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Although the plant lipidome show an enormous level of structural and functional diversity, our knowledge
about its genetic control and its connection to whole-plant phenotypes is very limited. Here, we profiled 563
lipid species with UPLC-FT-MS in 289 field-grown inbred lines genotyped with 56,110 SNPs. Genome-wide
association study identified 174 associations for 76 lipids explaining up to 31.4% of the genetic variance
(P-value 8.4 3 10218). Candidate genes were found for lipid synthesis, breakdown, transfer, and protection
against peroxidation. The detected SNP-lipid associations could be grouped into associations with 1)
individual lipids, 2) lipids from one biochemical class, and 3) lipids from several classes, suggesting a
multilevel genetic control architecture. We further found a strong connection between the lipidome and
agronomic traits in field-evaluated hybrid progeny. A cross-validated prediction model yielded correlations
of up to 0.78 suggesting that the lipidome accurately predicts agronomic traits relevant in hybrid maize
breeding.

L
iving organisms produce a plethora of chemically distinct lipid species, commonly referred to as the lipi-
dome1. Lipids are fascinating for their chemical diversity which is especially enormous in plant domain due to
the high plasticity of their biosynthetic machinery2. In addition, lipids are involved in various cellular

processes including cell integrity, membrane formation and scaffolding for membrane proteins, energy storage,
and cell signaling3.Lipid composition has been demonstrated to change with environmental conditions, e.g. under
various abiotic stresses, and has actually been demonstrated to serve as an indicator for the respective stress4.
Recent progress in mass spectrometry allows measuring simultaneously hundreds of chemically different lipid
species in a single sample of plant tissue, which though impressive, covers only a part of the complexity of the
lipidome5–9.

Although in Arabidopsis thaliana, most of the biochemical steps involved in lipid biosynthesis are known and
the key genes have been identified, the regulation of the processes that results in the final lipid composition is only
weakly understood. Quantitative genetic approaches have been followed more recently in Arabidopsis thaliana10

and maize11 to identify loci involved in storage oil formation; however this analysis was limited to one class of
lipids, i.e. triacylglycerides. Recently, we have described results obtained for mapping primary metabolites in
maize12 via genome-wide association (GWA) mapping. The GWA mapping approach relies on ancestral linkage
disequilibrium (LD) in a diverse population and can yield a mapping resolution up to the single nucleotide level.

Using the same mapping population we here extend this study to identify numerous loci involved in lipid
metabolism. Using UPLC-FT-MS, we measured 563 distinct leaf lipids in 289 diverse maize inbred lines geno-
typed with 56,110 SNPs. In addition we asked the question whether or not lipid profiles can be used for predicting
general combining ability (GCA) of the parent lines reflecting the average performance of their hybrid progeny as
previously successfully shown for primary metabolites13. GCA was estimated for four traits by crossing 285 lines
from the Dent heterotic pool with two single-cross testers from the Flint heterotic pool and evaluating their
testcross progeny in three locations over two years.

Results
Lipid profiling. Using ultra-performance liquid chromatography separation coupled to a high-resolution
Fourier transform mass spectrometer (UPLC-FT-MS), 563 distinct leaf lipids were measured in the 289 maize
inbred lines from the diversity panel of worldwide sources (Supplementary Table S1). It is clear that these 563
species scratch only the surface of the lipidome, however, as demonstrated below, they already allowed to identify
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a number of loci/regions in the maize chromosome associated with
their abundance in maize leaves. From the mass spectra of the dete-
cted compounds, 16 could be annotated to be diacylglycerols (DAG),
15 as digalactosyl-diacylglycerols (DGDG), 23 as monogalactosyl-
diacylglycerols (MGDG), 24 as phosphatitylcholines (PC), 11 as pho-
sphatidylethanolamines (PE), six as phosphatidylglycerols (PG),
three as phosphatitylinositols (PI), nine as sulfoquinovosyldiacyl-
glycerols (SQDG), and 48 as triacylglycerides (TAG). The remain-
ing lipids could not be annotated at present, however, specifically for
lipids showing a strong association with gene loci, efforts are
presently undertaken to clarify their structure. Lipid concentra-
tions showed an average repeatability (w2) of 0.66 (Supplementary
Fig. S1), with a total of 205 compounds (36.4%) having w2 . 0.8. The
lipids showed a correlation pattern with intense substructuring

(Fig. 1a). Notably, all annotated TAGs clustered together into one
highly positively correlated group.

Genome-wide association mapping. Using the Q10 1 K mixed
model and a FDR threshold of 2.5%, we detected 174 SNP-lipid
associations for 76 lipids, explaining up to 31.6% of the genetic
variance (Supplementary Table S2 and Fig. 2). A total of 23 lipids
showed at least one signal explaining more than 15% of the genetic
variance. For the lipids with significant association signals, the
average inflation factor l was 1.14. From the annotated lipids,
most significant hits were found for TAG and MGDG (Table S2).
Associations were found on all chromosomes, with an intense
co-localization of the same signal positions for groups of lipids
(Fig. 1b–d and Supplementary Fig. S2).

Figure 1 | Correlation and colocalization pattern of lipids. (a) Pairwise Pearson correlations (r) among all 563 measured lipids. Lipids are ordered using

Ward clustering on pairwise dissimilarity, calculated as 1 – r. The cluster on the right is colored according to the chemical class of the lipids.

(b–d) Colocalization of GWA mapping hits on chromosomes 3,5, and 8. Circles refer to –log10(P-value) of SNP-lipid associations which were significant

with FDR # 0.025. Dotted lines indicate genomic positions with association signals of multiple lipids. Candidate genes with known relationships to lipid

metabolism or protection against peroxidation are shown at the bottom. PL, phospholipase; 12-ODR, 12-oxophytodienoate reductase; GST, gluthation-

S-transferase; ERT, ethylene-responsive transcription factor; TLC, TRAM/LAG1/CLN8 (TLC) lipid-sensing domain containing protein; LTP, lipid

transfer protein; INV, invertase; GDSL, GDSL esterase/lipase; VTE1, tocopherol cyclase; SERINC, serinc-domain containing sphingolipid biosynthesis

protein; 3-HACD, 3-hydroxyacyl-CoA dehydratase. Details of all association hits can be found in Supplementary Table S2 and candidate genes in

Table 1. Colocalizations on all other chromosomes are presented in Supplementary Fig. S2.
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The strongest SNP-lipid associations were found for three lipid
species with unknown chemical structure, which were highly corre-
lated with each other (0.96 , r , 0.99). All three showed their
strongest associations (P-values ranging from 8.8 3 10214 to 8.4 3

10218) at position 66.8 Mb on chromosome 5, nearby (1.07 Mb) a
lipolytic GDSL esterase/lipase and very close (4.5 kb) to an invertase
gene (Fig. 2c,f ).

Candidate genes involved in lipid synthesis, transfer, breakdown,
signaling and protection against peroxidation were identified for
many detected associations (Table 1). Candidate genes were grouped
into three hierarchy levels depending on the biochemical composi-
tion of the compound(s) for which the associations were detected
(Fig. 3). Level 1 candidate genes correspond to associations uniquely
found for one lipid species. Level 2 candidate genes represent asso-
ciations specific to several lipids from one chemical class. Finally,
level 3 candidate genes correspond to associations found for lipids
from multiple chemical classes.

Level 1 candidate genes include a peroxidase on chromosome 2
which was uniquely associated with DGDG 3454 and a phospholi-
pase, which was found for an unknown lipid (ID 6151).

The biochemically closely related TAGs 5654, 5854, and 6054
showed two associations leading to level 2 candidate genes. The first
association was found at the beginning of chromosome 3 at 8.6 Mb,
very close (268.3 kb) to a phospholipase, and the second at the end of
the chromosome at 228.4 Mb, nearby a lipid transporter.

Examples for level 3 candidate genes include amongst others a
sphingosine kinase, found 294.5 kb away from an association at
position 33.56 Mb on chromosome 4, for which one PG, one
MGDG, and three unknown lipids mapped together. One PG, one
MGDG, one SQDG, and nine unknown lipids mapped to a region
from 41.4 to 42.4 Mb on chromosome 10, harboring two genes, the
products of which have a high similarity (Protein-Protein BLAST E-
values 4 3 10264 and 5 3 10286) to a fatty acid desaturase in
Arabidopsis. Nine out of these 13 lipids also showed a common
association on chromosome 1 nearby (538.1 kb) a lipid transfer pro-
tein. In addition, eight lipids from three chemical classes mapped to
the same position at 115.5 Mb on chromosome 8, in close vicinity
(4.9 kb) of a 3-hydroxyacyl-CoA dehydratase, a key component in

the elongase complex for synthesizing very-long-chained fatty
acids14. Finally, one DGDG, one MGDG, and one DAG, all sharing
the same fatty acid residual (3654), mapped besides two unknown
lipids to the same location at 173.1 Mb on chromosome 3, close
(81.5 kb) to a protein containing a TLC (TRAM/LAG1/CLN8)
lipid-sensing domain (Fig. 3).

Other candidate genes with known relationship to lipid metabol-
ism include ethylene-responsive transcription factors, tocopherol
cyclase, gluthation-S-transferase, as well as 12-oxophytodienoate
reductase, which participates in the conversion of linolenic acid into
jasmonic acid, a fatty acid derivate acting as an important plant
hormone.

Whole-lipidome prediction of general combining ability.
Correlations between individual lipids with GCA values ranged
from –0.54 to 0.48 (Fig. 4a–d). To predict GCA with the lipidome,
we applied a statistical prediction model that assumes that all lipids
have small, normally distributed effects associated with the target
trait.

Using a 20-times repeated 5-fold cross-validation scheme, the
correlations between observed and predicted GCA values ranged
from 0.47 for dry matter yield to 0.78 for flowering time, with quality
traits being better predictable than dry matter yield (Fig. 4e–h). The
predictive ability matched with the number of Bonferroni-corrected
significant correlations with GCA (Fig. 4A–D, red portion), which
was highest for flowering time (190) and considerably higher for
sugar (130) and fat content (162) compared to dry matter yield (31).

Discussion
The composition of the detected, genetically co-regulated modules in
the lipidome provided hints about the hierarchical position of the
underlying controlling genes. Whereas level 1 suggests genes oper-
ating at the most elementary level for modifying or controlling indi-
vidual lipids, level 2 candidate genes are assumed to control sets of
biochemically closely related lipids of one chemical class. On top,
associations found for large groups of structurally distinct lipids
(level 3) suggest underlying causal genes regulating the lipidome at
a higher hierarchical level.

Figure 2 | Five examples of GWA mapping results. (a–e) Manhattan plots for lipids 5645, 5447, 8765, 6235, and 6109. P-values obtained from a Q10 1 K
mixed model analysis are shown on a –log10-scale and colored in red if significant with FDR # 0.025. (f) Regional association plot for lipid 8765.

The positions of the candiate genes GDSL esterlase/lipase and invertase (INV) are shown as triangles. Level of linkage disequilibrium (r2) with the top hit

SNP is shown in red color.
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Currently, incomplete annotations limit our ability to distinguish
perfectly the level 3 from level 2 candidate genes. Nevertheless, the
suggested hierarchy levels largely corresponded with the specificity
of the associated candidate genes. For example, the lipid signaling
molecule sphingosine-1-phosphate has recently received great atten-
tion because of its involvement in many physiological processes in
yeast, mammals, and plants15,16, suggesting a higher hierarchical con-
trol position conserved over species. It was therefore not surprising
that the underlying gene sphingosine kinase was associated with
lipids from multiple chemical classes. Likewise, the conserved
TRAM/LAG1/CLN8 (TLC) lipid-sensing domain, reported to be
involved in several lipid processes17, was found in a product of a level
3 candidate gene associated with three lipids with different back-
bones but the same fatty acid residual (Fig. 3). Similarly, the level 3
ethylene-responsive transcription factor was described to control
different lipid pathways in Arabidopsis18 and barley19. On the con-
trary, lipid transporters are known to be more substrate specific20,
especially if covalently modified21. This makes the detected level 2
triacylglyceride specific transporter a promising candidate for fur-
ther functional investigations.

Two candidate genes, GRMZM2G084264, GRMZM2G073258
(Table 1), show high homology to the three members (SHN1,
SHN2 and SHN3) of the Arabidopsis SHN transcription factors
which are involved in the regulation of a variety of lipid metabolism

processes including lipid transport, fatty acid elongation, and the
synthesis of wax, suberin, and cutin18,22,23. The gene GRMZM2-
G176175 shows high homology (Protein-Protein BLAST E-values
8 3 10-33) to the gene WRI1 that belongs to the protein family of
the AP2/EREBP transcription factors in Arabidopsis which have
been demonstrated to be involved in fatty acid synthesis and triacyl-
glycerol biosynthesis processes24–26.

On chromosome 4, a candidate gene showed a high similarity
(Protein-Protein BLAST E-value 1 3 10212) to CER2, a gene studied
in detail in Arabidopsis, which is required for the elongation of fatty
acids of exceptional length27. Our results also propose that protection
against peroxidation needs to be particularly considered. In addition
to several glutathion-S-transferases28, we also detected an invertase
gene that reduces membrane lipid peroxidation during chilling tem-
peratures if artificially expressed in the apoplast of potato29.

Lipid synthesis occurs via sequential addition of two-carbon units
derived from acetyl CoA. which is nicely reflected in the mapping of
biochemically closely related lipids from specific lipid classes such as
TAGs 5654, 5854, and 6054 to just one locus (Fig. 1b). The DAG
moiety has been proposed as the major pathway for TAG synthesis in
excised linseed (Linum usitatissimum) and soybean (Glycine max)
cotyledons30. The DAG moieties derived from phospholipid hydro-
lysis are used in galactolipid biosynthesis31. We identified a phospho-
lipase in close vicinity to the respective SNP which might carry the

Table 1 | Details of candidate genes with known relationships to lipid metabolism and protection against peroxidation. Positions refer to the
B73 reference genome RefGen_v1

Chr. Position Candidate gene
Distance to

candidate gene (kb) Product of candidate gene Control level

1 90435505 GRMZM2G079568 538.1 Lipid transfer protein 2
2 106409512 GRMZM2G067096 0.0 Peroxidase 1

27559497 GRMZM2G138701 11.0 C2 Ca21/lipid-binding domain-containing
phosphoribosyltransferase

2

GRMZM2G178693 229.4 Aquaporin 2
3 8610977 GRMZM2G353444 268.3 Phospholipase 2

68792482 GRMZM2G068947 286.9 12-oxophytodienoate reductase 2
GRMZM2G146887 83.5 Gluthation-S-transferase 2
GRMZM2G146913 97.3 Gluthation-S-transferase 2
GRMZM2G073258 430.6 Ethylene-responsive transcription factor 2

173118447 GRMZM2G077279 81.5 TRAM/LAG1/CLN8 (TLC) lipid-sensing domain containing protein 3
204973260 GRMZM2G434541 71.9 Gluthation-S-transferase 1
228429469 GRMZM2G010868 970.5 Lipid transfer protein 2

4 33567688 GRMZM2G088549 294.5 Sphingosine kinase 3
85049647 GRMZM2G032276 556.2 CER2 fatty acid elongase-like protein 2

5 66804095 GRMZM2G089836 4.5 Vacuolar invertase 2
GRMZM2G374475 268.3 GDSL esterase/lipase 2

133758422 GRMZM2G073258 430.6 Ethylene-responsive transcription factor 2
GRMZM2G084264 312.1 Ethylene-responsive transcription factor 2
GRMZM2G009785 970.1 Tocopherol cyclase 3

141450112 GRMZM2G159759 263.1 GDSL esterase/lipase 3
6 23858424 GRMZM2G035502 6.0 Gluthation-S-transferase 2

98818869 GRMZM2G129642 86.1 C2 Ca21/lipid-binding domain-containing
phosphoribosyltransferase

2

GRMZM2G100864 206.4 C2 Ca21/lipid-binding domain-containing
phosphoribosyltransferase

2

111523070 GRMZM2G084264 312.1 Ethylene-responsive transcription factor 3
GRMZM2G004276 531.6 Triacylglycerol lipase 3

7 23152493 GRMZM2G176175 1149.3 Ethylene-responsive transcription factor 2
134997749 GRMZM2G071015 164.0 C2 Ca21/lipid-binding and GRAM domain-containing protein 1

8 17434337 GRMZM2G061969 0.0 Phospholipase 1
17706101 GRMZM2G088356 77.6 Serinc-domain containing serine and sphingolipid biosynthesis protein 2

115491648 GRMZM2G035202 4.9 3-hydroxyacyl-CoA dehydratase 2
169339892 GRMZM2G379035 408.3 Lipid transfer protein 2

10 41583258 GRMZM2G175401 878.2 Fatty acid desaturase A 3
GRMZM2G097509 1095.3 Fatty acid desaturase A 3

72379858 GRMZM2G022359 506.5 Ethylene-responsive transcription factor 2
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causal variant of this association (Fig. 1b). It is obvious that like in
any association study, the loci identified remain candidate genes,
which need further validation via e.g. reverse genetics approaches
for final annotation.

The rich functional diversity of the lipidome and its association to
a diversity of biological processes suggests that it might be used for

the prediction of phenotypic performance. We tested this hypothesis
by predicting agronomic relevant traits evaluated in hybrid progeny
in multi-environment field trials. The high prediction accuracy con-
firmed by cross-validation showed that such an approach is very
promising. In addition, the higher absolute correlation coefficients
and cross-validated predictions for flowering time, and sugar and fat

Figure 3 | Examples for the control levels 1–3 which have been assigned to the detected candidate genes. A TLC lipid sensing protein was detected

for lipids with the same fatty acid residual but different backbones and hence different chemical classes. A lipid transporter was associated with three

strongly correlated TAGs with 56 to 60 C atomes. In contrast, a peroxidase was uniquely found for a single lipid species. Different chemical classes are

shown as different colors. Red values on the edges correspond to pairwise correlations. The shown P-value reflects the lowest value for all associations with

the candidate gene.

Figure 4 | Whole-lipidome prediction of GCA for dry matter yield, flowering time, fat and sugar contents. (a–d) Histograms showing Pearson

correlations between individual lipids and GCA values. Correlations significant at a Bonferroni-corrected 5% threshold (P-value , 8.9 3 1025) are

colored in red. (e–h) Observed vs. predicted GCA values using whole-lipidome prediction. Average values obtained from a 20 times repeated 5-fold cross-

validation are presented. Genotypes with a correct classification of GCA values are colored in green.

www.nature.com/scientificreports
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content compared to dry matter yield indicated that the leaf lipidome
is in general more closely connected to quality or developmental
traits than to biomass.

In conclusion, our study demonstrates that lipidomics is not only a
powerful tool for shedding light on the genetic control of the lipid
metabolism in crop plants, but it also provides access to a novel layer
of biochemical information exploitable for predicting agronomic
traits relevant in hybrid maize breeding.

Methods
Genetic material. The genetic material consisted of (i) a previously described
diversity panel of 285 Dent inbred lines12 with additional four genotypes as checks,
and (ii) the 570 testcrosses produced by crossing the 285 inbred lines to two single
cross European Flint testers13.

Genotyping. Genotyping was performed using the Illumina SNP chip Maize-SNP50
(Illumina Inc.) containing 56,110 unique SNPs32. A quality preprocessing was done
by applying the following criteria: (i) call rate above 0.95, (ii) unique allele assignment
for the 22 replicated checks of genotype B73, (iii) minor allele frequency greater than
2.5%, and (iv) no more than three heterozygous genotypes. A total of 37,282 SNPs
met these criteria. Five genotypes with a residual heterozygosity above 5% were
excluded. The chromosomal positions of the SNPs refer to the B73 reference genome
(B73 RefGen_v1). Candidate genes were taken from the B73 filtered gene set (release
4a.53).

Lipid profiling. Inbred lines in field trials were subject to lipid profiling. Genotypes
were divided into three maturity groups and randomized as three adjacent 20 3 5 a-
lattice designs with two replications and planted in two-row plots. Leaf samples of <
5 cm were cut from the middle part of the fully developed third leaf of 10 plants per
plot, bulked, and immediately frozen using dry ice. The five plots of every incomplete
block were sampled within a period of 15 s to minimize within-block error due to
metabolic changes over time. The 50 samples from 10 randomly chosen blocks of one
field replication of one maturity group were subsequently processed together as one
batch. With this blocking structure, we could account for systematic shifts among
batches while keeping the field randomization intact. Samples on batches were
lyophilized and stored for the subsequent analysis. Samples were processed using
ultra-performance liquid chromatography coupled with Fourier transform mass
spectrometry (UPLC-FT-MS, ref. 6) on a C8 reverse phase column coupled with an
Exactive mass spectrometer (Thermo-Fisher, http://www.thermofisher.com) in
positive ionization mode. Processing of chromatograms, peak detection and
integration were performed using REFINER MSH 5.3 (GeneData, http://
www.genedata.com). Processing of mass spectrometry data included the removal of
the fragmentation information, isotopic peaks, as well as chemical noise. Obtained
features (m/z at a certain retention time) were queried against an in-house lipid
database for further annotation. Remaining unknown features were crossed checked
with a different, on-line database using an in-house developed database search tool
(Golm Biochemical Space, GOBIOSPACE) for putative annotation.

Multi environment trials of testcrosses. The 570 testcrosses were used to estimate
GCA values in multi-environment field trials in three agroecologically diverse
locations for two years (2008 and 2009) in Germany, as described previously13.Dry
matter yield of whole-plant biomass (t/ha), and female flowering (d) were measured
per field plot. Fat and sugar contents (%) were measured in 1 kg of harvested plant
material from each plot using calibrated near-infrared spectroscopy (NIRS33).

Phenotypic analysis. Mass intensities were scaled by the median of each sample.
Linear mixed model analysis was used to obtain least squares means of lipid levels and
GCA values. The model for the lipids was G 1 M 1 M?R 1 M?R?A 1 M?R?A?B,
with the following effects: genotype (G), trial of maturity group (M), field replication
(R), batch (A), and block (B). Random effects are underlined. To achieve
homoscedasticity of the model residuals for the lipids, the flexible Box-Cox power
transformation was applied. For each lipid, the optimum transformation parameter
was determined using the maximum likelihood method described previously34.
Repeatabilities were calculated as w2 5 s2

g/(s2
g 1 s2

e/2) where s2
g is the genotypic

variance estimated by REML, by setting factor G as random and s2
e is the residual

variance. Following established analysis, the testcross genotype was decomposed as G
5 GCA 1 T 1 SCA, where GCA is the main effect of the line, T is the main effect of
the tester genotype, and SCA (specific combining ability) is the line 3 tester
interaction. Including an effect for the environment (E), defined as the year 3

location combination, the final model for estimating GCA was therefore GCA 1 T 1

SCA 1 GCA?E 1 T?E 1 SCA?E 1 E 1 E?M 1 E?M?R 1 E?M?R?B.

Genome-wide association mapping. The GWA mapping with plant populations is
often hampered by population structure and cryptic relatedness, resulting in spurious
associations35. However, powerful techniques are available to decouple genetic
associations from confounding factors36. We used a mixed model approach which
corrects simultaneously for the main directions of population substructure by
regression on the first ten principal components (Q10), as well as pairwise relatedness
by using an allele-sharing kinship matrix K as covariance matrix for the random

genotype effects37. For an appropriate significance threshold for SNP–trait
associations, we controlled the false discovery rate (FDR), as previously suggested for
GWA mapping38. Genome-wide inflation factors (l) were calculated as the regression
coefficient in the QQ plot with a zero intercept. The GWA models were fitted using
the maximum likelihood implementation in the function polygenic of GenABEL39. P-
values were obtained with the 1 degree of freedom fast association score test–based
analysis (FASTA), implemented in the function mmscore of GenABEL. P-values were
transformed to q-values and regarded significant if smaller than 0.025 to control for a
false discovery rate (FDR) of 2.5%. The proportion of genetic variance explained by a
certain SNP was calculated as r 5 R2

LR/w2 using the likelihood-ratio (LR) statistic
R2

LR 5 1 – exp(–LR/n) with LR 5 2 3 log(LSNP/L0), where L0 is the maximum
likelihood of the baseline Q10 1 K model without considering the SNP, LSNP is the
maximum likelihood of the full Q10 1 K model including the SNP as cofactor, and n is
the number of genotypes40.

Whole-lipidome prediction of GCA. We applied ridge regression BLUP (RR-
BLUP41), for prediction of GCA values using all lipids as predictor variables. The
model makes two assumptions: (i) normally distributed predictor effects, and (ii)
normally distributed errors. Validation was performed using a 20 times repeated 5-
fold cross validation. The data set was divided into five disjoint subsets of genotypes,
where one subset was left out for validation. The other four subsets were used as the
training population to estimate the model parameters for predicting the observations
of the left-out genotypes in the validation population. In each of the five rounds, the
Pearson correlation between observed and predicted GCA values was calculated.
Twenty different randomizations for assigning the genotypes to five different subsets
were used to yield 100 cross-validation runs. The predictive ability was then
calculated as the Pearson correlation between the observed and predicted GCA values
averaged over all cross-validation runs.
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36. Sillanpää, M. J. Overview of techniques to account for confounding due to
population stratification and cryptic relatedness in genomic data association
analyses. Heredity 106, 511–519 (2011).

37. Yu, J. et al. A unified mixed-model method for association mapping that accounts
for multiple levels of relatedness. Nat. Genet. 38, 203–208 (2006).

38. Storey, J. D. & Tibshirani, R. Statistical significance for genomewide studies. Proc.
Natl. Acad. Sci. USA. 100, 9440–9445 (2003).

39. Aulchenko, Y. S., Ripke, S., Isaacs, A. & van Duijn, C. M. GenABEL: an R library
for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007).

40. Sun, G. et al. Variation explained in mixed-model association mapping. Heredity
105, 333–340 (2010).

41. Piepho, H. P. Ridge regression and extensions for genomewide selection in maize.
Crop Sci. 49, 1165–1176 (2009).

Acknowledgements
We thank the staff of the experimental research stations of the University of Hohenheim for
assistance in conducting the field experiments, and Aenne Eckardt and Gudrun Wolter for
sample preparation. This research was supported by the Max Planck Society and the
German Federal Ministry of Education and Research (BMBF) within the projects
GABI-Energy (grant 0315045) and OPTIMAL (grant 03159580).

Author contributions
C.R. performed leaf sampling, phenotypic analysis, genome-wide association and
whole-lipidome prediction. C.R. and Y.B. carried out the annotation of the candidate genes.
M.M. and Y.B. performed lipid profiling and M.M. accomplished the chemical annotation.
C.R. and Y.B. wrote the manuscript. L.W. and A.E.M. designed the experiments and
supervised the research.

Additional information
Supplementary information accompanies this paper at http://www.nature.com/
scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Riedelsheimer, C., Brotman, Y., Méret, M., Melchinger, A.E. &
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