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ABSTRACT: The BioChemical Library (BCL) is an academic open-source cheminformatics
toolkit comprising ligand-based virtual high-throughput screening (vHTS) tools such as
quantitative structure−activity/property relationship (QSAR/QSPR) modeling, small molecule
flexible alignment, small molecule conformer generation, and more. Here, we expand the
capabilities of the BCL to include structure-based virtual screening. We introduce two new score
functions, BCL-AffinityNet and BCL-DockANNScore, based on novel distance-dependent signed
protein−ligand atomic property correlations. Both metrics are conventional feed-forward dropout
neural networks trained on the new descriptors. We demonstrate that BCL-AffinityNet is one of
the top performing score functions on the comparative assessment of score functions 2016 affinity
prediction and affinity ranking tasks. We also demonstrate that BCL-AffinityNet performs well on
the CSAR-NRC HiQ I and II test sets. Furthermore, we demonstrate that BCL-DockANNScore is
competitive with multiple state-of-the-art methods on the docking power and screening power
tasks. Finally, we show how our models can be decomposed into human-interpretable
pharmacophore maps to aid in hit/lead optimization. Altogether, our results expand the utility of the BCL for structure-based
scoring to aid small molecule discovery and design. BCL-AffinityNet, BCL-DockANNScore, and the pharmacophore mapping
application, as well as the remainder of the BCL cheminformatics toolkit, are freely available with an academic license at the BCL
Commons site hosted on http://meilerlab.org/.

■ INTRODUCTION
Computer-aided drug discovery (CADD) is a broad category
of methods that can be employed to increase the efficiency of
the drug discovery process. Broadly, CADD methods can be
subdivided into two categories: ligand-based (LB) and
structure-based (SB). LB methods predominantly employ
similarity metrics to compare ligands with known biological
activity or chemical attributes to a library of prospective small
molecules. Among the most widely used LB methods are
quantitative structure−activity relationship (QSAR) models,
which relate quantitative chemical descriptors of molecules to
known biological activities.1,2 QSAR models lend themselves
to supervised machine learning methods, such as artificial
neural networks (ANNs) and random forest (RF).3−8 Indeed,
over the last two decades, we have demonstrated the efficacy of
ANNs in LB classification tasks compared to other methods,
such as support vector machines, and employed them to
identify multiple G-protein-coupled receptor (GPCR) allos-
teric modulators.3,9−12 At that time, we have contributed to
multiple aspects of QSAR method development, including
early efforts to expedite model training with graphics
processing unit (GPU) programming,13 chemical descriptor,
and toolkit development,14−16 improving QSAR ANN
architectures with dropout,5 and dataset assembly for
community benchmarking.17,18 We have accomplished this
largely with the development of the BioChemical Library
(BCL), a primarily ligand-based academic open-source

cheminformatics toolkit. LB methods can often rank
compounds many orders of magnitude faster than SB methods.
Despite being very rapid and easily deployed on large
databases for virtual high-throughput screening (vHTS),
ligand-based methods have inherent limitations. Most notably,
LB methods make predictions in the absence of binding pocket
information. As a result, predictions made from LB methods
must be target-specific, and generating LB models for a given
target, especially QSAR models, may require a large amount of
model training data.1−8 Thus, there is considerable interest in
developing target agnostic, rapid SB methods for vHTS.
SB methods provide information about small molecule

interactions with the binding pocket. Critically, this should
allow SB methods to be target agnostic and provide chemically
meaningful insight with which to guide hit optimization.
Unfortunately, the most accurate SB methods come with a
computational cost prohibitive for vHTS. Accurate prediction
of small molecule binding affinities to target proteins is a key
challenge in SB CADD. Structure-based alchemical free energy
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approaches, such as free energy perturbation (FEP) and
thermodynamic integration (TI), are widely considered to be
the most accurate.19−21 Other approaches, such as molecular
mechanics Poisson−Boltzmann or generalized-Born surface
area (MM/PB(GB)SA), or protein−ligand docking semi-
empirical scoring functions, can also provide reliable relative
binding free energies, but with overall performance seemingly
being more system dependent.22−25 Faster but less accurate
docking score functions are being increasingly scaled to
medium- and high-throughput virtual screening.26,27

In the last decade, many machine learning approaches have
been developed to increase the speed and accuracy of SB
virtual screening approaches. As early as 2010, random forest
(RF) rescoring of docked poses demonstrated that machine
learning algorithms could provide rapid and competitive
prediction of protein−ligand binding affinities (RF-Score).28

A variation on RF as a modeling tool for protein−ligand
binding affinity prediction is ΔVinaRF20, which uses random
forest (RF) to predict an error correction term for the
AutoDock Vina docking score function.29 More recently, deep
learning with convolutional neural networks (CNNs) has been
widely investigated to predict binding affinities. For example,
DeepVS is a CNN that attempts to generalize binding mode
information by encoding local atomic neighborhoods around
each selected ligand atom using simple descriptors (i.e., atom
types, charges, distances, and interacting amino acid
identity).30 Multiple grid-based CNNs have also been
developed, such as KDEEP and a CNN, by Ragoza et al.,
which treat protein−ligand complexes as three-dimensional
(3D) images colored by specific atom type and pharmaco-
phore properties.31,32 AtomNet is another grid-based CNN
that also includes features derived from protein−ligand
interaction fingerprints.33

It is well known that cheminformatics machine learning
algorithms can be strongly limited in their domain of
applicability by the chosen training set and descriptors.34−40

There is concern that some newer CNN techniques
demonstrating exceptional performance may suffer from the
lack of generalizability owing to the dataset and training
biases.31,41 Even in cases where machine learning models make
accurate predictions, the chemical basis of these predictions is
not easily interpreted without substantial input sensitivity and
feature analysis. This infamously gives rise to the “black box”
problem of machine learning algorithms, especially deep neural
networks (DNNs).
Finally, a major motivation for the current project is to

incorporate a modular and customizable SB score function into
the BCL for use in the ongoing development of SB design
algorithms. Currently, the BCL is only able to support LB
design algorithms. Ultimately, we anticipate that increasing the
capabilities of the BCL to perform both LB and SB design
tasks will make it a valuable companion to other academic
molecular modeling software projects, such as the Rosetta42

macromolecular modeling and design software suite.
To address these issues, we have designed a novel SB

protein−ligand binding affinity and pose prediction model
based on distance-dependent signed atom property protein−
ligand correlations (PLCs). Instead of encoding specific
protein and ligand properties, our method encodes the
protein−ligand interaction feature space. This is analogous to
the formation of statistical pair potentials, except that here we
do not formally provide any constraints on the function to be
approximated. We demonstrate that fully connected feed-

forward neural networks trained with our new descriptors are
competitive with the existing state-of-the-art machine learning
methods and docking methods at protein−ligand binding
affinity prediction, pose prediction, and virtual screening
power. Moreover, we explicitly demonstrate that the perform-
ance of our models is not dependent on exploiting dataset bias.
Finally, we show how our models can be rapidly decomposed
into human-interpretable pharmacophore maps. These phar-
macophore maps allow users to visualize the atoms/
substructures of their molecules that drive the activity
prediction, as well as map predicted or known relative binding
free energy changes across molecule ensembles to specific
substructures. This will be the first SB scoring tool available in
the BCL, and the pharmacophore mapping tool is fully
compatible with the LB QSAR methods currently imple-
mented. Together, we believe that these tools improve the
utility of the BCL for SB hit identification and lead to
optimization in drug discovery.
The new descriptors, models, and pharmacophore mapping

application will be available in the upcoming BCL version 4.1
release, an academic open-source software package for
cheminformatics written in the C++ programming language.
It is our hope that our new method will be used in conjunction
with other advancements in machine learning-based QSAR/
QSPR to continue to improve the efficiency of drug discovery.

■ RESULTS
Development of a Pose-Dependent Protein−Ligand

Property Correlation Descriptor. Currently, the top
performing deep learning scoring algorithms that predict
binding affinities from protein−ligand complexes are CNNs
that encode neighboring ligands and receptor atoms spatially
and/or chemically (e.g., hydrogen bond donor/acceptor
heuristics).31,32 One critique of these CNNs is that test-set
performance can be attributed to learning ligand-specific
features and not the protein−ligand interface features.41 In
other words, the neural network can perform well on the tests
simply by learning the biases in the ligand datasets. To avoid
any such potential limitations here, we developed a pose-
dependent protein−ligand interaction descriptor based on
sign-aware 3D autocorrelations (3DAs). This descriptor can be
likened to a potential of mean force profile in which the
collective variables are the pairwise interatomic distances
between the protein and ligand atoms for specific chemical
properties/heuristics.

Small Molecule Chemical Property Autocorrelations.
Consider a property-weighted 3D autocorrelation (3DA)
function for a single small molecule. An atom-based property
allows the 3DA to represent the spatial distribution of
properties of interest

∑ ∑ δ= ≤ < β−r r r r r PP3DA( , ) ( ) e
j

N

i

N

i j i j
r

a b a , b
i j,

2

(1)

where ra and rb are the boundaries of the current distance
interval, N is the total number of atoms in the molecule, ri,j is
the distance between the two atoms being considered, δ is the
Kronecker delta, β is a smoothing parameter referred to as
“temperature”,15,43 and P is the property computed for each
atom. 3DAs computed for signed properties (e.g., partial
charge) contain, for each distance interval, three values
corresponding to product sums of each of the three possible
sign pairings (−/−, +/+, −/+).14
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Recasting Property Space into Protein−Ligand
Interaction Distance Bins. Instead of corresponding to
intramolecular atomic distances, the distance bins now
correspond to intermolecular protein−ligand interatomic
distances. The property correlation is between each atom in
the ligand and all atoms in the receptor within a specified
radius (Figure 1)

∑ ∑ δ= ≤ < β−r r r r r PPPLC( , ) ( ) e
l
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lig prot

,
2
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where ra and rb are the boundaries of the current protein−
ligand interatomic distance interval, Nlig and Nprot are the total
number of atoms in the ligand and receptor, respectively, rl,p is
the distance between the current protein−ligand atom pair, δ is
the Kronecker delta, β is the temperature, and Pl and Pp are the
properties computed for ligand and receptor atoms l and p,
respectively. As with 3DA in eq 1, protein−ligand correlation
(PLC) descriptors distinguish signed pairs but can also
optionally include an additional bin (−−/++/−+/+−) to
account for opposite sign pairings between the protein and the
ligand (Figure 1A). This can be useful if the properties
between which the correlations are being taken are not
identical or if the model being built is leveraging pre-existing

knowledge about the chemical makeup of the system in the
study.
For example, consider the descriptor “HBondDonorTer-

nary”. This descriptor returns a 1 if an atom is a hydrogen
bond donor, −1 if it is a hydrogen bond acceptor, and 0
otherwise (Table S1). One could choose to differentiate
hydrogen bond donor/acceptor pairs between the protein and
the ligand (e.g., asymmetric: −+/+−) or to group all opposite
sign pairs together (symmetric −/+). Sign pair discrimination
is illustrated in Figure 1A for a property that tracks the
protein−ligand directionality of opposite sign pairings. We
empirically chose a total distance of 7.0 Å discretized at 0.50 Å
intervals, resulting in either 42 (symmetric) or 56 (asym-
metric) values per property (see the subsection on feature
parameterization in Methods and the Supporting Information).

Representing Protein−Ligand Interactions with
Property Correlation Descriptors. PLC descriptors (eq 2)
encode interactions between protein and ligand atomic atoms
as represented by a variety of atomic properties: partial charge,
electronegativity, polarizability, hydrophobicity, hydrogen
bond donors and acceptors, aromatic and generic ring
membership, heavy and light atoms (Table S1). These atomic
features are a superset of those we used previously for
QSAR,5,14 and are identical to those we used previously for the
superimposition of similar molecules.44

Figure 1. Schematic of a pose-dependent protein−ligand descriptor. (A) Schematic representation of pose-dependent protein−ligand interaction
feature space. (B) Surface representation of discoidin domain receptor 1 (DDR1) kinase binding pocket heavy atoms within 7.0 Å of select atoms
within dasatinib. The surface representation is colored by the distance to the selected atom. Dasatinib shown in stick configuration colored by
element type with the selected atom is indicated by a dot sphere.
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To mitigate feature redundancy, we summed feature
interactions that were nominally equivalent. For example,
consider the PLC descriptor that represents the signed
correlation between atomic partial charges in receptor and
ligand atoms: 3DAPairRS050(Atom_SigmaCharge) (Tables
S2 and S3). In this descriptor, we summed −/+ (ligand
negative charge, protein positive charge) with +/− (ligand
positive charge, protein negative charge) interactions under the
notion that these are equivalently favorable pairings. We took a
similar approach for hydrogen bond donation, hydrophobic
interactions, and heavy atom/hydrogen atom discrimination.
Some descriptors, such as polarizability and electronegativity,
are strictly positive valued, and therefore do not require
binning by sign pairs (Tables S2 and S3).
While each of the previously mentioned descriptors can be

considered symmetric in that we are correlating the same
property for both the receptor and the ligand (e.g., partial
charge), interactions can also be described by complementary
interactions between dissimilar chemical properties. For
example, interactions between aromatic ring systems and
polar vs hydrophobic atoms. To create a property that can
describe this interaction, we need to utilize Atom_Hydropho-
bicTernary, which is an atom property that encodes hydro-
phobic atoms as +1, and polar atoms as −1. To better
distinguish highly polar from less polar atoms, we multiply
Atom_HydrophobicTernary by polarizability. We then encode
aromatic−polar, aromatic−hydrophobic interactions with the
PLC descr ip tor , “3DAPai rRSAsym050(Mul t ip ly -
(Atom_HydrophobicTernary, Atom_Polarizability), Atom_-
IsInAromaticRingTernary)”. In this descriptor, each distance
bin is further discretized into −/− (ligand polar atom
polarizability with a nonaromatic receptor atom), +/+ (ligand
hydrophobic atom polarizability with an aromatic receptor
atom), −/+ (ligand polar atom polarizability with an aromatic
receptor atom), and +/− (ligand hydrophobic atom polar-
izability with a nonaromatic receptor atom) (Tables S2 and
S3). An inverted version of this descriptor, in which
hydrophobicity is with respect to the receptor and aromaticity
to the ligand, is also employed here.
With these features, we trained two neural networks. BCL-

AffinityNet is a “deep” single-task neural network (2 hidden
layers, 512 neurons in the first hidden layer, and 32 neurons in
the second layer) to directly predict log-scaled protein−ligand

binding affinity values. BCL-DockANNScore is a multitasking
shallow neural network (1 hidden layer with 32 neurons) that
classifies binding poses as less-or-equal to 1.0, 2.0, 3.0, 5.0, or
8.0 Å from the native (cocrystallized) binding mode. Both of
these models utilize only PLC descriptors (eq 2), with BCL-
DockANNScore, including an additional PLC descriptor that
discretizes hydrogen bond donor/receiver pair angles (Table
S3; see the Supporting Information for details).
Finally, we note that we did not perform a deep exploration

of possible base chemical descriptors and there are likely many
additional features that could be effective (e.g., explicit
consideration of π-interactions, σ-hole interactions, transition
metal properties, solvation energies, etc.). Additionally, we did
not perform feature selection to optimize the performance of
our model on the benchmark training sets to avoid potentially
over-optimizing the models for the training data. For a detailed
evaluation of the importance of each feature in BCL-
AffinityNet and BCL-DockANNScore, please see the top 20
features by model input sensitivity (Tables S4 and S5) and
decomposition of each descriptor into the average input
sensitivity per sign pair (Figures S1−S8) in the Supporting
Information.

Scoring Power Evaluation of BCL-AffinityNet. We
trained BCL-AffinityNet on protein−ligand complexes from
the PDBbind v.2016 refined set and all general set protein−
ligand (small molecule) complexes for which binding constants
were available. Protein−ligand pairs comprising the coreset
(285 unique test-set complexes) were entirely excluded from
training. BCL-AffinityNet was trained with descriptors of the
form eq 2. See the Supporting Information for a sample feature
code object file and command lines to generate the model.
We first tested the performance of BCL-AffinityNet on the

scoring power task described in the comparative assessment of
score functions 2016 update (CASF2016). This task evaluates
affinity prediction across the PDBbind v.2016 coreset
comprised of 285 protein−ligand pairs on 57 targets (5
small molecules per target) by measuring the Pearson
correlation coefficient (R) between the predicted and
experimental values. It has previously been noted that binding
affinities in this task correlate strongly with both the fraction of
buried solvent accessible surface area (ΔSAS, R = 0.63)
(Figure 2A)22 and several scalar ligand descriptors, including
molecular weight (MW, R = 0.50), topological polar surface

Figure 2. Scoring power evaluation of BCL-AffinityNet. (A) Comparison of BCL-AffinityNet scoring power to other methods from the CASF2016
benchmark by Su et al.22 Error bars indicate the 90% confidence interval. (B) Linear regression of experimental vs predicted pKd values in the
CASF2016 coreset.
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area (TPSA, R = 0.20), log P (R = 0.32), and polarizability (R
= 0.52) (Table S1). An important measure of success is
whether or not the affinity prediction method is capable of
performing better than these simple metrics that are unaware
of specific protein−ligand interactions.
BCL-AffinityNet is among the best algorithms on the

scoring power task (R = 0.84) (Figure 2A,B). ΔVinaRF20, which
is a protein−ligand interaction score function that uses a
random forest (RF) algorithm to predict an error correction
term on the AutoDock Vina score, performed similarly on the
original CASF2016 report (Figure 2A).22 However, as reported
previously,22 the training set for ΔVinaRF20 includes 140 of the
coreset test complexes. Lu and colleagues re-evaluated the
scoring power of ΔVinaRF20 after retraining it without any of
the coreset complexes and found that it is still performed
better than ΔSAS but with worse scoring power than originally
reported (R = 0.73).45

BCL-AffinityNet performs competitively with other machine
learning models, such as the grid-based CNN KDEEP (R = 0.82)
and RF-Score (R = 0.80) (Table S6). We note that KDEEP was
evaluated on the 290 molecule version of the PDBbind coreset,
not the canonical 285 molecule set. Moreover, in the absence
of the underlying distributions, it is unclear if these results are
statistically different; however, the effect sizes are similar.
Explicit Assessment of Dataset Bias on BCL-Affinity-

Net Scoring Power Performance. It is increasingly well
documented that strong machine learning model performance
on QSAR tasks can be the result of dataset bias.41,46,47 Indeed,
Yang et al. found that atomic CNNs (ACNNs) trained solely
on ligand or receptor pocket features performed just as well as
ACNNs trained on protein−ligand complexes,46 suggesting
that the model was unable to leverage features relating to the
protein−ligand interactions in a meaningful way. Therefore, we
sought to determine the extent to which dataset biases may be
inflating BCL-AffinityNet performance.
First, we trained a BCL-AffinityNet Y-scramble model, in

which the result labels were shuffled between training
examples. The Y-scramble model is a negative control, and
as expected, we find virtually no correlation between predicted
and experimental results on the coreset with this model
(Figure S9).

Next, we generated LB and pocket-based QSAR models with
the same architecture as BCL-AffinityNet. These models were
trained with the 3DA descriptor equivalent of the PLC
features. In an ideal dataset, ligand and protein pocket controls
would have near-zero correlation to experimental results;
however, consistent with the findings of Yang et al.,46 the LB
and pocket-based QSAR models each had correlation
coefficients greater than 0.50 at 0.72 and 0.61, respectively
(Figure S9).
To assess the impact of dataset bias on our PLC model

performance for out-of-class predictions, we generated three
new leave-class-out test-set splits based on the ligand, protein
pocket, or combined ligand and protein pocket similarity to the
PDBbind v.2016 coreset. Specifically, we generated a k-means
(k = 75) applicability domain (AD) model from the 3DAs of
the ligands, protein pockets, or combination of ligands and
protein pockets of the PDBbind v.2016 coreset. Using each of
these AD models, we removed training samples that were
further from their nearest Kohonen map node than the furthest
point of the PDBbind v.2016 coreset was from the AD model.
Intuitively, the new test sets thus include only points that are
outside the nominal descriptor space given by the PDBbind
v.2016 coreset for ligands, protein pockets, or combination
ligand−protein pockets. This has the effect of making the
training set feature space more representative of the PDBbind
v.2016 coreset feature space while simultaneously creating new
test sets that are outside PDBbind v.2016 coreset feature space.
This resulted in the creation of a LB AD test set (n = 995),

pocket AD test set (n = 379), and combined AD test set (n =
1377) (see Methods for additional details). We hypothesized
that the LB QSAR model would perform poorly on the LB AD
test set, that the pocket-based QSAR model would perform
poorly on the pocket AD test, and that both models would
perform poorly on the combined AD test set. We further
hypothesized that if models trained on PLC descriptors are
truly generalizable SB score functions, then their performance
on all three test splits ought not to be significantly worse than
their training random-split cross-validation metrics.
We found that the LB QSAR models performed worse on

the LB AD test set (R = 0.28) than on the random-split
training cross-validation sets (R = 0.67) (Figure S10).

Figure 3. Performance evaluation on the combined AD test set. A total of 1377 training samples were excluded from the initial training set of 7568
samples (see Methods for details). The remaining 6191 training samples were used to train BCL-AffinityNet (i.e., a single-task regression DNN
with PLC features), a signed 3DA LB QSAR model, or a signed 3DA pocket-based QSAR model. The training was completed with fivefold
random-split cross-validation. Columns and error bars represent the mean and standard deviation of normalized mean absolute error (NMAE)
(blue) or Pearson correlation coefficient (red) across either the fivefold random-split cross-validations (training) or fivefold random splits of the
combined AD test set (testing).

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01001
J. Chem. Inf. Model. 2021, 61, 603−620

607

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01001/suppl_file/ci0c01001_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01001/suppl_file/ci0c01001_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01001/suppl_file/ci0c01001_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01001/suppl_file/ci0c01001_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01001/suppl_file/ci0c01001_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01001?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01001?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01001?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01001?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://dx.doi.org/10.1021/acs.jcim.0c01001?ref=pdf


Similarly, the pocket-based QSAR model performed worse on
the pocket AD test set (R = 0.33) than on the training splits (R
= 0.63) (Figure S11). We also note a reduction in the
performance of the pocket-based QSAR model on the LB AD
test set relative to training (R = 0.51 vs 0.64, respectively), as
well as a reduction in the performance of the LB QSAR model

on the pocket AD test set relative to training (R = 0.54 vs 0.65,
respectively) (Figures S10 and S11). On the combined AD test
set, we observe the worst performance of the LB (R = 0.28)
and pocket-based (R = 0.15) QSAR models (Figure 3).
In contrast, we observed that BCL-AffinityNet, when

retrained to exclude each AD test set, consistently performs

Table 1. Performance Evaluation of Models Trained on PDBbind Refined Version 2016 Dataset on Unique Complexes in the
CSAR-NRC HiQ Test Sets. Gray shading indicates features/methods developed in this manuscript. Green shading indicates
scalar properties employed a controls. Blue shading indicates comparisons to previously reported results with other software.c

aAs reported in Jimeńez et al.32 bNot reported. cResults reported as Pearson correlation coefficient (R), Spearman rank correlation coefficient (ρ),
and root mean square error (RMSE). Note that the Spearman rank correlation here is across all targets in the coreset, while the “ranking power”
metric is based on within-target ranking of molecule affinities.

Table 2. Performance Evaluation of Models Trained on PDBbind Refined Version 2016 Dataset Sans CSAR-NRC HiQ
Complexes on All Complexes in the CSAR-NRC HiQ Test Sets. Gray shading indicates features/methods developed in this
manuscript. Green shading indicates scalar properties employed a controls.a

aResults reported as Pearson correlation coefficient (R), Spearman rank correlation coefficient (ρ), and root mean square error (RMSE). Note that
the Spearman rank correlation here is across all targets in the coreset, while the “ranking power” metric is based on within-target ranking of
molecule affinities.
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well (R = 0.72, 0.75, and 0.72 for the LB, pocket-based, and
combined AD test sets, respectively) despite the reduced
training set size and coverage (Figures 3, S10, and S11).
To evaluate whether PLC descriptors are effective with other

machine learning model types, we have utilized WEKA48 to
train a random forest version of BCL-AffinityNet (termed
AffinityRF for ease) for evaluation on the PDBbind v.2016
coreset and the combined AD test split. AffinityRF achieves a
good correlation (R = 0.79 and 0.70, respectively) on both
tasks, suggesting that PLC descriptors may be suitable in
multiple machine learning paradigms (Figure S12). Altogether,
these results suggest that the PLC descriptors encode
generalized representations of protein−ligand interactions.
Performance Evaluation on Subsets of the CSAR-NRC

HiQ Test Sets. As additional independent tests, we evaluated
the performance of our models on the CSAR-NRC HiQ test
sets. For the purposes of a head-to-head comparison with two
of the leading machine learning methods in the field, KDEEP
and RF-Score, we first compared our model to the 55 and 49
compounds of the CSAR-NRC HiQ test sets 1 and 2,
respectively, which were previously evaluated for KDEEP and
RF-Score in Jimeńez et al.32 For this evaluation, we retrained
our models with the PDBbind set as described previously, but
we also excluded any of the 55 or 49 compounds found in the
CSAR test set from training.
RF-Score performed the best on set 1 (R = 0.78, root mean

square error (RMSE) = 1.99) with KDEEP (R = 0.72, RMSE =
2.09) and BCL-AffinityNet (R = 0.72, ρ = 0.77, RMSE = 2.02)
performing similarly to one another (Table 1). In contrast,
BCL-AffinityNet is the top performing model (R = 0.85, ρ =
0.82, RMSE = 1.37) on set 2, followed by the RF-Score (R =
0.78, RMSE = 1.66) and KDEEP (R = 0.65, RMSE = 1.92)
(Table 1).
Next, in the interest of obtaining a more complete

benchmark and facilitating future comparisons, we extended
our evaluation of the CSAR-NRC HiQ test sets to the full
molecule lists, which included 176 and 167 molecules in sets 1
and 2, respectively. Again, we retrained our models on the
PDBbind set, excluding now either the 176 or 167 compounds
in test set 1 or 2 in addition to the remaining molecules in the
285 compounds from the coreset. Performance of BCL-
AffinityNet on set 1 (R = 0.75, ρ = 0.75, RMSE = 1.32) is very
similar to performance on set 2 (R = 0.74, ρ = 0.73, RMSE =
1.36) (Table 2).
A summary of BCL-AffinityNet’s scoring power performance

on the PDBbind v.2016 coreset, the CSAR-NRC HiQ I and II
subsets from Jimeńez et al.,32 and the full CSAR-NRC HiQ I
and II sets are shown in Figure S13.
Ranking Power Performance Evaluation. The

CASF2016 ranking power evaluation analyzes the ability of
score functions to rank ligands targeting the same receptor.
Among the methods originally compared in Su et al.,22 BCL-
AffinityNet (ρ = 0.69) places just after ΔVinaRF20 (ρ = 0.75)
(Figure 4). Again taking into consideration Lu et al. retraining
ΔVinaRF20 to exclude the 140 overlapped test-set compounds,
ΔVinaRF20 achieves a ranking power ρ = 0.63 compared to
ΔVinaXGB, which achieves a ranking power of ρ = 0.65.45

Altogether results on the scoring power and ranking power
tests suggest that BCL-AffinityNet is competitive with state-of-
the-art SB virtual screening methods for binding affinity
prediction and affinity ranking.
Docking Power Performance Evaluation. Despite its

success in the scoring and ranking power evaluations, BCL-

AffinityNet is not ideally suited for decoy discrimination. This
is because the training set for BCL-AffinityNet is composed
entirely of native protein−ligand complexes. Thus, while BCL-
AffinityNet could likely be used with an AD model generated
in the same feature space to exclude clashed structures (by
virtue of the lack of occupancy in the shortest distance bins,

Figure 4. Ranking power evaluation of BCL-AffinityNet. Comparison
of BCL-AffinityNet ranking power to other methods from the
CASF2016 benchmark by Su et al.22 with (A) Spearman rank
correlation coefficient, (B) Kendall rank correlation coefficient, and
(C) predictive index. Error bars indicate the 90% confidence interval.
Green bars indicate BCL-AffinityNet.
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Figure 1A), it is unlikely to be able to discriminate plausible
docking poses.
To address this limitation, we built a shallow multitasking

ANN trained with the same PLC descriptors (eq 2) as BCL-
AffinityNet, with the addition of the hydrogen bond angle
descriptor described above (see the Supporting Information
for a sample code object file). We reasoned that in
differentiating properly docked poses, it would be insufficient
to consider only hydrogen bond donor/acceptor distances. In
our experience, we have also found that separating a categorical
prediction task (i.e., is this pose most likely to be 1.0 Å from
the native pose, 2.0, or 5.0 Å) into separate classification tasks
for each category generally does not worsen model perform-
ance but may improve it. Thus, we nominally organized the
output layer as five correlated classification tasks: determining
whether a pose was less than 1.0, 2.0, 3.0, 5.0, and 8.0 Å from
the native pose.
We trained this ANN on the PDBbind v.2016 refined set,

excluding all coreset protein−ligand complexes. For each
complex in the training set, 250 additional decoys were
generated with RosettaLigand (see Methods for details). The

final model score, which we refer to as BCL-DockANNScore,
is the product of the classification probability of a pose being
less than 2.0 Å from the native pose (referred to elsewhere as a
probability calibration curve49,50) and the BCL-AffinityNet
affinity prediction score for that pose.
BCL-DockANNScore performs reasonably well on the

docking power benchmark with success rates of 0.81, 0.91,
and 0.95 for native pose recovery at a 2.0 Å threshold for poses
within the best scoring 1, 2, and 3 poses, respectively (Figure
5). When native poses are excluded, BCL-DockANNScore
success rates reduce by ∼5%, consistent with performance
reductions in multiple other methods (Figure S15). Binding
funnel analysis of BCL-DockANNScore demonstrates good
Spearman rank correlation coefficients at wide RMSD ranges
but performs less well in the 0−2.0 Å range (Figure S16). This
suggests that one possible route to improve BCL-DockANN-
Score further is to provide additional training decoys within
the 0−2.0 Å range or additional high-resolution descriptors.
Overall, these results are especially encouraging because the

decoy poses for the docking power benchmark are generated
with a combination of GOLD51 version 5.2, SYBYL’s Surflex,52

Figure 5. Docking power evaluation of BCL-DockANNScore. Comparison of BCL-DockANNScore docking power to other methods from the
CASF2016 benchmark by Su et al.22 when recovering the native pose under 2.0 Å RMSD (A) within the top 3 poses, (B) within the top 2 poses,
and (C) within the top 1 poses. Error bars indicate the 90% confidence interval. Green indicates BCL-DockANNScore.
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and Chemical Computing Group’s Molecular Operating
Environment (MOE) docking algorithm,53 while our training
decoys were generated with RosettaLigand. It suggests that the
BCL-DockANNScore feature space (i.e., PLC descriptor
space) is not overly dependent on RosettaLigand poses and
can be used to build modular score functions.
Screening Power Performance Evaluation. We eval-

uated BCL-DockANNScore on the forward and reverse
screening tests. The forward screening power task evaluates
the ability of a score function to identify small molecule ligands
that bind to a target protein. The reverse screening power task
evaluates the ability of a score function to identify the protein
that most effectively binds a small molecule ligand (i.e., cross-
docking).22

Similar to the docking power evaluation, we find that BCL-
DockANNScore performs reasonably well, but not always
among the very best docking scores. On the forward screening
task, BCL-DockANNScore has a success rate of 0.18, 0.33, and
0.58 when identifying the ligand amongst the top 1, 5, and 10%
of candidates, respectfully (Figure 6A). This is competitive
with the best score functions at the 10% level; however,
performance at the 1% level is more mid-tier (ranking
alongside several of the MOE score functions, while the top
performers are from GOLD, Glide, and the AutoDock Vina
and derived methods). The overall enhancement factor at the
1% level is 8.5 (Figure 6C). In contrast, we find that the
performance on the reverse screening task is competitive even
with the top performers when identifying the top 1, 5, and 10%
of candidates, with success rates of 0.15, 0.24, and 0.39,
respectively (Figure 6B).

Generating Absolute Pharmacophore Maps. Finally,
one important consideration in the development of a SB score
function for the BCL was model interpretability. One of the
strengths of SB CADD is that the predicted changes in activity
can be attributed to specific interactions with the target. Neural
networks are, however, often negatively characterized as “black
boxes” because usually the function learned in the model
cannot be decomposed into human-interpretable parts.
Traditional docking scoring functions, such as RosettaLigand,
have the advantage that they can be decomposed into target
per-residue contributions to the overall predicted affinity. This
is important in drug discovery, where predictions need to be
actionable. Here, we demonstrate that BCL-AffinityNet
predictions can be decomposed into a map of atom
contributions to the predicted bioactivity.
We take two general approaches for constructing a

pharmacophore map: (1) absolute feature contributions
(Figure 7) and (2) relative feature contributions (Figure 8).
The first case generates a map on any individual molecule by
evaluating the contributions of specific atoms to the overall
predicted activity. This can be likened to evaluating model
input sensitivity, except in this case, the molecule of interest is
being perturbed instead of the weights connecting individual
neurons in the model.
To generate an absolute pharmacophore map of a given

molecule, we perturb the chemical structure by sequentially
removing individual atoms and closing the newly opened
valence(s) with hydrogen atoms. Afterward, we compute the
predicted affinity for each perturbed molecule with BCL-
AffinityNet. The predicted binding affinity of the perturbed
molecules is compared to that of the original molecule. The

Figure 6. Screening power evaluation of BCL-DockANNScore. Comparison of BCL-DockANNScore screening power to other methods from the
CASF2016 benchmark by Su et al.22 (A) Forward screening power evaluation success rates, (B) reverse screening power evaluation success rates,
(C) forward screening power evaluation enhancement factor (top 1%). Error bars indicate the 90% confidence interval. Green indicates BCL-
DockANNScore.
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differences in predicted activity between the perturbed and
original molecules are assigned to the corresponding atoms
(Figure 7).
Generating Relative Pharmacophore Maps. Relative

pharmacophore maps leverage structural similarity within a
congeneric ligand series to attribute predicted affinity differ-
ences to specific substructures. It has been shown that highly
accurate binding affinity estimates can be obtained with
alchemical free energy methods when reference structures with
experimentally determined binding affinities within a con-
generic ligand series are available.19−21

To generate a relative pharmacophore map between two
molecules, we first identify a common substructure (MCS) via
one of two methods: (1) identify the largest subgraph
isomorphism between the two molecules or (2) assign spatially
mutually matched atoms to be common to one another (the
first approach is more accurate and is the default approach).
Component substructures that graphically correspond to the
same common atoms are then iteratively removed, newly
opened valences are closed with hydrogen atoms, and the
perturbed molecules are scored with BCL-AffinityNet (Figure
8).
Thus, for each non-MCS substructure in the reference and

target molecules, there is a ΔΔGbind between the nonperturbed
and perturbed molecules. A final ΔΔΔGbind is computed for
each non-MCS substructure as the difference between the
reference and target perturbation ΔΔGbind values (Figure 8).
The ΔΔΔGbind values are mapped to the target molecule for
visualization.

Consider a series of type II tyrosine kinase inhibitors (TKIs)
of DDR1 kinase developed recently by Zhu et al.54 We
generated relative pharmacophore maps of compounds 7c, 7f,
and 7j to compound 7i54 (Figure 9A−D). We also modified
the compound 7 scaffold to include N → C mutations in the
hinge-binding region analogous to prior substitutions done by
Wang et al.55 in a previous DDR1 TKI series (Figure 9A,E−
G).
From the pharmacophore maps, we also compute relative

binding affinities of each molecule to compound 7i by
summing the ΔΔΔGbind values for each non-MCS component
in the target molecule: ΔΔGbind = ∑ΔΔΔGbind. In all
comparisons, the trifluoromethyl group is preferable to the
methyl. Relative binding affinity estimates of compounds 7c
and 7f from 7i are within 0.50 kcal/mol of experimental values
(−2.62 vs −2.82 kcal/mol and −2.32 vs −2.25 kcal/mol,
respectively) (Figure 9A,C,D). The ethyl in 7j is also correctly
estimated to improve binding affinity relative to methyl in 7i;
however, BCL-AffinityNet underestimates the extent of the
affinity improvement (−0.69 vs −2.25 kcal/mol) (Figure
9A,B). Conversion of both hinge-binding nitrogen atoms to
carbon atoms is strongly unfavorable even in the presence of
the trifluoromethyl group, consistent with prior SAR55 (Figure
9A,G). Thus, the relative pharmacophore maps provide
meaningful QSAR insights that can be readily visualized.
Relative pharmacophore maps can be generated with respect

to one or more reference input molecules (e.g., hit compounds
or scaffolds) or in a pairwise manner across a series of input
molecules. If more than one molecule is used as a reference,

Figure 7. Construction of absolute pharmacophore maps. (A) The target molecule, in this case, compound 7c from Zhu et al.,54 is first modeled in
complex with its target receptor using PLC descriptors and scored with BCL-AffinityNet. (B) Then, we iterate over each atom in the target
molecule and sequentially remove it from the molecule to create a perturbed molecule, X. (C) Perturbed molecules are saturated with hydrogen
atoms to close any open valences resulting from the perturbation, and then they are scored with BCL-AffinityNet. (D) Differences in predicted
binding affinity between the starting molecule and each perturbed molecule are mapped to the corresponding atoms of the starting structure. Here,
predictions are in units of kcal/mol at 300 K. The surface representation of atoms that contribute beneficially to BCL-AffinityNet’s binding affinity
prediction is blue, while atoms that worsen the prediction are in red. Atoms that contribute neutrally/negligibly are white.
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the final map for each target molecule indicates the favorability
of each molecule’s substitutions in comparison to the whole
ensemble. For example, command-line to generate a relative
pharmacophore map, see the Supporting Information.
Case Study on Guiding Chemical Modifications with

Pharmacophore Maps. To further illustrate this approach,
consider three congeneric dysiherbaine analogues in complex
with ionotropic glutamate receptor 5 (iGluR5). These
molecules differ from one another by small substitutions at
carbon atoms (1) and (2) (Figure 10A−C, first row). Each of
the analogues was scored with BCL-AffinityNet and ranked
correctly. For each of these three compounds, we generated
absolute and relative pharmacophore maps (see Methods for
command-line details).
First, we generated relative pharmacophore maps of the

dysiherbaine analogues in the pairwise manner described above
(Figure 8). The pharmacophore maps of dysiherbaine and
neodysiherbaine suggest that the methylamine and hydroxyl
substitutions, respectively, at position (2) provide a net
increase in affinity relative to the proton in 8,9-dideoxyneo-
dysiherbaine (Figure 10A−C, third row). Furthermore, the
pharmacophore maps predict that the methylamine modifica-
tion increases binding affinity more than the hydroxyl
substitution, in agreement with experimental observation
(Figure 10B,C, third row).
Interestingly, the relative pharmacophore map of neo-

dysiherbaine also predicts that the hydroxyl substitution at

position (2) is more important for binding affinity than the
hydroxyl substitution at position (1) (Figure 10B, third row).
Similarly, the methylamine at position (2) of dysiherbaine is
predicted to contribute more to the binding affinity than the
hydroxyl at position (1) (Figure 10C, third row). Finally, we
see from the absolute pharmacophore maps of all three
analogues that the two carboxylic acid groups contribute
favorably to the binding. Indeed, we see that their
contributions are predicted to be more important than the
substitutions at (1) and (2), supporting the notion that these
substituents are an important component of the conserved
scaffold (Figure 10A−C, fourth row).
Together with the DDR1 TKI congeneric series, these

comparisons illustrate how BCL-AffinityNet can yield
structure−activity insight. To our knowledge, this is the first
modern machine learning-based SB score function that is
readily accompanied by an interpretable decomposition
scheme. In principle, our pharmacophore mapping procedure
is compatible with any LB or SB machine learning score
function in the BCL. Thus, these results demonstrate a fast and
simple approach to generate interpretable pharmacophore
maps from BCL machine learning model predictions.

■ DISCUSSION

Here, we develop a novel machine learning-based score
function for vHTS SB scoring. Our approach centers around
the development of novel protein−ligand signed property

Figure 8. Construction of relative pharmacophore maps. Relative pharmacophore maps are generated from a target molecule and a reference
molecule. (A) Determine the MCS between the reference and target structure. (B) Identify the MCS atoms that connect to the corresponding non-
MCS substructures in both the reference and target molecules. Non-MCS atoms are circled in gray, and the corresponding substructures between
the reference and target share numerical labels (e.g., the reference molecule methyl circled in gray and the target molecule trifluoromethyl circled in
gray correspond structurally and are labeled “1”). For both the reference and target molecules, non-MCS substructures are independently removed.
The binding affinities of the reference, target, and perturbed molecules are estimated with BCL-AffinityNet. The ΔΔGbind between starting and
perturbed molecules is determined for both the reference and target. (C) For each corresponding non-MCS substructure, compute ΔΔΔGbind as
ΔΔΔGbind = ΔΔGbindTarget,X − ΔΔGbindReference,X, where X indicates the perturbed target or the reference molecule. (D) Map the ΔΔΔGbind values back
to the target molecule non-MCS substructures. The surface representation of atoms that contribute beneficially to BCL-AffinityNet’s binding
affinity prediction is blue, while atoms that worsen the prediction are in red. Atoms that contribute neutrally/negligibly are white.
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correlation descriptors. In addition to the new descriptors, our
models avoid the use of ligand-specific features to reduce the
risk of training dataset bias. The new models, BCL-AffinityNet
and BCL-DockANNScore, have been evaluated on current
best practice benchmarks and compared to other standard and
leading methods.
BCL-AffinityNet generally performs on par with or better

than currently available SB virtual screening scores in affinity
prediction and affinity ranking. BCL-DockANNScore, while
generally not as good as GOLD, Glide, or the AutoDock Vina
and derived methods at pose recovery or screening, performs
competitively with respect to all of the evaluated methods. We
therefore suggest that it may be a generally useful SB scoring
algorithm with especially strong affinity prediction. Indeed,
some of the best methods for docking and screening failed to
provide estimates for power scoring (e.g., statistics for
GlideScore-XP are based on 258/285 protein−ligand pairs,
GlideScore-SP 252/285, GoldScore@GOLD 244/285).22

Thus, when considering all of the tasks together (scoring
power, ranking power, docking power, and screening power),
the new SB scoring models in the BCL demonstrate the utility
of our novel signed property protein−ligand correlation
descriptors for SB CADD. Moreover, BCL-AffinityNet and
BCL-DockANNScore represent the first instantiation of SB
scoring in the BCL.
While a number of algorithms consider multiple ligand-

specific descriptors in their feature space alongside the
protein−ligand interaction features (e.g., AutoDock Vina
incorporates, e.g., the ligand length, number of hydrophobic

atoms, etc.; both ΔVinaRF20 and ΔVinaXGB include ligand-
specific pharmacophore features; ΔVinaXGB includes an
estimate of ligand conformational stability; KDEEP contains
ligand-specific voxels colored by pharmacophore fea-
tures),22,29,32,45 we made a conscious decision to avoid
inclusion of such features in BCL-AffinityNet and BCL-
DockANNScore. This was done to reduce the ligand bias of
the models and hopefully yield a more generalizable score
function. Nevertheless, efforts are underway to incorporate
other aspects of protein−ligand binding affinity other than just
interaction score terms into the BCL-AffinityNet and BCL-
DockANNScore in an unbiased manner. These include
improvements to both the neural network architectures
employed here as well as the incorporation of efficient metrics
for solvation energy, ligand conformational preference, and
entropy changes.
An important limitation of our work is that all models were

trained in the absence of explicit water molecules, metal ions,
and/or other cofactors. Others have recently demonstrated
that the incorporation of explicit water molecules can improve
model performance,45 and future improvements to our model
will incorporate these elements. As these updates are
introduced, we will also continue to retrain the models
leveraging the increasing availability of high-quality protein−
ligand co-crystal structures with Ki/Kd data.
Another limitation is the under-optimized protein−ligand

interaction feature space of the current models. The general-
izability of the PLC descriptors used to build BCL-AffinityNet
and BCL-DockANNScore should not be conflated with

Figure 9. Relative pharmacophore maps of a congeneric DDR1 inhibitor series. (A) Compound 7i is the reference molecule for the creation of the
pharmacophore maps. Compounds (B) 7j, (C) 7f, and (D) 7c from Zhu et al.54 Compounds with the N → C alteration at (F) the hinge-binding
nitrogen atom, (E) the symmetrically placed hinge-binding nitrogen rotated away from the hydrogen bond donor partner, and (G) both nitrogen
atom positions at the hinge-binding ring. Binding affinities in black text are predicted by BCL-AffinityNet, while green values are from Zhu et al.54

The surface representation of atoms that contribute beneficially to BCL-AffinityNet’s binding affinity prediction is blue, while atoms that worsen
the prediction are in red. Atoms that contribute neutrally/negligibly are white.
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completeness of the score function. By analogy, RosettaLigand
with the Rosetta Talaris2014 score function56 does not model
halogen σ-hole interactions with aromatic ring systems and is
thus unlikely to accurately determine the protein−ligand
binding affinities of systems with these interactions. In the
same way, BCL-AffinityNet and BCL-DockANNScore are
incomplete representations of protein−ligand interactions.
Further score function development will focus on expanding
the availability of training data as well as describing additional
salient chemical features.
Ongoing work in the Meiler Lab is focused on the

development of both LB and SB small molecule de novo
design and focused library design algorithms. A critical
motivator for the present work was the need for the BCL to
have a rapid and flexible SB score function that can be
deployed for design tasks where there is insufficient data to
build a reliable LB QSAR model. BCL-AffinityNet and BCL-
DockANNScore are fully integrated into the BCL descriptor
framework, allowing them to be called and mathematically
combined with a multitude of other features, including AD
scores, ligand descriptors, and more.
Another fundamental hurdle that we wanted to overcome

was the so-called “black box” problem. This problem arises
whenever the underlying feature space of the score function
cannot be decomposed into human-interpretable parts, and it
presents a major challenge when relying on complex score

functions for rational drug design. In this manuscript, we have
demonstrated a simple approach that can be employed with
any score function in the BCL (machine learning or not) to
convert predictions into all-atom pharmacophore maps. These
pharmacophore maps can be generated with respect to
underlying substructures or spatially matched atoms between
different molecules, or they can be generated for individual
molecules without a reference structure. We demonstrate how
this can be accomplished with the BCL-AffinityNet score
function for a series of congeneric DDR1 TKIs and
dysiherbaine analogues. The relative pharmacophore maps
provide an interpretable decomposition of affinity with respect
to scaffold modifications that can be used to guide further
molecule optimization. The absolute pharmacophore map
procedure can tell the user which atoms are most salient to
BCL-AffinityNet’s predictions. In addition to being a useful
tool for interpreting machine learning score functions in the
BCL, we anticipate that such pharmacophore maps will be
valuable in automated drug design tasks.
All of our models and applications for generating new

models are freely available with an academic license for the
BCL at http://meilerlab.org/. We hope that our descriptors
and models may be integrated with future machine learning
architecture development and descriptor optimization for the
continued advancement of drug discovery.

Figure 10. Pharmacophore maps of dysiherbaine analogues in complex with iGluR5 generated from BCL-AffinityNet. Pharmacophore maps were
generated for iGluR5 complexed with (A) 8,9-dideoxyneodysiherbaine (PDB ID 3GBB; pKd = 6.9, ΔG = −9.79 kcal/mol at 310 K), (B)
neodysiherbaine (PDB ID 3FV2; pKd = 8.1, ΔG = −11.49 kcal/mol at 310 K), and (C) dysiherbaine (PDB ID 3FV1; pKd = 9.3, ΔG = −13.19
kcal/mol at 310 K) and mapped onto the native bound pose. Labeled yellow transparent circles in the top panel are used to reference the
substituted carbon atoms of interest. Per atom pharmacophore map scores are output to a PyMol script for visualization as a molecular surface
colored on a per atom basis by spectrum from blue (negative) to white (zero) to red (positive). In this example, negative values indicate atoms
whose removal results in a loss in predicted binding affinity. The second row illustrates each ligand in complex with iGluR5. The third row
illustrates the common substructure pharmacophore map (i.e., pairwise per-substructure relative binding free energy changes). The fourth row
illustrates the raw pharmacophore map for each ligand upon sequentially removing individual atoms and saturating open valences.
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■ METHODS

Training Dataset Preparation. BCL-AffinityNet was
trained using the refined set plus protein−ligand complexes
from the general set of the PDBbind v.2016 dataset that
satisfied the following criteria: (1) the ligand was a small
molecule; (2) the binding affinity was measured as either Ki or
Kd; and (3) all-atom types had defined Gasteiger atom types.
The PDBbind v.2016 coreset was not included in the training
set for any of the models for any of the performance
evaluations. BCL-DockANNScore was trained using the
refined set protein−ligand complexes from the PDBbind
v.2016 dataset, excluding the 285 coreset compounds. For each
protein−ligand complex in the PDBbind v.2016 refined set,
250 additional pose decoys were generated with RosettaLigand
flexible docking with the Talaris2014 score function.57−59

Model Validation. Metrics for scoring power, ranking
power, docking power, screening power, and confidence
interval bootstrapping were performed with the scripts made
available with download of PDBbind v.2016.22 All models were
trained with fivefold random-split cross-validation. The final
model prediction value is the average prediction value obtained
across all five splits (i.e., as opposed to selecting a single best
model from the five splits). PDBbind v.2016 coreset complexes
were always excluded from training. For other external test-set
evaluations, the models were always retrained, excluding all
test-set complexes explicitly. Thus, the final training set sizes
for testing on the PDBbind 2016 coreset (n = 285), CSAR-
NRC HiQ 1 Jimeńez et al. subset (n = 55), CSAR-NRC HiQ 2
Jimeńez et al. subset (n = 49), CSAR-NRC HiQ 1 full set (n =
176), and CSAR-NRC HiQ 2 full set (n = 167) were 7568,
7551, 7537, 7442, and 7440 (not every complex in the CSAR
sets is in the PDBbind v.2016 set, hence the differences are not
equivalent to 7568 − n). For comparisons to the CSAR-NRC
HiQ benchmarks in Jimeńez et al.,32 complexes present in both
the CSAR test sets and the PDBbind v.2016 refined subset
were removed from the CSAR test sets. This resulted in two
CSAR test sets of sizes 55 and 49, respectively, with the exact
same PDB IDs as reported in the Supporting Information of
Jimeńez et al.32

For our baseline assessment of ligand and receptor pocket
bias on the PDBbind v.2016 coreset, we trained two DNNs
identical in architecture to BCL-AffinityNet. For descriptors,
we utilized the same chemical features, distance bins, and sign
pairings as in the PLC descriptors, except we instead generated
signed 3D autocorrelations of the ligand and/or receptor
itself.14 As inputs, we used the structures provided in the
PDBbind v.2016 dataset such that the ligand-based DNNs
were trained on the native poses of the ligands and the pocket-
based DNNs were trained on the receptor binding pockets as
extracted for inclusion in PDBbind v.2016.22,60

For validation splits that explicitly address ligand and pocket
bias of the training datasets, we generated k-means (k = 75)
AD models of the PDBbind v.2016 coreset (n = 285) based on
ligand 3DAs, pocket 3DAs, or column-combined ligand and
pocket 3DAs (using the same descriptors that were used to
create ligand- and pocket-based QSAR models; see the
Supporting Information). We then scored all 7568 training
set samples with each of these AD models. Previous studies on
appropriate cutoffs for distance-based AD models have
suggested that test-set samples further away from their closest
node than 95−100% of the training samples can reliably be
considered outside of the domain of applicability.34,61 We

therefore made three test-set splits (one for each AD model)
containing all training samples that had AD scores greater than
1.0. The resulting test sets are those samples whose ligands,
proteins, or ligands and proteins can be considered within the
same AD as the PDBbind v.2016 coreset. Put another way, this
creates larger PDBbind v.2016 coreset-like leave-class-out test-
set splits based on the properties of the ligands, protein
pockets, or combined ligands and protein pockets. We refer to
these test sets, respectively, as LB AD test (n = 995), pocket
AD test (n = 379), and combined AD test (n = 1377). For
these evaluations, the total model training sample size is 7568
− n. For details on command-line syntax, see the Supporting
Information.

Training Neural Networks for Affinity Prediction and
Pose Discrimination. All neural networks were trained with
the BCL. Our binding affinity prediction model, which we call
BCL-AffinityNet, is a single-task, feed-forward regression
neural network trained to predict pKi/d. While technically a
“deep” neural network in that we utilize two hidden layers
(512 and 32 neurons, respectively) instead of just one, BCL-
AffinityNet is quite small compared to neural networks
recently published for similar tasks.31−33 Our pose prediction
model, which we call BCL-DockANNScore, is a shallow
(single hidden layer, 32 neurons) multitasking feed-forward
classification neural network that predicts whether a protein−
ligand pose is less than 1.0, 2.0, 3.0, 5.0, and 8.0 Å from the
correct pose. Both networks can thus be formalized as follows.
For a network with L hidden layers indexed l ∈ (1, ..., L),

forward propagation for l ∈ (0, ..., L − 1) can be described as

= ++ + +z w y bl l l l( 1) ( 1) ( 1)
(3)

=+ +y f z( )l l( 1) ( 1)
(4)

where yl is the output vector at layer l connected to the input
vector z(l+1) at layer l + 1 by weights w and biases b and f is the
transfer function applied to each set of inputs into the l + 1
layer. Correspondingly, the activation of a single neuron i in
hidden layer l + 1 can be represented as

= ++ + +z w y bi
l

i
l l

i
l( 1) ( 1) ( 1)

(5)

=+ +y f z( )i
l

i
l( 1) ( 1)

(6)

to yield the output yi
(l+1) from layer l + 1. A mean-squared error

(MSE) cost function was employed in all studies. Overtraining
is prevented through the use of dropout in the input and
hidden layers. During forward propagation, each output value
yi
l of each i neuron in the layer l of the ANN is randomly
multiplied either by a value of 0 (corresponding to a “dropped”
neuron) or 1.

= × ++ + +z w r y b( )i
l l l l

i
l( 1) ( 1) ( 1)

(7)

Here, rl is a vector with the same dimensions as yl whose values
are either 0 (at fraction p) or 1 (at fraction 1 − p). At the end
of every training batch, rl is shuffled. At test time, the
corresponding weights are scaled down by the factor 1 − p.
The BCL-AffinityNet DNN contains two hidden layers with

512 and 32 neurons, respectively. It was trained with a 5%
dropout in the input layer, a 25% dropout in the first hidden
layer, and a 5% dropout in the second hidden layer.5 All
neurons utilized a leaky rectifier transfer function
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where x is the total input to a neuron. We utilized normalized
mean absolute error (NMAE; defined as the quotient of mean
absolute error and mean absolute deviation) as our objective
function during training.
The BCL-DockANNScore ANN contained a single hidden

layer with 32 neurons. It was trained with 5% dropout in the
input layer and 25% dropout in the hidden layer.5 All neurons
utilized a sigmoid transfer function
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+

f x( )
e

e 1

x

x (9)

where x is the total input to a neuron. We utilized the area
under the curve (AUC) as our objective function during
training.
The AffinityRF random forest model was trained with

WEKA v.3.8.4 utilizing default settings.48

Feature Parameter and Neural Network Hyper-
parameter Tuning. Our adoption of 5% input layer dropout
and 25% dropout in the first hidden layer (for both models) as
well as the selection of a 32 neuron hidden layer prior to the
output layer is based on extensive prior evaluation in
Mendenhall et al.5 For classification models, it has been
shown that shallow networks often perform equivalently and
sometimes better than deep networks at a substantially
reduced training cost.4 This, coupled with our own experience
with QSAR classification tasks,5,17,18 led us to use our
previously utilized single hidden layer architecture for BCL-
DockANNScore.5

With respect to BCL-AffinityNet, we nominally selected the
nearest power of 2 (29 = 512) to our input feature size as an
upper limit for our first hidden layer size. We investigated two
PLC descriptor feature parameters using fivefold random-split
cross-validation with the DNN of this size: (1) the interaction
bin distance and (2) the smoothing parameter β (eq 2). We
selected an initial smoothing parameter value of 5.0 based on
prior 3DA QSAR investigations in which values greater than
one were effective.16−18 Subsequently, we varied the
interaction bin distances at 1.0 Å intervals between 4.0 and
9.0 Å and compared NMAE and Pearson correlation across the
cross-validation splits. Our results suggested that distances
greater than 5.0 Å were best (Figure S17). In the interest of
keeping our feature set relatively small, we selected 7.0 Å for
our final models. Similarly, we varied the smoothing parameter
between 0.1 and 10.0 at a fixed bin distance of 7.0 Å. We found
that β values between 3.0 and 10.0 produced similar results
(Figure S18); therefore, we retained a value of 5.0 for all
additional studies.
With the PLC parameters selected, we then performed

additional fivefold random-split cross-validation studies to
determine an appropriate first hidden layer size. We decreased
the number of neurons from 512 by powers of 2 down to the
size of the second hidden layer (32 neurons). For
completeness, we also evaluated a shallow ANN ranging in
size from 32 to 128 neurons using either a leaky rectifier (eq 8)
or sigmoid (eq 9) transfer function. Generally, we observed
that shallow and deep networks with smaller (32−64 neurons)
first hidden layers performed the worst independent of transfer
function. We also noted that two hidden layers seemed better
than one, with little improvement in cross-validation perform-
ance between 256 and 512 neurons (Figure S19).

We note that all cross-validation studies for PLC feature
parameter and model hyperparameter tuning were done with
the BCL-AffinityNet training set of size 7568 protein−ligand
complexes (PDBbind v.2016 refined set, excluding the coreset
and including select general set complexes; see the Methods
subsection Model Validation for details). Model performance
on the external test sets was not evaluated during feature
parameter or model hyperparameter tuning.

Resolving Hydrogen Bond Angles in Feature Space.
BCL-DockANNScore contains an additional feature type not
present in BCL-AffinityNet. Specifically, we binned hydrogen
bonding pairs by both distance and angle. We considered that
the strength of hydrogen bonding interactions is often
approximated not only with distances between donor and
acceptor atoms but also with the orientation angle. Therefore,
we also developed a complementary feature to (eq 2) to assist
with the description of well-formed hydrogen bonds. While (eq
2) is generalizable to any atom-based descriptor (or pair of
descriptors if performing an asymmetric correlation) returning
a scalar value, this descriptor is exclusively for hydrogen bond
donor/acceptor pairs. Essentially, each distance interval
specified by the boundaries ra and rb in eq 2 is equally
partitioned into a user-specified number of bins (for this
manuscript, nominally 45 bins of 8° each). Thus, for each
distance bin there is also an angular component. See the
Supporting Information for sample BCL code object files
containing all properties employed in this study.

Input Sensitivity Analysis. The predictions for BCL-
AffinityNet (and separately, BCL-DockANNScore) are the
average predictions of the five cross-validated models. We can
readily calculate feature importance for a single ANN by
computing the magnitude of the input sensitivity across a
dataset with respect to a given feature, after appropriate
rescaling of the inputs. For model ensembles, the magnitude
cannot be used or meaningfully averaged because feature input
sensitivity may differ in the sign for various feature-instance
pairings. While we could look at the raw average of input
sensitivity of models across a given instance-feature pairing and
then average the absolute value of that over the dataset, we
suffer from an issue with relative scaling of the input
sensitivities due to the nonlinearity of the ANN’s transfer
function. Rather than deriving an optimal weighted feature
importance metric for ANN ensembles by some criteria, we
chose to simply evaluate how often the models in the ensemble
agreed on the sign of the derivative for each feature, averaged
across the dataset.
This is a form of input sensitivity analysis we refer to as

“consistency”. Here, we specifically evaluate the consistency of
feature column perturbations on result labels across cross-
validation models. Features for which models in the ensemble
agree on the derivative sign most routinely are interpreted as
those that are of most importance to the ensemble’s
performance. Consistency is thus insensitive to the magnitude
of feature’s influence.
To calculate consistency, we iterate across all input feature

columns of a training sample, perturb the feature value by a
small amount (e.g., 0.01), propagate the perturbed inputs, and
measure the result. For efficiency, we perform a forward
propagation pass, followed by a backpropagation pass with a
slightly modified result, which is readily transformed into the
forward input sensitivities. This is done for each cross-
validation model (in this manuscript, we performed fivefold
cross-validation for all models). For each feature column, we
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count the number of models that predict that the perturbation
will improve the score vs the number of models that predict
that the perturbation will worsen the score. This number is
normalized such that when half of the models predict a
negative change to the result and the other half predicts a
positive change to the result, the net consistency is zero. The
consistency result is averaged across all examples in the
training set for each individual feature.
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