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ABSTRACT

Chromatin conformation assays such as Hi-C can-
not directly measure differences in 3D architecture
between cell types or cell states. For this purpose,
two or more Hi-C experiments must be carried out,
but direct comparison of the resulting Hi-C matrices
is confounded by several features of Hi-C data. Most
notably, the genomic distance effect, whereby con-
tacts between pairs of genomic loci that are prox-
imal along the chromosome exhibit many more Hi-
C contacts that distal pairs of loci, dominates ev-
ery Hi-C matrix. Furthermore, the form that this dis-
tance effect takes often varies between different Hi-
C experiments, even between replicate experiments.
Thus, a statistical confidence measure designed to
identify differential Hi-C contacts must accurately
account for the genomic distance effect or risk be-
ing misled by large-scale but artifactual differences.
ACCOST (Altered Chromatin COnformation STatis-
tics) accomplishes this goal by extending the sta-
tistical model employed by DEseq, re-purposing the
‘size factors,’ which were originally developed to ac-
count for differences in read depth between samples,
to instead model the genomic distance effect. We
show via analysis of simulated and real data that AC-
COST provides unbiased statistical confidence esti-
mates that compare favorably with competing meth-
ods such as diffHiC, FIND and HiCcompare. AC-
COST is freely available with an Apache license at
https://bitbucket.org/noblelab/accost.

INTRODUCTION

An increasing number of experimental techniques––includi
ng ChIA-PET (1), Hi-C (2), Hi-ChIP (3), PLAC-seq (4),

SPRITE (5) and GAM (6)––allow for the high-throughput
characterization of pairwise chromatin contacts. These
techniques have helped to elucidate the roles that chromatin
3D architecture play in critical cellular processes such as
gene regulation, DNA replication and splicing. Notably, as-
pects of chromatin structure have been implicated in the eti-
ology of several disease phenotypes, in which genetic mod-
ifications induce changes in chromatin structure, which in
turn induce changes in gene expression (7).

Accordingly, a key statistical challenge for 3D chromatin
analyses is to assign statistical confidence measures to ob-
served differences in chromatin structure. Such differences
may arise between different developmental stages, cell types,
individuals or disease states. Empirically, chromatin struc-
ture exhibits differences at multiple scales, including differ-
ences in nuclear shape and volume, full chromosomes, com-
partments, topologically associating domains (TADs), sub-
TADs or promoter-enhancer loops. In this work, we focus
on calling differential interactions at the finest level, i.e. for
a given contact matrix defined with respect to genomic loci
(‘bins’) of size w bp, we ask whether the observed contact
count associated with two w-bp loci x and y in experimental
condition A is significantly different from the correspond-
ing (x, y) contact count from condition B.

A successful method for assigning confidence estimates
to differential interactions should exhibit four key proper-
ties. First, the method must control the false discovery rate
(FDR) associated with an accepted set of differential inter-
actions. Controlling FDR, as opposed to family-wise error
rate, makes sense in the context of most 3D chromatin stud-
ies, which are often hypothesis-generating studies aimed to
produce a large set of discoveries. Second, a good method
must take into account the particular biases associated with
the assay (such as Hi-C) that generated the data. As we will
see, accomplishing this goal turns out to be very challeng-
ing. Third, because of the high cost associated with gen-
erating 3D chromatin data––in particular, the cost of se-
quencing deeply enough to characterize all pairs of loci in
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Figure 1. Genomic distance effect leads to artifactual differences in Hi-C contacts. (A) The figure plots the log fold-change in Hi-C contact counts between
embryonic stem cell (ESC) and cortex Hi-C data (see Methods for details), plotted at 10 kb resolution on human chromosome 1. (B) Scatter plot of Hi-C
log-fold change as a function of genomic distance, where each point corresponds to a pair of 10 kb loci. The two point colors correspond to raw counts
(red) and counts normalized using ICE (blue). (C) Similar to panel A, but for two replicate Hi-C experiments performed in mouse cortex.

the genome––an ideal method will be capable of leveraging
structure in the observed data to enable calling significant
differential interactions even when only a single pair of ex-
periments has been performed. Fourth, as with essentially
any statistical testing procedure, an ideal method should
maximize statistical power; i.e. the method should identify
as many differential interactions as possible, given the data,
while still controlling the FDR.

Note that, although multiple genome-wide 3D chromatin
assays have been developed, most existing statistical test-
ing frameworks focus on the first and still most widely used
assay, Hi-C. Accordingly, we focus here on Hi-C analysis,
though many of the methods described here may also apply
directly to data generated using assays such as ChIA-PET,
SPRITE, Hi-ChIP or PLAC-seq.

Early Hi-C studies generally employed simple fold-
change statistics to identify differential contacts (8,9), but
these methods have subsequently been supplanted by a va-
riety of more statistically sophisticated techniques.

• HOMER (10) implements a simple test for differen-
tial interactions, based on binomially-distributed counts.
HOMER can only consider comparisons between two
libraries and cannot take into account replicate experi-
ments.

• ChromoR (11) carries out variance stabilization of Hi-
C data using the the Haar-Fisz transform (12), which
transforms Poisson distributed data into Gaussian dis-
tributed coefficients at multiple scales. The resulting co-
efficients are subjected to wavelet-based denoising. Chro-
moR then analyzes the resulting transformed data using
either change-point analysis for the purpose of detect-
ing chromosomal aberrations or domain boundaries, or
Bayes factor analysis for the detection of differential con-
tacts.

• HiBrowse (13) is a Python tool with a web interface that
employs the edgeR RNA-seq package (14) to compare
pairs of Hi-C experiments.

• The R package diffHic (15) also uses the edgeR statistical
framework but dispenses with the web interface. DiffHic
offers a range of functionality, including mapping, qual-
ity filtering, binning, normalization and estimation of
statistical confidences for differential contacts. Notably,
the package is able to accommodate complex experimen-
tal designs, including paired or blocked designs and ex-
periments involving more than two groups.

• FIND (16) uses a spatial Poisson model to measure dif-
ferences in chromatin loops, with the aim of relaxing the
independence assumption between adjacent loci.

• HiCcompare (17) normalizes the data and then tests for
differential interactions on the normalized data directly,
using a Z-score comparison. HiCcompare does not lever-
age replicate experiments.

For all of these methods, a key challenge is accurately ac-
counting for the unique features of Hi-C data. For example,
several widely used methods can normalize Hi-C data to
account for positional biases that arise due to GC content,
mappability and density of restriction-enzyme sites along
the genome (18,19). Variants of these normalization rou-
tines are integrated into all of the methods outlined above.

A second prominent and potentially problematic feature
of Hi-C data is the ‘genomic distance effect,’ in which pairs
of loci that are close together along the genome are very
likely to be observed in contact simply due to the ran-
dom polymer looping behavior of DNA. The genomic dis-
tance effect manifests itself most obviously in the form of a
marked enrichment of high counts near the diagonal in the
Hi-C contact matrix.

This work was primarily motivated by the observation
that the genomic distance effect can vary markedly between
two Hi-C experiments. The result, in a Hi-C matrix show-
ing log fold-changes in contact counts, is an enrichment of
apparently differential contacts far from the diagonal (Fig-
ure 1A). Notably, these differences remain even after nor-
malizing the data using a method such as iterative correc-
tion and eigenvalue decomposition (ICE) (18) (Figure 1B).
The source of this kind of large-scale change in genomic dis-
tance effect is not always clear. In some settings, such differ-
ences may indicate changes in chromatin compaction (20)
or differences in enrichment of various stages of the cell cy-
cle (21). Alternatively, differences in the genomic distance
effect may reflect experimental artifacts: we have observed
non-trivial differences even between replicate Hi-C runs
(Figure 1C). Regardless of the source of these observed dif-
ferences, we reasoned that any method aiming to identify
local changes in chromatin structure should attempt to ig-
nore large-scale differences in the genomic distance effect.

One other method––HiCcompare, which was published
while our method was under development––also attempts
to correct for differences in genomic distance effect. HiC-
compare works by plotting the log fold change in contact
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counts as a function of genomic distance, and then fitting a
LOESS regression curve to this plot. The regression curve
is then used to normalize the observed interaction counts.
Differential contacts are then identifying by converting the
normalized values to Z-scores and then computing P-values
using the standard normal distribution.

In this paper, we introduce ACCOST (Altered Chromatin
COnformation STatistics), which assigns statistical confi-
dence estimates to differences in Hi-C contacts, while tak-
ing into account differences in the genomic distance effect.
Specifically, ACCOST leverages counts at similar genomic
distances to estimate the variance of the contact counts,
similar to how tools such as DESeq (22) estimate gene ex-
pression variance by grouping together genes with simi-
lar expression. ACCOST includes distance-dependent nor-
malization factors, thereby allowing for accurate measure-
ment of differential contact counts at short and long ranges.
The method accommodates but does not require biological
replicates. We demonstrate, via simulation and analysis of
real Hi-C data, that ACCOST delivers unbiased statistical
confidence estimates while successfully controlling for sys-
tematic changes in the genomic distance effect.

MATERIALS AND METHODS

Model

Formally, we consider m contact count matrices Ck ∈ N
n×n ,

for k = 1, . . . , m, where Ck
i, j is the interaction count between

loci i and j in the kth experiment (for 1 ≤ i, j ≤ n and 1 ≤
k ≤ m). Each experiment is done in one of two conditions
A = {A, B}, and we denote by ρ(k) ∈ A the condition cor-
responding to the kth contact count matrix, for 1 ≤ k ≤ m.
Let M(A) = �−1(A) be the set of matrices done in condi-
tion A and M(B) = �−1(B) those done in condition B. If we
denote by mA = |M(A)| the total number of contact count
matrices done in condition A and by mB = |M(B)| those in
B, it follows that mA + mB = m.

We model the count Ck
i, j as a negative binomial (NB) ran-

dom variable with mean μk
i, j and variance

(
σ k

i, j

)2
. In or-

der to be able to estimate the mean and the variance from
few Hi-C replicates, we make the following assumptions, in-
spired by the assumptions of the DEseq model for RNA-seq
data (22):

• The mean μk
i, j , that is the expected number of counts be-

tween loci i and j in the kth matrix corresponding to con-
dition � (k), is equal to a quantity qρ(k)

i, j which represents
the ‘true’ (but unknown) number of interactions between
loci i and j in condition � (k), multiplied by an experiment-
and loci-specific factor as follows:

μk
i, j = βk

i βk
j sk

|i− j |q
ρ(k)
i, j , (1)

where βk ∈ R
n is an experiment-specific vector of loci-

specific biases to account for various biological and tech-
nical biases (18) and sk ∈ R

n is a vector of distance-
specific size factors to account for the experiment-specific
‘genomic distance effect’. This generalizes the notion of
size factors used to correct for library size in RNA-seq

(22), but considering each distance and pair of loci sepa-
rately.

• As in the DEseq model, the variance is the sum of a shot
noise term and of a raw variance term:

(
σ k

i, j

)2 = μk
i, j + (

βk
i βk

j sk
|i− j |

)2
vρ(k)

(
qρ(k)

i, j

)
, (2)

where vA is a smooth non-negative function, for A ∈ A.

We now explain how we estimate the parameters �, s, q
and v of the model from a set of count matrices C1, . . . , Cm:

• For the vectors of locus-specific biases �k (for k = 1, . . . ,
m), we borrow a standard ICE normalization estimator
β̂k performed independently on each count matrix (18).

• For the distance-specific size factors sk (for k = 1, . . . , m),
we enforce that the median normalized count for pairs of
bins at each given distance in each matrix is the same, by
taking for d ∈ [0, n − 1] and k ∈ [1, m]:

ŝk
d = median

|i− j |=d

Ck
i, j

β̂k
i β̂k

j

.

• For the normalized count matrix qA, for A ∈ A, we first
define the normalized count matrices of each experiment:

∀k ∈ [1, m] ,∀i, j ∈ [1, n] , q̂k
i, j = Ck

i, j

β̂k
i β̂k

j ŝk
|i− j |

,

and average these estimates over replicates for each con-
dition:

∀A ∈ A ,∀i, j ∈ [1, n] , q̂ A
i, j = 1

mA

∑
k∈M(A)

q̂k
i, j .

• To estimate the normalized raw variance functions vA (for
A ∈ A), we start by estimating the variance of q̂ A

i, j for any
i, j ∈ [1, n]. Since we are in situations where the number
of replicates mA can be small (down to mA = 1), we pro-
pose to leverage information within each matrix to esti-
mate this variance. For each bin (i, j), we consider a set
of other bins N(i, j)⊂[1, n]2 where we believe q A

i, j should
be almost constant. In the ACCOST implementation, we
choose N(i, j) to be the set of all other bins (u, v) at the
same distance, i.e., |u − v| = |j − i|. This choice is mo-
tivated by the overwhelming impact of the distance ef-
fect on the contact count. Given such a neighborhood,
we form the estimates:

t̂ A
i, j = 1

mA|N(i, j )|
∑

k∈M(A)

∑
(u,v)∈N(i, j )

q̂k
u,v ,

ŵA
i, j = 1

mA|N(i, j )| − 1

∑
k∈M(A)

∑
(u,v)∈N(i, j )

(
q̂k

u,v − t̂ A
i, j

)2
.

Assuming that β̂k and ŝk are exact and nonrandom esti-
mators of �k and sk, on the one hand, and that q A

u,v = q A
i, j

for all (u, v) ∈ N(i, j), on the other hand, we deduce from
our model (1)-(2) that the expectation and variance of q̂k

u,v
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for (u, v) ∈ N(i, j) and k ∈ M(A) are respectively given by:

Eq̂k
u,v = q A

i, j ,

Var
(
q̂k

u,v

) = q A
i, j

β̂k
u β̂k

v ŝk
|u−v|

+ vA (
q A

i, j

)
.

A simple computation shows that if X1, . . . , XN are inde-
pendent random variables with the same mean and dif-
ferent variances, then:

E
1

N − 1

N∑
i=1

⎛
⎝Xi − 1

N

N∑
j=1

Xj

⎞
⎠

2

= 1
N

N∑
i=1

Var (Xi ).

Using this result with the random variables{
q̂k

u,v : (u, v) ∈ N(i, j ), k ∈ M(A)
}

leads to:

EŵA
i, j = vA (

q A
i, j

) + q A
i, j

mA|N(i, j )|
∑

k∈M(A)

∑
(u,v)∈N(i, j )

1

β̂k
u β̂k

v ŝk
|u−v|

.

Let us define

ẑA
i, j = q̂ A

i, j

mA|N(i, j )|
∑

k∈M(A)

∑
(u,v)∈N(i, j )

1

β̂k
u β̂k

v ŝk
|u−v|

,

then E
[
ŵA

i, j − ẑA
i, j

]
= vA

(
q A

i, j

)
, and we can estimate vA

by regressing ŵA
i, j − ẑA

i, j as a polynomial function of
log(q̂ A

i, j ), encouraging smoothness. Negative values of w

− z are rare and are filtered out by the algorithm.

To test for differential count between conditions at a
given locus (i, j), we define as test statistics the total counts
in different conditions:

∀A ∈ A , CA
i, j =

∑
k∈M(A)

Ck
i, j .

CA
i, j is a sum of mA independent NB-distributed random

variables. We approximate its distribution by an NB distri-
bution with mean and variances:

E(CA
i, j ) =

∑
k∈M(A)

ECk
i, j , Var (CA

i, j ) =
∑

k∈M(A)

Var (Ck
i, j ).

Under the null hypothesis where q A
i, j = q B

i, j , we can get an
estimate of the shared normalized count:

q̂0
i j = 1

m

m∑
i=1

q̂k
i j ,

from which we deduce an estimate of the mean and variance
of CA

i, j for A ∈ A:

μ̂A
i, j =

∑
k∈M(A)

β̂k
i β̂k

j ŝk
|i− j |q̂

0
i j ,

(σ̂ A
i, j )

2 = μ̂A
i, j +

∑
k∈M(A)

(
β̂k

i β̂k
j ŝk

|i− j |
)2

v̂A(q̂0
i j ).

Given the two conditions A = {A, B}, we then follow the
technique of DESeq to obtain a P-value by conditioning on

the total count Ci, j = CA
i, j + CB

i, j :

pi, j =
∑

a+b=Ci, j ,p(a,b)≤p(CA
i, j ,C

B
i, j )

p(a, b)
∑

a+b=Ci, j
p(a, b)

,

where

p(a, b) = P
(
CA

i, j = a|μ̂A
i, j , (σ̂ A

i, j )
2) P

(
CB

i, j = b|μ̂B
i, j , (σ̂ B

i, j )
2)

= NB
(
a; μ̂A

i, j , (σ̂ A
i, j )

2) NB
(
b; μ̂B

i, j , (σ̂ B
i, j )

2) ,

since P(CA
i, j = a) and P(CB

i, j = b) are independent under
the null hypothesis.

Data sets

For validation and comparison of methods, we used Hi-C
data from human, mouse and the malaria parasite Plasmod-
ium falciparum.

• The human Hi-C data is derived from two cell lines,
GM12878 and IMR90 (23). The data were downloaded
in text form using the juicer dump command of Juicer
tools (24). Replicates are numbered as in Supplementary
Table S1 of (23), heading ‘biological replicate number.’

• Two mouse Hi-C data sets were analyzed. The two data
sets were generated in the same lab, but were produced
for two different studies. The first data set is derived from
mouse embryonic stem cells (mESCs) (25), and the sec-
ond is from mouse cortex (26).

• The Plasmodium Hi-C data represents parasites at two
distinct stages in the P. falciparum life cycle, trophozoite
and sporozoite (27).

All three data sets were analyzed at 10 kb resolution.
All datasets were ICE normalized using iced (https://

github.com/hiclib/iced).

Competing methods

For analysis by diffHiC, contact count matrices were loaded
and transformed into ContactMatrix objects. Following the
diffHiC documentation, we filtered by average count and
applied LOESS normalization before using diffHiC to esti-
mate P-values. As prescribed in the diffHiC manual, we ap-
plied LOESS normalization separately to the near-diagonal
bin pairs (defined as pairs with genomic distance below
50 Mb) and to other pairs.

Following the FIND documentation, we loaded contact
count matrices and ran FIND with parameters windowSize
= 3, method = hardCutoff, and alpha = 0.7.

Following the HiCcompare documentation, we loaded
contact count matrices and ran HiCcompare with param-
eters A.min = 15 and adjust.dist = true.

RESULTS

ACCOST correctly accounts for the genomic distance effect

ACCOST extends the statistical model used by DEseq (22)
to explicitly capture observed differences in the genomic dis-
tance effect between different Hi-C experiments. The key

https://github.com/hiclib/iced
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Figure 2. Genomic distance normalization highlights differences in contact counts. Panels A–D plot the log fold change of Hi-C contacts between ESC
and cortex on chromosome 1. (A) Raw data. (B) Data after rescaling the two matrices to have the same total count, to account for differences in sequencing
depth. (C) Data after ICE normalization. (D) Data after ACCOST normalization, which additionally accounts for the genomic distance effect. (E) Similar
to Figure 1B, but including ACCOST.
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Figure 3. Simulated distance decay curves. The two decay curves were con-
structed such that the mean contact count between neighboring genomic
bins was 1000 and 1500 for the two distributions. No position-specific bi-
ases (as are corrected for using ICE) were added.

Figure 4. Uniformity of P-values generated by different methods. Each
panel is a quantile–quantile (Q–Q) plot of the empirical (y-axis) versus
uniform (x-axis) distribution of P-values generated by ACCOST, diffHiC,
FIND and HiCcompare on simulated null data. The P-values for FIND
and HiCcompare deviate strongly from the expected uniform distribution.

idea is to re-purpose DEseq’s ‘size factors,’ which were orig-
inally developed to account for differences in read depth be-
tween samples, to instead model the genomic distance effect
and the loci-specific biases. The extension is non-trivial be-
cause a separate set of factors must be created for each ge-
nomic distance (see Materials and Methods). To estimate
the variance in contact counts in cases where the number of
biological replicates is small, we assume that pairs of loci at
the same genomic distance act similarly, and calculate, for
each genomic distance, sample means and variances for all
pairs of loci across all replicates. We then estimate a smooth
function of the variance as a function of the mean (Meth-
ods) to come to our final estimate of the variance. This ap-
proach allows ACCOST to calculate a P-value relative to
the null hypothesis that the true number of interactions be-
tween loci i and j is equal in the two conditions being tested.

Visualization of log-fold change values between two dif-
ferent cell types, mouse ESC and cortex, illustrates the effect
of ACCOST normalization. A raw log fold-change compar-
ison (Figure 2A) highlights differences primarily due to the
difference in sequencing depth of the two libraries. Correct-
ing for this effect by simple linear rescaling leaves a clear
pattern associated with the genomic distance effect, with
large fold-changes farther from the diagonal (Figure 2B).
This pattern is not eliminated by ICE normalization (Fig-
ure 2C). Because the ICE procedure is based on multiply-
ing each pairwise contact count by two locus-specific bias
terms, and because these bias terms are similar in the two
experiments, the log fold change values are quite similar be-
fore and after ICE normalization. In contrast, the pattern
associated with the genomic distance effect is successfully
removed by ACCOST’s normalization (Figure 2D–E).

To quantitatively confirm that ACCOST correctly ac-
counts for differences in the genomic distance effect, we
simulated two Hi-C matrices with different distance de-
cay curves. We generated counts from Poisson distributions
with means that decay as illustrated in Figure 3. Note that
we did not employ a negative binomial distribution because
we did not want the simulations to favor ACCOST. The
significance of differences between simulated datasets was
then assessed using ACCOST and three existing methods
(diffHiC, FIND and HiCcompare). Because the only dif-
ferences in the simulated data sets arise due to changes in
the genomic distance effect, all methods should produce
uniform (null) P-values. Empirically, we observe nearly uni-
form P-values for both ACCOST and diffHiC (Figure 4, top
row). In contrast, both FIND and HiCcompare are misled
by the genomic distance effect, with FIND assigning many
very small P-values, and HiCCompare deviating both above
and below the expected uniform distribution (Figure 4, bot-
tom row).

We further compared ACCOST to diffHic by assess-
ing the significance of changes in contact counts between
GM12878 and IMR90 cells. These cells derive from two
markedly different cell types (B-lymphocyte and fibrob-
last, respectively) and have been observed to have differ-
ent short- and long-range contact patterns (23), consistent
with differing genome organization at multiple scales. At
short range (<100 Mb, Figures 5A and C), differential con-
tact P-values are evenly distributed between positive and
negative log fold-changes. However, at long range (>100
Mb, Figures 5B and D) diffHic P-values are skewed con-
sistently toward more frequent contacts in IMR90 (negative
log fold-change). Further investigation of this phenomenon
shows a striking increase in the number of significant con-
tacts called by diffHiC at genomic distance of 50 Mb (Fig-
ures 5E), which corresponds to the threshold between the
two LOESS normalizations performed by diffHiC.

Analysis of Plasmodium Hi-C data

As an illustration of how ACCOST might be applied in
practice, we ran the software on Hi-C data from two stages
in the P. falciparum life cycle: trophozoite, the most tran-
scriptionally active stage in the erythrocytic cell cycle of the
parasite, and sporozoite, the stage responsible for the trans-
mission of the disease from mosquito to human. Malaria
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Figure 5. ACCOST P-values are not skewed at long distances. At short range (<100 Mb), ACCOST and diffHic yield symmetric distributions of P-values
(A and B). At long range (>100 Mb), diffHic fold-changes are skewed in one direction, while ACCOST fold-changes are more evenly distributed (D and
C). Histograms of bin pairs for which each method indicates a significant change in contact counts with FDR <0.05. The black line indicates the total
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Figure 6. Comparison of life cycle stages in Plasmodium falciparum. AC-
COST reveals several significant changes in the Hi-C interaction counts
between two distinct stages in the life cycle of the parasite highlighting the
role of genes expressed in each stage.

transmission specifically occurs when sporozoites are in-
jected from the mosquito’s salivary gland into the hu-
man skin during blood feeding. ACCOST highlights sev-
eral changes in interactions between these two stages, one
of them particularly interesting in the right arm of chro-
mosome 8 (Figure 6). In this chromosome, two clusters of
genes interact significantly more at the sporozoite stage.
One of these cluster involves genes specifically expressed
at the sporozoite stage, including the sporozoite invasion-
associated protein 2 and the sporozoite and liver stage
tryptophan-rich protein. The generation of a loop at po-
sition ∼130k may be critical to enhancing gene expression
of these genes at this particular stage. The other cluster of
genes occurring at positions between 133k and 145k en-
code proteins that are exported to the surface of the infected
red blood cells and implicated in mechanisms driving par-
asite immune evasion. These genes are critical to the para-
site survival during the erythrocytic cycle and are expressed
at a high level at the trophozoite stage. However, because
these genes are not required in the mosquito stages, they
are repressed in the sporozoite stage; accordingly, we ob-
serve them interacting significantly with the parasite hete-
rochromatin cluster near the telomere ends at this stage of
the parasite life cycle.

DISCUSSION

We have demonstrated that ACCOST provides unbiased
confidence estimates for differential Hi-C contacts by cor-
rectly controlling for the genomic distance effect caused by
the polymer behavior of DNA. ACCOST thus enables biol-
ogists to better interpret Hi-C data by focusing on the sub-
set of differential contacts that exhibit the most statistically
significant differences. As is apparent from Figure 6, many
of the observed differences exhibit complex structures re-
lated to known features of Hi-C data, such as loops, stripes,
domains, and compartments. A clear direction for future
work is to use ACCOST as a building block in a scheme to
identify large, potentially irregularly shaped regions of dif-

ferential contact. A second useful direction for future work
would be extensions to handle differentiation or cell cycle
time series data.

In the experiment reported in Section 3.1, the simulated
counts follow a Poisson distribution, while much of AC-
COST complexity is due to the fact that it assumes a neg-
ative binomial distribution. This mismatch is intentional,
since we did not want our simulation setup to favor AC-
COST, but the mismatch may also explain why the AC-
COST P-values in Figure 4 are not perfectly uniform.

The failure of FIND to account for the genomic dis-
tance effect is not surprising, since the method makes no
attempt to model this effect. However, one surprising out-
come of our simulation analysis is the conclusion that HiC-
compare fails to account for the genomic distance effect,
whereas diffHiC does a good job of handling the effect.
We note that diffHic models the mean-variance relation-
ship and then normalizes what it calls ‘trended biases’ be-
tween libraries. Although the method never explicitly mod-
els the genomic distance, this trended bias seems empirically
to capture the genomic distance effect. On the other hand,
we do not have a good hypothesis for why HiCcompare does
not work well. Similarly, the tendency of diffHiC to produce
a greater number of significant P-values in one direction rel-
ative to the other remains unexplained (Figure 5).

As currently implemented, ACCOST uses one genomic
distance bin per Hi-C bin. However, this is done merely for
convenience. In principle, one could decouple these two dis-
cretization schemes. This would allow ACCOST, for exam-
ple, to increase the size of genomic distance bins at long dis-
tances.
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