rabbits injected with Gt anti- 
Rb ACE 3,-globulin was also granular (Fig. 1 C). In Table I it should be noted 
that on day 4, the last day of antibody administration, immune deposits were no 
longer detectable in the lungs (Fig. 4). In addition, when these lungs were studied 
by indirect IF microscopy it was found that ACE was absent or present in only 
minimal amounts. In lung tissue of  rabbits that were sacrificed, fibrin appeared 
localized within the lumen of alveolar capillaries and, in animals that died on the 
first day of injection with pulmonary edema, also in the alveolar space. The  
results of  direct IF tests for the presence of  GtlgG in selected organs other than 
the lung are presented in Table II. In the kidneys of  some of  the rabbits sacrificed 
on day 4 or 5, weak and ill-defined localization of  GtIgG was found along the 
glomerular capillary walls. GtIgG was never detected on the brush border  of 
proximal tubules. In the spleen granular localization of  GtIgG was observed in 
perifollicular zones. Whenever GtIgG was seen in the choroid plexus (Fig. 2B) 
or the adrenal, it was present in a granular pattern along the capillary or 
sinusoidal walls, respectively. 

Quantitative studies (Fig. 5) showed a precipitous drop in ACE activity in the 
lungs of rabbits injected with anti-ACE 3"-globulin. Discontinuation of the 3"- 
globulin administration resulted, within 24 h, in a significant increase in the 
amount  of ACE activity present in the lung; normal values were found on day 
21. The  values of  ACE activity determinations in serum paralleled those in lung. 
No change in kidney ACE activity was observed. 

In animals that died with pulmonary edema the findings by light and electron 
microscopy were similar to those described in an earlier publication (11), and 
included areas of alveolar capillary wall degeneration and necrosis, and accu- 
mulation in capillary lumina of occasionally disintegrated polymorphonuclear 
leukocytes, platelets, and fibrin. The  polymorphonuclear leukocytes contained 
an increased amount  of  glycogen (26) and glycogen granules were found free in 
vascular lumina. Areas of  frank necrosis were absent in lungs of  rabbits that 



FIGURE 1. (A) lmmunofluorescence micrograph showing in vitro binding of Gt anti-RbACE 
IgG to alveolar capillary walls of normal lung. The staining pattern is linear. X 600. (B) 
Immunofluorescence micrograph showing in vivo binding of Gt anti-RbACE IgG along 
alveolar capillary walls. The staining pattern is granular. × 600. (C) Immunofluorescence 
micrograph showing a granular distribution of ACE after in vivo binding of Gt anti-RbACE 
IgG along alveolar capillary walls. X 600. 
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FIGURE 1 C. 

survived the first three injections of Gt anti-ACE ~,-globulin and were sacrificed 
on day 1. In these animals the alveolar septa were not thickened; the alveolar 
endothelium, however, was markedly swollen and displayed an increased number 
of caveolae and vacuoles of variable size. In rabbits sacrificed on day 2 through 
5 the alveolar septa were thickened. This thickening was caused by influx of 
mononuclear and polymorphonuclear leukocytes, proliferation of septal cells, 
and the presence of many type II pneumocytes. Over days 2 through 5 the 
polymorphonculear leukocytes gradually regained their normal appearance. 
Many macrophages were present in the alveolar space. On day 5 the endothelium 
was still swollen and showed an abundant rough endoplasmic reticulum and 
many free ribosomes. On day 21 the lung morphology had returned to normal 
and scarring was not found. 

Rabbits injected with normal Gt 3,-globulin were sacrificed on day 1 (n = 7), 4 
(1~ = 5), 5 (~ = 1), and 21 (n = 2). In these rabbits the results of  all studies, 
including quantitation of ACE in lungs, kidneys, and sera, were normal. 

2) Polymorphonuclear leukocyte-depleted rabbits: On the first day of Gt anti- 
RbACE 3,-globulin injections, no polymorphonuclear leukocytes could be found 
in the circulation of HNz-treated rabbits. The mortality (40%) on the first day 
in this group of animals was not statistically significant different from that 
observed in non-polymorphonuclear leukocyte-depleted rabbits. 

In this group of rabbits the results obtained by IF microscopy were similar to 
those obtained in rabbits nondepleted of polymorphonuclear leukocytes and 
injected with anti-ACE antibody: initially the lung immune deposits were gran- 
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FIGURE 2. (A) Immunofluorescence micrograph showing in vitro binding of Gt anti-RbACE 
IgG to the endothelium of capillaries of the choroid plexus. The staining pattern is linear. 
× 250. (B) Immunofluorescence micrograph showing in vivo binding of Gt anti-RbACE IgG 
to the endothelium of capillaries of the choroid plexus. The staining pattern is granular. 
x 400. 

TABLE I 

Mortality and hnmunofluorescence Findings in Lungs of Rabbits Injected on Day 1 through 4 
with 21 mg of Goat Anti-rabbit Angiotensin-converting Enzyme 3,-Globulin per Day 

No. of rabbits 
Day Mortality in studied by DIF 

percent microscopy 

Deposits along alveolar capillary wall: percentage 
of rabbits positive 

GtlgG RblgG RbC3 Rb Fibrin 

1 69  22 100 0 81 81 
2 13 7 57 0 29 71 
3 0 3 33 0 ND ND 
4 0 5 0 0 0 20 
5 0 7 0 0 0 14 

21 0 5 0 0 0 0 

Abbreviations: DIF, direct immunofluorescence; Gt, goat; Rb, rabbit; ND, not done. 

ular  and,  on  day 4 (n = 2), were  no  longer  detectable .  No,  o r  only  an  occasional  
p o l y m o r p h o n u c l e a r  l eukocyte  was seen af te r  s ta ining sections o f  f rozen  lung  
tissue o f  rabbi ts  tha t  d ied  on  day  1 with F I T C - c o n j u g a t e d  an t i se rum to  cat ionic 
pro te ins  o f  rabbi t  p o l y m o r p h o n u c l e a r  leukocyte .  

Wi th  the  excep t ion  o f  absence  o f  p o l y m o r p h o n u c l e a r  leukocytes  on  day 1, 
light and  e lec t ron  mic roscopy  revea led  lung  lesions similar to those seen in 
rabbi ts  n o n d e p l e t e d  o f  p o l y m o r p h o n u c l e a r  leukocytes  a nd  injected with anti-  
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FIGURE 3. Immunofluorescence micrograph showing the binding of RbC3 along alveolar 
capillary walls of a rabbit injected with Gt anti-RbACE 3,-globulin. The staining pattern is 
granular. × 250. 

ACE antibody. 
hnmunoelectron Microscopy. Injected HRP-labeled Gt anti-ACE ~,-globulin was 

found to be irregularly distributed along the surface of the endothelium of 
alveolar capillaries; it was also found in endothelial caveolae and had accumulated 
in vacuoles of variable size within the endothelial cytoplasm (Fig. 6). HRP could 
not be demonstrated in lung tissue of the control rabbits. 

Rabbits Injected with Gt Anti-RbACE IgG, or F(ab')~ or Fab Fragments of Gt Anti- 
RbACE IgG. GtIgG or F(ab')~ fragments injected into rabbits were found, 
together with RbC3, in a granular pattern along alveolar capillary walls. In 
contrast, Fab fragments of Gt anti-RbACE IgG localized in a linear pattern along 
alveolar capillary walls (Fig. 7A). In direct IF microscopy the distribution of ACE 
was also linear (Fig. 7B). Complement fixation could not be detected in the lungs 
of rabbits injected with Fab fragments. 

When the injection of Fab fragments of Gt anti-RbACE IgG was followed by 
an injection of Rb anti-GtIgG serum, fine granular deposits of  Gt Fab fragments 
(Fig. 7A, inset), RbIgG and RbC3 were seen along alveolar capillary walls. 
Injection" of Fab fragments of normal GtIgG followed by Rb anti-GtIgG serum, 
did not result in formation of granular immune deposits along alveolar capillary 
walls. However, precipitates composed of Gt Fab fragments, RbIgG, and RbC3 
were occasionally present in the lumen of alveolar capillaries. 

Rabbits to Which, Following a Single Injection of Gt Anti-RbACE ~-Globulin, Radio- 
labeled Rat Anti-RbABM Antibodies Were Administered. In the rabbits injected with 
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FIGURE 4. Immunofluorescence micrograph showing absence of binding of GtlgG to lung 
tissue in a rabbit sacrificed on the fourth day of administration of Gt anti-RbACE -r-globulin. 
x 600. 

TABLE II 
Localization of Goat IgG in Selected Organs of Rabbits Injected on Day 1 through 4 with 21 mg of 

Goat Anti-rabbit Angiotensin-converting Enzyme ~-Globulin per Day 

Choroid Day Kidney* Spleen Liver Adrenal plexus 

1 0/22 8/14 0/14 3/13 3/9 
2 0/7 3/8 0/8 0/8 2/8 
3 ND ND ND ND ND 
4 3/5 1/5 0/5 0/5 3/5 
5 3/7 2/7 0/7 0/7 2/4 

21 0/5 0/5 0/5 0/5 0/2 

* Number of organs with deposits of goat IgG over total number of organs studied. 

anti-ACE -r-globulin the specific uptake of  ~25I-rat ant i -RbABM antibodies (as 
cor rec ted  percen t  uptake  of  total injected dose of  125I) was 2.4 _+ 0.8 (mean + 
SD) in the lungs, 1 1.3 + 1.1 in the kidneys, and 31.6 + 3.7 in the liver. In rabbits 
injected with normal  Gt  ~,-globulin these values were: lungs 0.5 + 0.1, kidneys 
10.7 + 0.7, and  liver 36.2 -+ 1.5. T h e  only statistically significant difference was 
the increased binding o f  ant i-ABM antibodies to the lungs in the g roup  of  rabbits 
t rea ted  with ant i-ACE -r-globulin. 
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The Effect In Robbits Of Repeated Intravenous Injections Of Gt anti- Rb 
ACE Antibodies On The ACE Content Of Lung, Kidney And Serum 

t.0 

0.5 
T E 

"--,~ Kidney 

Serum 

"~  I 
0 ~ 2 3 4 5 2t 

Ooys 
FIGURE 5. Quantitation of ACE activity in lung, kidney, and serum. Indicated are means _+ 
2 SE. Between parentheses, the number  of rabbits studied. Gt anti-RbACE "),-globulin was 
administered during the time period represented as a shaded area. The  values of lung and 
kidney ACE activity on day 0 were obtained from rabbits injected with normal Gt ~,-globulin. 

Discussion 

ACE catalyzes the conversion of angiotensin I into the potent vasoactive 
peptide angiotensin II, and the degradation of the hypotensive and edematogenic 
peptide bradykinin (27-29). Although ACE is found on the surface of most 
endothelial cells, a major site of  ACE activity appears to be the lung (6, 7, 9, 29-  
31). Results of  immunohistochemical studies show ACE on the plasma membrane 
and in caveolae of lung endothelial cells (7). Previous studies have shown that 
rabbits (1 l) and rats (31) injected with large doses of heterologous anti-ACE 
antibodies develop increased vascular permeability in the lung (31) and fre- 
quently die of pulmonary edema. 

The aim of the present study was to investigate the effects of  a relatively long- 
term interaction of Gt anti-RbACE antibodies with lung ACE. To this purpose, 
small doses of antibody were slowly injected for a maximum of 4 d. Despite these 
precautions a high mortality, due to pulmonary edema, was recorded on the first 
day of injection. Increased alveolar capillary wall permeability, as reflected in 
the uptake of anti-RbABM antibodies, was also found in rabbits that did not die 
from pulmonary edema, confirming an earlier observation in rats (31). The role 
of polymorphonuclear ieukocytes in the induction of increased alveolar capillary 
wall permeability does not appear essential because of mortality rate of rabbits 
depleted or not depleted of polymorphonuclear leukocytes was not significantly 
different. 

Rabbits surviving the first day of anti-ACE antibody injection, became resistant 
to subsequent administration. The suppression of immune injury appears to be 
related to an "immunologic enzymectomy" caused by ligand-surface antigen 



2152 LUNG INJURY MEDIATED BY ANTIBODIES TO ENDOTHELIUM 

FIGURE 6. Immunoelectron micrograph of lung of a rabbit injected with HRP-labeled Gt 
anti-RbACE v-globulin. Black HRP reaction product is seen in an irregular distribution along 
the surface of the alveolar capillary endothelium (E), in endothelial caveolae, and in vacuoles 
in the endothelial cytoplasm. The lumen of the alveolar capillary is obliterated by cytoplasm 
of an unidentified cell (large asterisk). Small asterisks: alveolar basement membrane. Unstained 
section. × 6,000. 

interaction at the level of the plasma membrane of endothelial cells. Gt anti- 
RbACE antibodies bound in vitro to the endothelium of the lung with a distinctly 
linear immunofluorescence pattern, corresponding to the even distribution of 
ACE along the plasmamembrane of lung endothelial cells observed by immunoe- 
lectron microscopy (7). In contrast, after in vivo injection of the antibody, diffuse 
granular deposits of ACE, GtIgG, and RbC3 were observed along alveolar 
capillary walls and also, for example, along capillary walls of the choroid plexus. 
This indicates that in vivo cross-linking of ACE molecules by divalent antibodies 
induces a migration of the enzyme in the plane of the plasma membrane, resulting 
in the formation of microaggregates (32). This interpretation is supported by 
the observation of linear deposits along alveolar capillary walls of Gt Fab antibody 
fragments, contracting with the granular pattern observed after injection of Gt 
F(ab')2 antibody fragments. The monovalent Fab antibody fragments, although 
binding to the plasma membrane of the alveolar endothelium, did not induce 
redistribution of ACE. Addition of a "piggyback" antibody (Rb anti-GtIgG) to 
cross-link the Fab-ACE complex, resulted in antigen redistribution. Similar 
studies have been performed on cultures of skeletal muscle using antibodies to 
acetylcholine receptors (33-34). It was found that, despite binding, the monov- 
alent Fab fragments of anti-acetylcholine receptor antibodies did not enhance 



FmVRE 7. (A) Immunofluorescence micrograph showing in vivo linear binding of Fab 
fragments of Gt anti-RbACE IgG along the endothelium of alveolar capillaries, x 600. Inset: 
Immunofluorescence micrograph showing in vivo granular binding of Fab fragments of Gt 
anti-RbACE IgG along the alveolar capillary endothelium in a rabbit that, following the 
administration of the antibody fragments, was injected with Rb anti-GtlgG antiserum, x 600. 
(B) Immunofluorescence micrograph showing a linear distribution of ACE after in vivo binding 
of Fab fragments of Gt anti-RbACE IgG along the endothelium of alveolar capillaries, x 600. 
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degradation of the receptors. However, when "piggyback" antibodies were added 
to the system, the degradation rate increased. 

In vivo cross-linking of ACE molecules by divalent antibodies led to disappear- 
ance of ACE from the surface of lung endothelial cells. Whether  ACE was 
internalized (35), shed into the circulation (36), or both, is not clear from our 
study. The  evidence for disappearance of ACE is based on the following obser- 
vations: first, despite continued injections of Gt anti-RbACE antibodies, deposits 
of GtIgG or RbC3 were not present in the lungs of the rabbits sacrificed at day 
4; second, ACE was no longer demonstrable by indirect IF microscopy in the 
lungs of rabbits sacrificed at day 4; third, quantitative measurement of ACE 
activity in lung homogenates showed, in agreement with the IF data, a striking 
decrease in activity of the enzyme on day 4 .24  h after discontinuation of antibody 
administration, there was a reappearance of ACE activity in the lung and normal 
levels were recorded 17 d after the last antibody injection. The  endothelial cells 
denuded of ACE were no longer susceptible to immune injury, as evidence by 
the sharp drop in mortality during days 2, 3, and 4 of antibody injection. The  
morphological abnormalities found in the lungs of rabbits sacrificed on those 
days may reflect repair processes. 

The  in vivo disappearance of ACE from the surface of lung endothelial cells 
under the influence of specific antibody is an example of "antigenic modulation" 
(32). Antigenic modulation was first described by Boyse et al. (37, 38) who 
showed that surface isoantigens on mouse leukemic cells disappear when the cells 
are exposed to antibodies. Such phenotypic alteration occurs in vitro as well (39), 
and is reversed by eliminating the antibodies. It has been demonstrated that 
antigenic modulation is an active process requiring metabolically intact cells and 
does not result from long-term masking of isoantigens by IgG (39). It was later 
shown that anti-Ig antibody can redistribute surface Ig on murine lymphocytes 
into polar aggregates ("caps") (40, 41). After incubation of lymphocytes under 
capping conditions, surface Ig totally disappears through endocytosis and/or  
external stripping. Surface Ig reappears shortly after reculturing lymphocytes in 
a medium devoid of anti-Ig antibody. Antibody-induced antigenic modulation 
has also been demonstrated for histocompatibility antigens (42-45), Burkitt 
lymphoma cell surface antigens (46) and Gross leukemia cell surface antigens 
(47). In persistent viral infections, such as measles, infected cells express viral 
glycoprotein antigens on their surface. When exposed to anti-measles antibodies, 
however, the viral antigens rapidly coalesce into a pole of the cell and then 
disappear from the cell surface, shed into the medium in form of immune 
complexes (48, 49). The  infected cells, denuded of viral surface antigens, are no 
longer susceptible to both humoral and ceil-mediated immune responses (50). 
Such a mechanism of antibody-induced insensitivity to immunologic injury 
appears to have a central role in the pathogenesis of  subacute sclerosing panen- 
cephalitis and other persistent viral infections associated with high antibody 
responses (36). The  results of the present study show that antigenic modulation 
occurs in the lungs of rabbits injected with anti-ACE antibodies reacting with the 
plasma membrane of endothelial cells. The  reappearance of ACE after suspension 
of antibody injections indicates that antigenic modulation, as in cell cultures (50), 
is at least partially reversible in vivo. It is conceivable that the expression of other 
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antigens on the plasma membrane of endothelial cells may be modulated by 
antibodies. In this regard it is attractive to consider the possibility that antigenic 
modulation may contribute, together with other factors, to the resistance to 
rejection occurring in grafts exposed to transplantation antibodies (51). Further- 
more, it does not escape our notice that patching and shedding of plasma 
membrane antigens, such as those expressed on the plasma membrane of glo- 
merular visceral epithelial cells (52), might result in local accumulation of immune 
complexes (Heymann glomerulonephritis). This hypothesis is now being tested 
in our laboratory. 

To avoid anaphylactic complication, the administration of  Gt anti-ACE y- 
globulin had to be limited to 4 d. To study the chronic effects of  anti-ACE 
antibodies on lung and other organs it will be necessary to render rabbits 
immunologically tolerant to GtIgG. 

S u m m a r y  

To study the effects of  relatively long-term interaction of antibodies with 
surface antigens of lung endothelium, rabbits were intravenously injected for a 
maximum of 4 d with goat anti-rabbit lung angiotensin-converting enzyme (Gt 
anti-RbACE) antibodies. On day 1 69%, on day 2 13%, and on days 3 and 4 of 
injection none of the rabbits developed lethal pulmonary edema. By immunoflu- 
orescence microscopy, deposits of  GtlgG, frequently in association with RbC3, 
were found along the endothelium of alveolar capillary walls in all rabbits studied 
on day 1, in 57% on day 2, in 33% on day 3, and in none of them on day 4. 
While in vitro anti-ACE antibodies bound in a linear pattern to the lung 
endothelium, the binding pattern in vivo was distinctly granular. The in vivo 
interaction of  antibodies with ACE also redistributed ACE in a granular pattern 
along capillary walls. In contrast to the granular deposition of  injected anti-ACE 
IgG and F(ab')2 fragments of  anti-ACE IgG, Fab fragments of anti-ACE IgG 
localized, without fixing C3, in a linear pattern along the endothelium of lung 
capillaries and did not modify the normal distribution of ACE. However, when 
the injection of Fab fragments of Gt anti-RbACE IgG was followed by an injection 
of Rb anti-GtlgG serum, granular deposits of Gt Fab fragments, RblgG and 
RbC3 were seen along alveolar capillary walls. Biochemical measurement of ACE 
activity in lung homogenates provided data in agreement with those obtained by 
immunofluorescence microscopy, showing diminished activity to none on day 4, 
with some return of ACE activity on day 5, 24 h after the last injection of 
antibody, and normal values on day 21. The results obtained indicate that 
divalent antibodies to an antigen expressed on the plasma membrane of rabbit 
lung endothelial cells promotes a rapid redistribution of antigenic receptors, 
fixation of complement and, in surviving rabbits, disappearance of the antigen 
from the endothelial cells that are no longer susceptible to immune injury. In 
vivo "immunologic enzymectomy" induced by a ligand-surface antigen interac- 
tion is an example of antigenic modulation. These events may have an important 
role in the pathogenesis of  inflammatory lesions induced by antibodies reacting 
with antigens expressed on the plasma membrane of cells in the lung and in 
other organs. 
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