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Abstract: Bioinformation is information generated from biological movement. By using a variety
of modern technologies, we can use this information to form a meaningful model for researchers
to study. An electromyographic (EMG) signal is one type of bioinformation that is used in many
areas to help people study human muscle movement. This information can help in both clinical areas
and industrial areas. EMG is a very complicated signal, so processing it is vital. The processing of
EMG signals is divided into collection, denoising, decomposition, feature extraction and classification
steps. In this article, the wavelet denoising step and several decomposition processes are discussed to
show the usage of this technique in the final classification step. At the end of the study, we find that
after the wavelet denoising step, the classification accuracy, which uses the K-nearest neighbor of
the independent component analysis features, improves, but the accuracy of the wavelet coefficient
features and autoregression coefficient features decreases.

Keywords: EMG signal; ICA; wavelet function; signal decomposition; KNN

1. Introduction

An electromyographic (EMG) signal is a time-series signal that is collected mainly
for clinical applications, and it has been widely used in research laboratories to meet the
needs of sectors such as biomechanics and motor control [1]. After 1866, when Grace and
Erlanger used an oscilloscope to show electrical signals from muscles, Cram and Steger
utilized it in a clinical approach to scan a variety of muscles, and after the 1880s, when the
appropriate amplifier was invented, people began to pay much more attention to EMG
signals [2]. EMG signals have been investigated and widely debated over many decades.
Mary described electromyographic signals as muscular activity involving muscle neurons
and regulating muscle fiber inside the motor unit [3]. Based on this description and other
research, the collection methods of EMG signals are divided into two types. One type is
called the transcutaneous method and collects motor unit potentials (MUPs) by placing an
array of electrodes on the skin. The other type, which is called the intramuscular method,
requires a wire or needle electrode to be directly placed into the muscle to collect the MUPs
directly [4]. The different collection methods of EMG signals mean that the processing
methods are diverse. A raw EMG signal can be regarded as a time-series signal, and the
features in its time and frequency domain can be obtained to perform classification. Addi-
tionally, as the number of collecting channels of the EMG signal increases, the multichannel
EMG signal can be processed as a multidimensional signal process; for example, ref. [5]
shows that the multichannel EMG signal is suitable for the blind source separation theory.
Multidimensional signals are an important form of information. Compared with one-
dimensional signals, multidimensional signals contain more energy and more information,
and their accuracy can be improved through the connections between all dimensions. A
common example of a two-dimensional signal is an image signal, and an example of a
three-dimensional signal is a video signal [6].
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A simple way to deal with a multichannel EMG signal is to deal with the average of
all the signals in each channel or to use each channel’s signal to perform feature extraction;
however, this loses the crosstalk between different EMG signals near each other, which
causes information loss. Therefore, in this article, we illustrate some methods that are used
to process multichannel EMG signals, and we compare them to normal processing methods
to show the differences between the features that the different methods yield.

2. Materials and Methods
2.1. EMG Signal Components

To understand how to process EMG signals, the construction of an EMG signal needs
to be discussed. The fundamental component of an EMG signal is the muscle fiber action
potential (MFAP), which is the action potential caused by the excitable membrane of a
muscle fiber [7]. All MFAPs in a motor unit together make up the motor unit action
potential (MUAP), and many motor units fire repeatedly to maintain muscle action, which
is summed to produce an EMG signal [7].

Figure 1 shows the basic structure of an EMG signal and how it can be decomposed,
and Figure 2 shows a raw EMG signal.
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The equation below shows a basic EMG signal model, where MUAPTj is the motor
unit action potential train, which refers to the collection of one motor unit positioned at the
time of occurrence or separated by inter-discharge intervals, and n(t) denotes noise [7].

EMG(t) = ∑ Nm
j=1 MUAPTj(t) + n(t) (1)

2.2. Noise and Denoising

During the detection and collection steps, there are many factors that can influence the
collected signal. The denoising step is introduced in preprocessing to improve the quality
of the signal. In this section, the main noise within a raw collected EMG signal is illustrated,
and a denoising method is used.

2.2.1. Noising

Initially, there is noise due to the instrument used to collect the EMG signal. First, for
the two main kinds of EMG signal types, that is, the intramuscular EMG signal from the
needle inserted into the muscle and the surface EMG signal from the surface electrodes, the
sensitivity of the collection instruments, such as the needles and the electrodes, decides the
noise that is collected with the EMG signal, which ranges from zero Hz to several thousand
Hz; second, for the connection cable between the muscle, the electrodes and processing
circuit, a slight movement will affect the electrical forces while the signal passes through [8].
By using better equipment and an intelligent circuit design, this noise can be efficiently
reduced [8].

Second, there is noise generated by the human body. One type of noise is the elec-
tromagnetic noise that is generated by the body. The human body is similar to a small
magnet that constantly generates electromagnetic radiation that propagates to the sur-
roundings. This kind of noise is also known as ambient noise. The second type of noise
comes from several factors, such as anatomical noise and biochemical noise, which take
place in the biological unit of the detecting muscle; another type of this kind of noise is
the “crosstalk” of unwanted EMG signals, which comes from other muscle tissues. Finally,
the most interference comes from the heart’s electrical activity; another name for this is
“electrocardiogram artefacts” [2,8]. These two types of noise can be reduced by a high-pass
filter, because they are both generated due to random factors.

The last part is due to the instability of the signal, which is caused by the unstable firing
rate of the motor unit, and, usually, these noise frequency components are approximately
0–19 Hz. The active motor unit and the muscle fiber mechanical reaction both play a large
part in this noise [2].

In [7], the raw EMG signal was detected through an electrode and passed through
a bandpass filter and a low-pass filter to reduce the temporal overlap, the number of
superimposed waveforms and the amplitude of meaningless motor units. Additionally,
nondiscriminative, low-frequency information is removed, which makes it easier to distin-
guish different motor units’ MUAPs, which are some of the features that can be extracted
by reducing the variability of the shape of the signal.

2.2.2. MPCA Denoising

The main denoising method that is used for EMG signals is the multiscale principal
component method. Multiscale principal component analysis (MPCA) combines the fea-
tures and capabilities of PCA and enhances the robustness of PCA in revealing hidden
structures [9,10]. The main idea of PCA is to project N data points that have the mean
value m and covariance matrix C onto the direction u to determine the direction that can
maximize the project variance utCu. To determine the maximum variance, we can set up
an optimization problem that finds max

u
utCu under the condition utu = 1 [9]. Hence, we

can use the Lagrangian multiplier method, which is

L = utCu− λ(utu− 1) (2)
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Then, we differentiate L, and when dL
du = 0, we can obtain Cu = λu.

Another important part of multiscale PCA is the wavelet transform process. The
general idea is that noise is a high-frequency signal that is normally distributed with a
Gaussian distribution. As in the general model mentioned in the previous section, the EMG
signal can also be described as

F(t) = s(t) + e(t) (3)

where s(t) and e(t) are the EMG signal and white noise, respectively, which means that the
mean value of the noise is zero and the covariance is σ2. Assuming the wavelet function is
ϕ(t), We(α, t) is the wavelet transform of f (t); hence, we have

We(α, t) =
∫ +∞

−∞
e(u)ϕe(t− u)du (4)

From this assumption, we can obtain the average power of We(α, t),

E{|We(α, t)|2} =
+∞s

−∞
E{e(u)e(v)}ϕa(t− u)ϕa(t− v)dudv

= σ2
+∞s

−∞
δ(u− v)ϕa(t− u)ϕa(t− v)dudv

= σ2
∫ +∞
−∞ |ϕa(t− u)|2du

= σ2||ϕ||2
a

(5)

We can determine that the average power of We(α, t) is inversely proportional to the
scale a [11].

The main process of MPCA is as follows [12,13]:

1. Use wavelet transformation to transform each channel of the EMG signal to the L of the
decomposition level, and collect all the wavelet details in each channel into matrix DL
and the wavelet approximations into matrix AL.

2. Eigen-decompose the covariance matrix of each wavelet matrix, determine the eigenvec-
tor and eigenvalue of each, and then arrange them in descending order. The eigenvalues
that select the threshold will determine the number of principal components that form
a new matrix.

3. The relevance factor µi (when two statistics, namely, T2statistic and SPE statistic, exceed
the control limits, µi = 1 otherwise, 0) will select the nonsignificant scale and form a new
EMG signal:

EMG′ i = AL + ∑L
i µiDL (6)

The two statistics and their control limit, which are used in Equation (6) to decide the
value of µi, are calculated as follows:

The T2 statistic reflects the degree to which each principal component deviates from
the model in terms of trend and amplitude; it is a measure of the internalization of the
model, and it can be used to monitor multiple principal components simultaneously:

T2
i = XiPkλ−1PkXi (7)

Tα =
k(m− 1)(m + 1)

m(m− k)
Fk,m−k,α (8)

Tα is the control limit of the T2 statistic, where X is the data matrix and P is the loading
matrix; λ is the eigenvalue-diagnosed matrix, in which the eigenvalue belongs to the first k
principal component; m represents the dimension of the data matrix X; and Fk,m−k,α is the F
distribution at the significance level of α.
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The SPE statistic describes the degree to which the measured value of the input
variable deviates from the principal component model, and it is a measure of external
variation in the model.

SPEi = Xi

(
I − PkPT

k

)
XT

i (9)

SPEα = θ1

[
Cα

√
2θ2h2

θ1
+ 1 +

θ2h(h− 1)
θ2

1

] 1
h

(10)

θn = ∑m
j=k+1 λn

j n = 1, 2, 3 (11)

h = 1− 2θ1θ3

3θ2
2

(12)

SPEα is the control limit of the SPEi statistic, where Cα is the standard normal deviate
corresponding to the upper (1− α) percentile.

2.3. Raw EMG Signal Processing

For a multichannel EMG signal, a necessary step is decomposition. By obscuring the
composition of the EMG signal, we can easily determine that the EMG signal is composed of
many MUAPs, so the features of classical techniques used for analysis, which are extracted
from s-EMG signals, cannot guarantee effectiveness [14]. Therefore, if we can decompose
the EMG signal, it will be easier to perform the next feature extraction step and make the
features more representative.

2.3.1. Independent Component Decomposition

In recent years, the independent component analysis (ICA) algorithm has appeared
in many multi-dimension signal processing processes and mostly plays an important role,
which is a special case of the blind source separation technique [8]. The main purpose
of ICA is to transform an experimental multivariate random vector into independent
sources [8]. The basis of the ICA is to normalize, whiten and iterate [5]. The whitening
process uses a linear transformation to transform the components of the observed vector x
into uncorrelated components with unit variance. After whitening, the parameters that need
to be estimated in the ICA process will be reduced [5]. The iteration process is an algorithm
used to calculate the independent components, and different algorithms have been used
in this process, such as joint approximate diagonalization of eigenmatrices (JADE), the
infomax estimation or maximum likelihood algorithm and the fast ICA algorithm [8]. We
first discuss the standard ICA process. The standard process considers that the signal
matrix x can be represented as an unknown, invertible, square matrix A with unknown
pure signal vector s.

x = As (13)

We want to find an unmixing matrix w to obtain the following equation:

s = wx = wAs (14)

where wA = I [15]. The fast ICA algorithm is used to estimate matrix w. The fast ICA
algorithm is based on a fixed-point iterative structure algorithm, and the goal is to make
wx have the most non-Gaussian nature.

The first step of the fast ICA algorithm is to initialize the vector matrix w and then use
g(u) = tanh(au) or other suitable functions as the derivative of the contraction function.
Under the constraint condition E{(wx)2} = ||w||2 = 1, the optimal condition of E{G(wx)}
can be obtained by the following formula:

E{ xg(wx)} − βw = 0 (15)
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To use Newton iteration to solve this problem, we can obtain the vector matrix w′,
which is

w′ = E{xg(wx))} − E
{

g′(wx)
}

w (16)

and then use

w =
w′

||w′|| . (17)

To calculate the new matrix, if the old w is in the same direction as the new w, then
we can consider it convergent; otherwise, we calculate w′ iteratively. The obtained vector
matrix is the matrix that we want, and based on this matrix, we can obtain the decomposed
signal that we want [16].

2.3.2. Wavelet Transform

The wavelet transform (WT) method is also a very common way to decompose a raw
EMG signal. As a type of Fourier transform (FT), the WT is also a tool for time-frequency
analysis; the difference between the WT and FT is that the WT possesses characteristics
of multiresolution, which solves problems of the FT, such as the lack of localized analysis
capabilities and the inability to analyze nonstationary signals [11].

The multiresolution theory means that when a scaling function
{

Vj
}

, j ∈ Z satisfies
several conditions, it can be approximated by finite subspace

{
Vj+1

}
, which represents

the low-frequency large-scale approximation part, and
{

Wj+1
}

, which represents the high-
frequency detail part [11]:

V0 = V1
⊕

W1 = V2
⊕

W2
⊕

W1 = · · · = Vj
⊕

Wj
⊕

Wj−1
⊕
· · ·W2

⊕
W1 (18)

The conditions that the scaling function need to meet are as follows:

1. Vj−1 ⊂ Vj, j ∈ Z;
2. ∪j∈ZVj = L2, ∩j∈Z{0};
3. f (t) ∈ Vj ⇔ f (2t) ∈ Vj+1 ;

4. ∀k ∈ Z, φ
(

2−
j
2 t
)
∈ Vj ⇔ φ

(
2−

j
2 t− k

)
∈ Vj ;

5. ∃φ(t) ∈ V0, which make
{

φ
(

2−
j
2 t− k

)
− k
∣∣∣k ∈ Z

}
become orthogonal.

The basic FT is expressed as

F(t) =
∫ +∞

−∞
f (t)e−iωtdt (19)

The WT uses a basic wavelet ϕ(t) as the mother wave to replace the sinusoidal signal
base, which is expressed as

W(α, t) =
1√
α

∫ +∞

−∞
f (u)ϕα,t

(
u− t

α

)
du (20)

in which α and t are the scale and translation factors, respectively [11]. In practice, the
discrete WT (DWT) is often used in the decomposition steps of the signal to discretize a
continuous wavelet [1].

2.4. Feature Extraction Method

Feature extraction is a very useful way to transform a raw EMG signal into a set of
features, and it is used by researchers to extract useful information in a signal and eliminate
unnecessary information [17]. It is also very helpful for later classification. There are three
main kinds of features: time-domain (TD) features, frequency-domain (FD) features and
time–frequency-domain (TDF) features [17].
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2.4.1. Autoregression Coefficient

The autoregression (AR) coefficient is a time-domain feature that involves a linear
combination of the previous signal x(n− 1) to x(n− p). In this model, the EMG signal is
described as a combination of the previous signal and noise:

x(n) = ∑p
k=1 akx(n− k) + wn (21)

where ak is the autoregression coefficient and wn is white noise [18,19].
There are many mathematical methods to derive the autoregressive coefficients that

define the autoregressive model, the most famous of which is the Yule–Walker model. This
model uses the estimated values of the correlation function, which can be calculated as [20]

rxx(n, n− k) = E[x(n)x(n− k)] (22)

Based on the above equation, the Yule–Walker matrix can be obtained:
rxx(0) rxx(−1) · · · rxx(−p + 1)
rxx(1) rxx(0) · · · rxx(−p + 2)

...
... · · ·

...
rxx(p− 1) rxx(p− 2) · · · rxx(0)




1
a1
...

ap

 =


σ2

m
rxx(1)

...
rxx(p)

 (23)

where the value σ2
w is the variance of the model stochastic process. Hence, from the matrix,

we can obtain
rxx(p) = rxx(p− 1) + a1rxx(p− 2) + · · ·+ aprxx(0) (24)

Since this matrix describes an equation system and fulfils the Toeplitz definition, the re-
cursive Levinson–Durbin algorithm can be used to obtain the autoregressive coefficients ap.

In the Toeplitz definition, the autoregressive coefficients ap can be obtained using the
recursive Levinson–Durbin algorithm [20]. By observing the above matrix, we can see
that this matrix fulfils the definition. Hence, we can use the mth-order Levinson–Durbin
algorithm as follows to calculate the coefficients [21]:

km = − [rx(m) + ∑m
k=1 akrx(m− k)]
ρm−1

(25)

am(k) = am−1(k) + km(am−1) ∗ (m− k), 1 ≤ k ≤ m− 1, 1 ≤ m ≤ p (26)

ρm = ρm−1

(
1− k2

m

)
(27)

2.4.2. The Decomposition Coefficient Features

In addition to the time-domain feature, the frequency-domain feature is an available
component that can represent the information of the signal. Two types of features can
be extracted based on the decomposition process: the first is the wavelet coefficient, and
the other is the ICA coefficient. The wavelet coefficient is the feature vector of each
decomposition scale, and the ICA coefficient is the weight of the decomposition signals.

2.5. Classification Method
2.5.1. The K-Nearest Neighbor

There are many ways to classify EMG features, such as Bayesian techniques [22],
the neural network method, the K-nearest neighbor (KNN) method [19] and the decision
tree [23]. These methods all perform well in the classification process. Comparing several
papers that use the matching learning tools implemented in calculating EMG features, KNN
seems to be the simplest way to classify EMG features, and it can achieve relatively high
accuracy. In reference [24], the author compared the artificial neural network (ANN) and
KNN, and when the size of the feature set was the same, the operation time and accuracy
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of KNN were much better. Additionally, in reference [25], KNN and other classification
methods were compared to classify the features in the time domain. Hence, in this paper,
the KNN method is applied.

The KNN algorithm is a suboptimal process and is only useful when the dataset is
relatively small. This algorithm assigns labels based on the k-nearest values of the data
for classification. This distance is usually determined by Euclidean distance, and then
iteratively updates by comparing new records with training records [23,26]. However, there
are two issues to consider when using this algorithm. The first issue is that the algorithm
assigns equal weights to each sample, which makes the labels difficult to determine when
the sample set overlaps with the class labels. The second issue is that the strength of each
classification sample cannot be determined [26].

2.5.2. The Naïve Bayesian

The Bayesian aggregation has been used in many fields, such as medical and clinical
applications. Generally, the probability of event A under the condition of event B is different
from the probability of event B under the condition of event A; however, there is a definite
relationship between the two, and Bayes’ rule is a statement of this relationship. The main
function of the Bayesian aggregation is to use a priori numbers of occurrence and then
combine it with specific sampled data values. As such, the Bayesian aggregation algorithm
can produce an overall characterization [22].

3. Experiment

The experiment was conducted to determine how the denoising step influences the
classification accuracy of the three features. The most important aspects of the experiment
were to determine how denoising influences the signal in each processing step, what can
be seen by illustrating every step and how each denoising process influences the feature
extraction process.

3.1. The Dataset Used

This research used an EMG signal database downloaded from the UCL machine
learning website. This dataset was collected using LabVIEW with national directives as the
core, and it has been widely applied in many research papers that study EMG signals. This
dataset has two different data groups with same six grasping movements see as Figure 3,
and the EMG signals of each data group were collected differently. The sampling rate of the
EMG signal was 500 Hz, and a Butterworth bandpass filter with a range of 15–500 Hz and
a notch filter with a bandstop of 50 Hz were applied to eliminate the artefacts of signals
caused by interference, such as those from wires.

The EMG signal was taken from two forearm surface EMG sensors, meaning that the
signal is a two-channel EMG system. There are two kinds of datasets in the UCL machine
learning repository: the one used in this experiment was collected from five people, three
of whom are female and the other two of whom are male. This dataset was formed by
collecting the data of the people performing six full grasping movements thirty times
each, and the signal collected from each person had its own mat file. These six grasping
movements are shown below.

3.2. Comparison of The Denoising Signal and Original Signal

The figure shows the MPCA process that was performed on the two different channels,
which calculates the average of all 30 signals in one channel. The MPCA algorithm is based
on MATLAB and can be accessed worldwide. The basic wavelet used in this process is
the Daubechies least asymmetric wavelet, and a heuristic rule is used to determine how
many principal components are retained. The heuristic rule ensures that the component
associated with the eigenvalues is greater than 0.05 times the sum of all eigenvalues.
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Because the signal gathers in two different channels, we want to see if there are any
differences in denoising for these two channels’ signals. From Figure 4, we can see that,
despite the slight differences, these two channels’ signals do not show many differences;
they all seem to process well. By comparing the right column and left column, which
means the signal with or without denoising, we can see that there are two improvements
in the MPCA denoising method. The first improvement is that the density of the signal
is decreased, which is because when using denoising steps, less relative information is
removed. The second improvement is that the MUAPTs, which formed as a result of the
hand movement, are more easily to distinguish by the amplitude change.

The correlation between the two channels can be calculated with the following equation:

Rxy(m) = E{xn+my∗n} = E{xny∗n−m} (28)

where x and y are the signals, and the correlation vector of the raw signal and the de-
noising signal is shown in Figure 5. As an observation, the correlation between the two
channels improved.
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3.3. Signal Decomposition
3.3.1. Wavelet Decomposition

In this experiment, a four-level wavelet decomposition of the EMG signal using the
fourth-order Daubechies wavelet was implemented. The coarse-scale approximation coeffi-
cients and the detailed coefficients from the decomposition are shown in the upper figure.

Figure 6 shows the detail coefficients and the approximate coefficient of the denoising
signal and the raw EMG signal. The difference between these two kinds of signal is obvious.
The denoising signal shows a more clear change in aptitude, which is associated with the
hand movement and is similar to the denoising signal in the first denoising step.
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As can be seen in Figure 7, by calculating the correlation rate of the different levels of
detail coefficients, the correlation between the different levels of wavelet detail coefficients
increases after denoising.
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3.3.2. ICA Decomposition

Here, in the ICA decomposition steps which shows an example in the Figure 8, the
construction function is used as the smoothing function, which is similar to the absolute
value function and has four decomposition signals.

As well as the decomposition incorporation of the two kinds of EMG signals, these
signals, when going through the ICA decomposition steps, also show that the denoised
EMG signal has a clearer boundary between each MUAPT. However, different from the
wavelet decomposition, the feature vector that the ICA method decomposed, the raw EMG
signal seems to correlate more to each other and the original signals.

In these two different types of decomposition functions, we can see that the signal
decomposed into several separate signals, which can extract features that are more rep-
resentative than the original signal, and the denoising step clarified the features of the
recomposited signal.
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Figure 8. The ICA decomposition signals.

3.4. Features

There are three kinds of features that are extracted from the EMG signal: the first is
the autoregression coefficient, which is calculated by the Yule–Walker method, and the
other two are the coefficients generated by the decomposition steps as illustrated above.
Here, the wavelet decomposition decomposes the EMG signal at level 9, and the detailed
coefficient extracted by each level scale occupies a frequency band. The energy of each
scale, which is calculated by the quadratic sum of all the coefficients in the scale, is selected
and forms the feature vector DWTF.

arcoe f f = [ar1, ar2, ar3, ar4, ar5, ar6, ar7, ar8, ar9, ar10]

ICAF = [ica1, ica2, ica3, ica4, ica5, ica6, ica7, ica8, ica9, ica10]



Sensors 2022, 22, 1604 13 of 18

DWTF = [ca9, cd9, cd8, cd7, cd6, cd5, cd4, cd3, cd2, cd1]

3.5. Classification

In the classification step, the features are separated into ten folds, and the cross-
validation method is used to calculate the correction rate of the classification model. The
correction rate is calculated by the following formula:

R =
Ntp + Nt f

Nt
× 100% (29)

where Ntp is the number of features that are classified as the correct class, Nt f is the number
of features that are classified as the wrong class, and Nt is the total number of features that
participate in this classification process.

The content and meaning of Tables 1–5 are shown next. Tables 1 and 4 show the two
different classification results of the three different classification methods. In Table 1, by
using the K-nearest neighbor, the denoising only shows some improvement in the ICA
coefficient and makes the classification correct rate of the autoregression coefficient and the
WT coefficient, the confusion matrix of each classification result are illustrated in Tables 2, 3
and 5. However, in Table 4, the naïve Bayesian classification method shows a different result
of the wavelet transform coefficient; the denoising step increased a lot of the classification
accuracy of this feature.

Table 1. The KNN classification results.

Features
Multiscale PCA Denoising Original Signal

k = 1 k = 4 k = 7 k = 10 k = 1 k = 4 k = 7 k = 10

WT coefficient 100% 80.27% 46.77% 53.33% 100% 85.05% 65% 74.5%
ICA coefficient 53.66% 47.88% 48.16% 46.61% 42.27% 38.16% 36.33% 33.05%

Autoregression coefficient 33.72% 33.27% 34.44% 31.88% 69.11% 72.38% 73.88% 73%

The difference between the KNN and the naïve Bayesian is that the classification
method is different. The basic concept of the KNN is based on the distance between
each sample, which is based on the Euclidean distance, but the naïve Bayesian is based
on the probability of each category appearing under the condition that this item appears,
whichever is the largest, considering which category the item to be classified belongs to. The
differences in the classification methods also influenced the denoising method. However,
in both classification methods, the MPCA has a negative influence on the classification
accuracy rate of the time-domain feature—the autoregression coefficient.
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Table 2. The confusion matrix of the KNN method—denoising part.

Features
Multiscale PCA Denoising

k = 1 k = 4 k = 7 k = 10

WT coefficient
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Table 3. The confusion matrix of the KNN method—raw signal part.

Features
Original Signal

k = 1 k = 4 k = 7 k = 10

WT coefficient
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Table 4. Classification with the naïve Bayesian method.

Features Multiscale PCA Denoising Original Signal

WT coefficient 22.72% 46%
ICA coefficient 15.27% 8.27%

Autoregression coefficient 22.38% 43.5%

Table 5. The confusion matrix of naïve Bayesian method.

Features Multiscale PCA Denoising Original Signal

WT coefficient
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4. Discussion 
In this experiment, several features were extracted from a raw EMG signal. The au-

toregression coefficient is a time-domain feature that represents the time connection of 
one signal. Independent component analysis and wavelet transform analysis describe a 
signal in the frequency domain; they decompose the signal into different scales, and ICA 
decomposition separates the signal into different signals that show the components of the 
original signal. Wavelet transform uses different basic wavelet functions to separate the 
signal to simulate the original one. There are some similarities between the two different 
decomposition methods, such as the fact that they are both frequency-domain feature ex-
traction methods and they both divide the original signal into different levels of decom-
position signals. By judging the classification accuracy and confusion matrix of the two, 
we can see that the features formed by the wavelet decomposition method show better 
results in both classification methods. The effect of wavelet denoising for ICA decompo-
sition is much better than that of wavelet decomposition. In both classification methods, 
the features of the ICA decomposition method significantly improved after wavelet de-
noising. 

In the KNN classification algorithm method, different neighbor numbers affect the 
correction rate, so different neighbor numbers were tested in this paper from K = 1 to K = 
10 by 3 to test which value of k is suitable for classification. Moreover, we can see that 
when the value is 7, the classification accuracy of the ICA coefficient feature and the 
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we can see that the features formed by the wavelet decomposition method show better 
results in both classification methods. The effect of wavelet denoising for ICA decompo-
sition is much better than that of wavelet decomposition. In both classification methods, 
the features of the ICA decomposition method significantly improved after wavelet de-
noising. 

In the KNN classification algorithm method, different neighbor numbers affect the 
correction rate, so different neighbor numbers were tested in this paper from K = 1 to K = 
10 by 3 to test which value of k is suitable for classification. Moreover, we can see that 
when the value is 7, the classification accuracy of the ICA coefficient feature and the 
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autocorrelation feature reach the maximum point. However, the WT coefficient feature
reaches the maximum point when k = 1.

The results are shown in the Classification Section. By judging the information in
Tables 1–5 in Section 3.4, we can see that the classification accuracy rate of the autoregression
coefficient feature shows a huge decrease, which only successfully classifies half of the
features compared to the one that uses the original signal to carry out the feature extraction.
The Bayesian method showed a poor accuracy rate, and none of the features expected
in the naïve Bayesian classification method exceeded 50%. The denoising step improved
the classification rate of the ICA features but showed a worse result in the classification
of the other two features. The reason, we believe, is that multiscale PCA uses wavelet
transform for denoising, so the denoising process is more efficient in the frequency domain,
and this process can erase some of the important relationships in the time series, so the
autoregression coefficient shows worse behavior after the denoising process. For the
wavelet decomposition coefficient, we believe the reason why the classification behaves
worse is that the wavelet transform was already used in the denoising step.

This study has several limitations, including using too-few EMG signal data. Although
our findings indicate that MPCA can improve the classification rate of ICA features with
the KNN method and naïve Bayesian classification method, more empirical studies on
the denoising steps need to be conducted in future tests, such as using the naïve Bayesian
classification method.

In the research process, we reviewed many papers, and much of the research relates
to electroencephalograms (EEGs). EEG signal processing is very popular and is similar
to EMG signal processing. Additionally, the brain–computer interface, a concept that has
attracted our attention, is highly relevant to these two signals. EEG signals have low
accuracy, and some patients suffer from neuromuscular disease, which means that the EMG
signals are limited [28]. By combining these two signals, we can acquire more accurate
muscle movement for applications such as typing without hands. In future studies, we
would like to study the difference between these two signals and find a way to make use of
both of them.
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