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A high-accuracy gait data prediction model can be used to design prosthesis and orthosis for people having amputations or
ailments of the lower limb.&e objective of this study is to observe the gait data of different subjects and design a neural network to
predict future gait angles for fixed speeds.&e data were recorded via a Biometrics goniometer, while the subjects were walking on
a treadmill for 20 seconds each at 2.4 kmph, 3.6 kmph, and 5.4 kmph.&e data were then imported into Matlab, filtered to remove
movement artifacts, and then used to design a neural network with 60% data for training, 20% for validation, and remaining 20%
for testing using the LevenbergMarquardt method. &e mean-squared error for all the cases was in the order of 10−3 or lower
confirming that our method is correct. For further comparison, we randomly tested the neural network function with untrained
data and compared the expected output with actual output of the neural network function using Pearson’s correlation coefficient
and correlation plots.We conclude that our framework can be successfully used to design prosthesis and orthosis for lower limb. It
can also be used to validate gait data and compare it to expected data in rehabilitation engineering.

1. Introduction

In the entire world, there is an ever-increasing count of
amputees. Spoden et al. established that in Germany alone,
the number of lower leg amputation cases was 52,096 in 2005
and 55,595 in 2015, confirming that a significant population
suffers from lower leg amputations and it is on the increase
[1]. A study by Manickum et al. suggests that 53.1% of lower
leg amputations are caused by Diabetes Mellitus alone [2]. In
India, Pooja et al. performed a study of 155 amputees and
observed trauma to be the primary cause of amputation
(70%) followed by vascular diseases. &ey also reported
94.8% of all amputations were of the lower limb [3]. &e
people having amputations have a very peculiar and different

gait cycle as compared to an average human, which makes
them unconfident about themselves, driving them towards
depression and anxiety [4] because of pain and pity. &e
primary target of any commercial prosthesis or orthoses is to
reduce the gap between the gait data of its user and that of a
healthy adult of the same physiology. Human gait refers to
the walking pattern of Homo sapiens. It is similar for all
healthy human adults and comprises different continuous
phases in order, such as Heel Strike, Loading Response, Mid
Stance, Terminal Response, and Swing Phase (Preswing and
Swing). While designing and constructing a prosthesis
(lower or upper limb), the primary aim is always to make it
as similar as possible to that of a healthy person, which is
why the data recorded from a healthy human still act as a
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reference for such purposes. Nowadays, there is always the
demand for a more and more intelligent and active pros-
thesis (working on an energy source) rather than a passive
prosthesis (without an energy source). In general, the
training time required by the patient to adjust to an active
prosthesis is higher than that needed for a passive prosthesis.
Yet, they are of higher demand because of their better
performance aspect. &e only other major drawback with
active or adaptive prostheses/orthoses is their design com-
plications. To simplify this, Chan et al. came up with an EMG
based gait phase prediction model for prosthesis control [5].
As an extension of their work, Lee and Lee proposed the
technique for predicting the posture angles of the patient’s
orthosis for a single lower limb [6]. Moissenet et al. tried the
regression model approach to determine deviations for
physiological and pathological subjects; however, we kept
our study limited to perfectly healthy subjects [7]. Recently,
Kim et al. used Doppler radar data for human gait analysis
[8]. In this paper, we propose a neural network-based
prediction control scheme for intelligent orthoses and
prostheses, where the gait data for the next 20 seconds are
predicted for given constant speed. In the case of Lee and
Lee, the error was approx. 0.5°, but in our neural network
model, the error (MSE) is in the order of 10−4. &e oldest
research work that could be traced in the field of gait pattern
identification was done by Murray et al. in 1970 when they
compared the gait data of women [9]. Muro et al. compared
the accuracy of nonwearable and wearable sensors [10]. In a
nutshell, it can be concluded that the gait data can be
measured via wearable goniometric sensors as well as
nonwearable image processing alternatives. &e recent ad-
vancement in technology allows both these approaches to
have a very good amount of accuracy. Yao et al. have already
confirmed that gait data angles are similar for subjects, so
long as they are walking, regardless of whether on a treadmill
or over-ground [11]. Pardasani et al. presented an algorithm
for using the Kinnect-based mocap procedure for com-
parative analysis of gait data using a nonwearable sensor
[12]. &ere have been several other recent published works
on Kinnect and other nonwearable sensors [13, 14], but the
scope of wearable sensors which can give much higher
accuracy compared to nonwearable sensors is very limited.
Internet of&ings and its Sensors Devices are playing a great
role in the new smart healthcare sector [15]. In this paper,
first, we have presented basic information about human gait
and its various stages and then discussed out data recording
protocols and algorithm for designing neural network. &e
flow of the processes is as given in Figure 1.

2. Features of Human Gait

&e human gait is a cycle of alternative forms of the lower
limb, e.g., both the arms will always have the opposite form
of each other while the subject is walking. &is cycle is
initiated when the foot of either leg hits the ground after a
swing, called heel strike, and ends at the next heel strike of
the same foot [16]. &e various forms in between are loading
response, midstance, terminal stance, preswing, and swing
phase (preswing phase is mostly clubbed with the swing

phase [17]). &e loading response, midstance, and terminal
stance can be collectively termed as support phase or stance
phase. Gait comprises of alternative repetition of these two
(swing and stance) phases, one after the other, tracing a
continuous cycle. It is evident from Figure 2, and it has been
demonstrated by Kour et al. [18] and Vaughan et al. [19] in
their work that human gait continuously changes in angles
of the hip joint, knee joint as well as ankle joint. &ese
changes are brought about by the energy gradient in the
human skeletal muscles of the lower limb [20, 21].

3. Data Recording

Data were recorded for 5 different healthy subjects, able-bodied,
without any known physiology or pathology at the time of
recording. Sampling frequency was set at 100Hz, i.e.,
100 samples/second. &e subjects were made to walk on a
treadmill at following three constant velocities: 2.4 kmph
(0.67m/s), 3.6 kmph (1m/s), and 5.4 kmph (1.5m/s). Data were
recorded at each of these speeds for 20 seconds each, keeping a
buffer of 20 s at the start and between two consecutive re-
cordings allowing sufficient transition time for the treadmill to
gain the required velocity and the subject to acclimatize to the
speed. &e same steps were repeated for three instances per
individual to ensure good quality of data is collected for analysis.
So, a total of 45 different datasets were derived overall, which
were then bifurcated into their respective speeds. Gait data were
collected using the Biometrics goniometer. Data were recorded
for each of the joints of both the lower limbs, i.e., right hip, left
hip, right knee, and left knee. &ese subjects were aged 19–23
and weighed around 65–85kgs, i.e., they were neither too obese
nor toomalnourished. A random subject during data recording
can be seen in Figure 3.&e location of the sensors is marked in
black.

4. Methodology

As mentioned above, the data were recorded for five dif-
ferent healthy subjects, thrice for three different speeds,
making it a total of 45 instances. Recorded data were first
split based upon respective speeds because the device used
to record the angle data using a Biometrics goniometer [22]
exports the recorded data in a single file with each joint as a
separate channel. A periodogram showed that they all had
high-frequency noises in them, which was clear from the
plot [23]. &is noise can be attributed to the electronics
involved and minute shifting of sensors while in motion.
&e actual data are only in the range of 0.5–5Hz at
maximum. So, appropriate low pass Butterworth filters
were designed and applied to ensure the data can be made
as much noise-free as possible. &e most observable noises
were the high-frequency noise observed from the spec-
trogram, as well as some aperiodic low-frequency noise,
which was affecting the peaks of the signal. So, Butterworth
low pass filters were used to filter out the high-frequency
noise and preserve the low-frequency components, which
too consisted of some noise as peak distortion was still
observable in some cases. We have processed the different
stages as the flow of the processes, available in Figure 1. So,
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to take care of that, a moving average filter was used with
varying window sizes based upon the speed at which the
subject is walking. But, for two different subjects, the
window size applied was kept the same to ensure unifor-
mity. Similarly, the low pass filters were designed separately
for each speed, although it was kept the same for different

individuals at the same speed. &e several sets of figures
(Figures 4–9) show before (b) and after filtration data (a)
for 7 seconds for visualization purposes. Figures 4 and 5 for
hip and knee, respectively, show the data at 2.4 kmph,
Figures 6 and 7 at 3.6 kmph, and Figures 8 and 9 at
5.4 kmph.

Stance phase (60%) Swing phase (60%)

Initial contact
(IC)

Loading
response (LR)

Midstance Terminal
stance (TS)

Preswing MidswingInitial swing Terminal swing
(TSW)

100%80%60%40%20%0%

Double support Double supportSingle support Single support

Figure 2: Various stages of human gait [18].

(a) (b)

Figure 3: A random subject during data recording.

Record data from 
subject at specified 

speeds

Filter out all 
possible 

noises
Train the 
neural net

Validate the 
output

Figure 1: Flow of the processes.
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Figure 4: A Raw data of hips at 2.4 kmph (a) and filtered data of hips at 2.4 kmph (b).
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Figure 5: Raw data of knees at 2.4 kmph (a) and filtered data of hips at 2.4 kmph (b).
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Figure 6: Raw data of hips at 3.6 kmph (a) and filtered data of hips at 3.6 kmph (b).
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Figure 7: Raw data of knees at 3.6 kmph (a) and filtered data of knees at 3.6 kmph (b).
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Figure 8: Raw data of hips at 5.4 kmph (a) and filtered data of knees at 5.4 kmph (b).
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Figure 9: Raw data of knees at 5.4 kmph (a) and filtered data of hips at 5.4 kmph (b).
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Once it was done on the data recorded from all the
subjects, it was observed that, although the signal of angle
measurement at different speeds was slightly similar, at a
constant speed, it was pretty identical not only in the three
instances of the same subject but also in case two distinct
subjects. So, we tried to train a neural net to design a
function in Matlab, which will give the next angle if the
previous 100 aspects recorded are given to it as an input
(keeping in mind fs � 100Hz). &is function can be used as a
reference for designing prosthesis as well as validating gait in
case of biomechanical rehabilitation. So, using a for loop for
each data sequence recorded, two matrices were created, one
to act as input for the neural net and the second one to serve
as a target. &ese matrices were made for each speed sep-
arately so that separate networks can be trained to result in
distinct functions for each speed. In the input matrix, every
set of 101 consecutive cells was passed as one element from
the data recorded and the 102nd data were passed into the
target matrix. &is process was repeated for each individual
at each speed. Afterward, the neural net was designed and
trained. &e algorithm used was the LevenbergMarquardt
method using the Neural Network Toolbox of MatLab 2018a
[24]. It was observed that after training the net only for the
first subject, the functions were able to predict the data
accurately for the remaining four subjects without even
being trained by their data. For example, in the two plots
shown in Figure 10, the one on top is the actual data
recorded for the second individual and the one on the
bottom is the neural net output although; it was trained only
on the data of the first person. &is particular data is of right
hip, but a similar phenomenon has been observed in all the
joints.

&e uncanny similarity (as one of the plots almost su-
perimposes the other) is further confirmed by correlation
analysis calculated by Pearson’s correlation coefficient,
which proves that these two plots are exactly similar dis-
cussed later in the paper.&e correlation coefficient, which is
used to determine the similarity of two datasets scientifically,
in this particular case, comes out to be 0.999, where affinity
towards 1 suggests similarity and resemblance towards 0
suggests nonsimilarity of the data. In some cases, the co-
efficient can be negative, which suggests the two inputs being
similar out of phase.

5. Neural Net Specifications

As mentioned earlier, using Matlab’s Neural Net Fitting
tool [24] and the abovementioned dataset and targets,
separate neural nets were designed for each joint, and a
Matlab code was exported using the same tool for func-
tion. &e specific reason for using LM is that our data here
are nonlinear, and the best approach to predict nonlinear
data is to use the LMmethod. A total of 1600 samples were
obtained for each case, out of which 1120 samples were
used for training, 240 for testing, and 240 for validation in
each case. Following individual functions were realized
for each speed (2.4kmph, 3.6kmph, and 5.4 kmph
separately):

(1) Right hip

(1.1) Right hip slow, 2.4 km/h
(1.2) Right hip medium, 3.6 km/h
(1.3) Right hip fast, 5.4 km/h

(2) Left hip

(2.1) Left hip slow, 2.4 km/h
(2.2) Left hip medium, 3.6 km/h
(2.3) Left hip fast, 5.4 km/h

(3) Right knee

(3.1) Right knee slow, 2.4 km/h
(3.2) Right knee medium, 3.6 km/h
(3.3) Right knee fast, 5.4 km/h

(4) Left knee

(4.1) Left knee slow, 2.4 km/h
(4.2) Left knee medium, 3.6 km/h
(4.3) Left knee fast, 5.4 km/h

It was then observed that the neural net showed un-
supervised learning, and even if the net was trained for just
one subject’s data, it was able to predict the data for the
remaining subjects accurately. However, they were never
trained for that subject. Furthermore, the accuracy was so
high that the correlation coefficient was always in the range
of 0.99.&is can be accredited to the lowmean-squared error
while training the net. Roughly, every net had 1600 sets of
inputs and targets. &ey were trained using Lev-
enbergMarquardt Model as mentioned earlier, and the
number of hidden layers was set between 10 and 25 de-
termined by the hit and trial method wherever it gave the
best output with maximum accuracy while not requiring a
very long time to train the net, although still training each
net took approx. 20–25minutes. &e intention was to es-
tablish an efficient tradeoff between accuracy and time re-
quired to train the model. Still, in most cases, the MSE was
very low (Figure 11(a)), so the figure was settled at ten al-
though it may vary depending upon the initial conditions
and the output accuracy. &e exact time could vary based
upon the initial conditions which are taken randomly in the
case of the LM Model. &e very low mean-squared error
resulted in a very high correlation coefficient, which proves
the high accuracy of the net and the model. Figure 11(b) and
11(c) show the properties of the neural net designed.

6. Results and Validation

&e neural net result was validated using the correlation co-
efficient and correlation plot to identify the similarity between
the expected output and the corresponding neural net function
output. &ese correlation plots have been plotted for both the
dataset used for training as well as the dataset not used for
training. Yet, the similarity is very high in both cases, con-
firming unsupervised learning of the neural net. Table 1 shows
the accuracy when the dataset used in training and the dataset
used for validation are of same subject but from different trials.
Table 2 shows the accuracy when the dataset for training and
validation belongs to two different subjects. Figures 12 and 13
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Figure 11: Continued.
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Figure 10: Comparison between neural net output and expected output for the hip @3.6 kmph.
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show the correlation plot between the expected and the actual
output of neural net function for right hip and right knee,
respectively, at 3.6 kmph when the data belong to same subject
but from different trials. Figures 14 and 15 show the same plots
when the dataset belongs to two different subjects.

Case-I: when training dataset and validating dataset are
of same subject
Case II: when training dataset and validating dataset are
of different subjects
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Figure 11: Neural net training specs for right hip @ 3.6 kmph.

Table 1: Percentage correlation values of output compared against
the target for the dataset used for training.

Speed (kmph) 2.4 3.6 5.2
Correlation of right hip 99 100 100
Correlation of left hip 100 100 100
Correlation of right knee 99.33 97.39 98.03
Correlation of left knee 99.33 97.39 98.03

Table 2: Percentage correlation values of output compared against
the target for dataset not used for training.

Speed (kmph) 2.4 (%) 3.6 (%) 5.2 (%)
Correlation of right hip 99.33 97.39 98.03
Correlation of left hip 100 100 100
Correlation of right knee 98.99 98.01 99.60
Correlation of left knee 98.86 96.54 98.87
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–2

0

2

4

6

8

10

12

500 1000 1500 2000 2500 3000 35000

×105

Figure 13: &e plot of correlation between neural net output and target for right knee at 3.6 km/h. &e Y-axis is in the range of 105, which
confirms very high similarity in both the arrays passed.
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7. Conclusion

&e study aims at proposing a new approach for prediction
of gait data to be used for reference while designing pros-
theses and orthoses as well as validation of gait data during
biomechanical rehabilitation. Experimentally, the least ac-
curacy observed was 97.39% for a subject whose data are
used to frame the model, whereas 96.54% for a subject whose
data were not used to frame the model. &us, we conclude
our experiment to be a success. &e prostheses and orthoses
using this method are expected to have a very positive effect
on the life of subjects and are likely to assist in the betterment
of the quality of life of an amputee.
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