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An efficient and divergent synthesis of polyol subunits utilizing a phosphate tether-mediated, one-pot, sequential RCM/CM/reduc-

tion process is reported. A modular, 3-component coupling strategy has been developed, in which, simple “order of addition” of a

pair of olefinic-alcohol components to a pseudo-C,-symmetric phosphoryl chloride, coupled with the RCM/CM/reduction protocol,

yields five polyol fragments. Each of the product polyols bears a central 1,3-anti-diol subunit with differential olefinic geometries at

the periphery.

Introduction

1,3-anti-Diol subunits are a central component in several potent
biologically active polyketides [1-4]. This prevalence has led to
the development of various synthetic methods for their
construction [5]. In particular, divergent strategies are ideal for
analog generation [6-11], which in turn, can enhance the quality
of screening decks in early phase drug discovery. One aim of
divergent synthetic strategies is to produce multiple scaffolds
from a single set of starting materials [12]. In this regard, one-
pot, sequential processes [13-16] are well suited to address this
challenge by forming multiple bonds and stereocenters, while
invoking step- [17], atom- [18-21], green- [22,23], and pot
economy [24-26]. We have previously reported phosphate

tether-mediated strategies to streamline the synthesis of 1,3-
anti-diol containing natural products, including recent reports
employing one-pot, sequential protocols [27-32]. Herein, we
report a modular, divergent approach to construct advanced
polyol intermediates 10—14 and 17-21 in one- or two-pot
sequences utilizing the innate properties of a phosphate tether.
Taken collectively, this modular, divergent 3-component
coupling strategy generates five polyol fragments, bearing
differential Z- and E-olefins, from a pair of olefinic-alcohol
components A and B and a pseudo-C,-symmetric phosphoryl
chloride (S,S)-1. Moreover, the method relies on simple "order

of addition" of components for the phosphoryl coupling, ring-
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closing metathesis (RCM) and cross metathesis (CM) steps of
the process as outlined in Scheme 1. This protocol further high-
lights the utility of phosphate tether mediated desymmetriza-
tion of Cp-symmetric 1,3-anti-diene-diol subunit to generate
polyol scaffolds which would otherwise be difficult to produce
via (Z)-and (E)-selective CM of 1,3-anti-diene-diol subunits
with olefinic-alcohol components.

Results and Discussion

The titled divergent strategy was initiated during efforts to
further explore the utility of phosphate tethers. Previous reports
emphasized the utilization of phosphate tethers in chemo- and
diastereoselective reactions including one-pot, sequential RCM/
CM/H; protocols and their applications in total synthesis of
various natural products [27-32]. In addition, the scope of phos-
phate-tethered methods was further expanded via extensive
RCM studies of different triene subunits utilizing stereochemi-
cally divergent olefin partners [33]. Recently, the potential of
phosphate tethered facilitated processes were highlighted in the
pot-economical and efficient total synthesis of the antifungal
agent strictifolione, whereby two consecutive phosphate tether-
mediated, one-pot, sequential protocols were employed [34].

The requisite trienes 5-7 for this study were generated via our
previously reported coupling of the pseudo-C,-symmetric phos-
phoryl chloride (S,S)-1 with the olefinic alcohol components
2—4 [27-32]. The alcohol substrates are carefully chosen to
incorporate exo-allylic methyl groups since previous RCM
studies [33] showed that the productive RCM for 8-membered
ring formation was observed only for the S,S- configured trienes
in the presence of an exo-methyl group at the allylic position
(Figure 1).

Initial attempts were focused on generating the first set of five
polyols starting from trienes 5 and 6 in a two-pot operation

OH
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Figure 1: Synthesis of trienes 5-7.

(Scheme 2). The first operation entailed a one-pot, sequential
RCM/CM/chemoselective hydrogenation protocol [32],
yielding two bicyclo[#.3.1]phosphate intermediates 8 and 9, and
a second pot LiAlH4 reduction to provide the Z-configured
tetraol subunits 10 and 11. Trienes 5 and 6 were generated via
coupling with alcohol partners 2 and 3, respectively, and the
divergent aspect of the method was introduced by simple
switching of the olefinic partners in the subsequent CM reac-
tion to afford five differentiated polyols starting from three
coupling partners.

In this regard, triene 5 was first subjected to RCM in the pres-
ence of the Hoveyda—Grubbs II (HG-II) catalyst [35-37] in
refluxing CH;Cl,, followed by solvent concentration and CM
with allylic alcohol 3 in refluxing CH,Cl, for two hours. It was
observed that the use of CH,Cl, was critical for the successful
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Scheme 1: The 3-component coupling strategy.
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Scheme 2: Synthesis of polyols 10-14 in one-, two-pot sequential protocols.

CM reactions in order to avoid the formation of isomerized
ketone byproducts. Subsequent chemoselective diimide reduc-
tion with o-nitrobenzenesulfonylhydrazine (o-NBSH) [38-40] in
CH,Cl, at room temperature afforded bicyclo[5.3.1]phosphate
8 in 33% overall yield, representing a 70% average yield/reac-
tion in the one-pot, sequential protocol (Scheme 2). Subsequent
treatment of 8 with LiAlH, furnished the tetraol 10 in 24%
overall yield over the course of four reaction steps carried out in
two pots, representing a 70% average yield per reaction.

Similarly, starting with the triene 6, a one-pot RCM/CM/
chemoselective Hy was performed to obtain the bicyclo[4.3.1]-
phosphate 9 in 40% yield over 3 reaction steps in a one-pot
operation (72% avg/rxn). In this example, the RCM reaction
was performed in dicholoroethane (DCE) at 70 °C for 2 h, since
lower reactivity was observed in CH,Cl,. Subsequently, phos-
phate 9 was treated with LiAlH, to generate tetraol 11 in 26%
overall yield in the four reactions carried out in two pots, repre-

senting a 71% average yield per reaction.

then LAH
Ar

CH3 11

26% over 4 rxns in two pots
(71% avg/rxn)

Next, a one-pot RCM/CM/LAH protocol was established to
obtain two additional tetraol subunits possessing both £- and
Z-olefin geometries. Triene 5, was subjected to an RCM reac-
tion, followed by a CM reaction with allylic alcohol 3. After
removing the solvent, the CM product was treated with LiAlHy
to produce tetraol 12 in 38% yield over three reaction steps in
the one-pot, sequential process (73% avg/rxn) (Scheme 2).
Similarly, triene 6 was subjected to an RCM reaction, followed
by CM with homoallylic alcohol 2, and subsequent treatment
with LiAlHy to afford tetraol 13 in 35% yield over the three
reaction steps, representing a 70% avg/rxn in the one-pot,

sequential method.

This RCM/CM/LAH procedure was further merged with global
hydrogenation, whereby the resulting tetraols 12 and 13, after
one-pot, sequential RCM/CM/LAH protocol, were separately
treated with o-NBSH to obtain tetraol 14 in 26% yield over the
four reaction steps in a two-pot operation starting from triene 5
(72% avg/rxn). Utilizing this two-pot sequential protocol, the
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same tetraol 14 was obtained starting from two different trienes
(5 and 6) and reacting with two different CM partners. It should
be noted, that after phosphate tether removal, treatment of
tetraol with o-NBSH (20 equiv), resulted in the global reduc-
tion of both E- and Z-olefins in very good yields, while in
contrast, diimide reduction in the presence of phosphate inter-
mediates did not hydrogenate the endocyclic olefin even when
large excesses of diimide reagent were employed (30 equiv).
This empirical result further substantiates the protecting group
ability of the phosphate tether for the endocyclic Z-olefin.

Next, our attempts were focused on generating the second set of
five polyols starting from trienes 6 and 7. Utilizing the afore-
mentioned strategy detailed in Scheme 2, triene 7 was subjected
to the one-pot, sequential RCM/CM/chemoselective H, proce-
dure and subsequent LiAlH4 reduction to generate tetraol 17 in
24% yield over 4 reaction steps in a two-pot operation (70%
avg/rxn) (Scheme 3). Further, starting with the same triene 6,
which was previously used in Scheme 2, but utilizing a different

cross-metathesis partner (homoallylic alcohol 4), a different

Beilstein J. Org. Chem. 2014, 10, 2332-2337.

tetraol 18 was generated in 23% yield over the four reaction

steps in a two-pot operation (69% avg/rxn) (Scheme 3).

In a similar manner, starting with triene 7, RCM and subse-
quent CM with allylic alcohol 3, followed by tether removal
with LiAIH4, were performed to obtain tetraol 19 in 42% yield
over three reaction steps in the one-pot, sequential operation
(75% avg/rxn). Triene 6 was next subjected to RCM, followed
by CM with homoallylic alcohol 4 and LiAlH4 reduction
to furnish tetraol 20 in an overall 40% yield over three
reaction steps in a one-pot operation (72% avg/rxn). Tetraols 19
and 20 were separately subjected to a global hydrogenation
using o-NBSH to afford tetraol 21 in 34% yield over four reac-
tion steps in a two-pot operation starting from triene 6
(77% avg/rxn).

Conclusion
In conclusion, we have reported one- or two-pot sequential
methods mediated by a phosphate tether to generate a diverse

array of polyol molecules utilizing readily prepared trienes 5, 6

Q OH

OBn

HO HO OBn
A

1. RCM, 2. Purification
CM, Hz 1o - then LAH BnO i 17
BnO” Yy TN HO40% over 3 rxns in one-pot 24% overzl Pxns in two pots
3= o (70% avg/rxn)
OH (72% avg/rxn)
OH
; B
HO HO OBn
OBn :
HO:« BnO Y X 19 Z
4 HO 42% over 3 rxns in one pot
\ (75% avg/rxn)
OH
—— - OB
e \M HO HO "
oo BnO™ ]

21

34% over 4 rxns in two pots
(77% avg/rxn)

HO,

HO

HO, OBn o 0O i RCM, CM, LAH HO HO HO 0Bn

, S H :

N 3 6 | N\ 4 OH BnO X 50 Z

BnO
M 40% over 3 rxns in one pot
(o) (72% avg/rxn)
4 QH i 0Bn
Bno_J ' OBn

1. RCM,
CM, Hy
16

35% over 3 rxns in one-pot
(70% avg/rxn)

e}
OH O/ o
BnO._ N

I HO
2. Purification

then LAH BnO

18
23% over 4 rxns in two pots
(69% avg/rxn)

Scheme 3: Synthesis of polyols 17-21 in one-, two-pot sequential protocols.
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and 7 and CM partners 2, 3, and 4. This divergent method was

established by taking advantage of the innate properties of

phosphate tethers to provide efficient syntheses of the stereo-

chemically-rich polyol subunits 10-14 and 17-21.
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