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Abstract 

Neurodegenerative diseases are a group of disorders characterized by progressive loss of certain populations of 
neurons, which eventually lead to dysfunction. These diseases include Alzheimer’s disease (AD), Parkinson’s disease 
(PD), and amyotrophic lateral sclerosis (ALS). Immune pathway dysregulation is one of the common features of 
neurodegeneration. Recently, there is growing interest in the specific role of T helper Th 17 cells and Interleukin-17A 
(IL-17A), the most important cytokine of Th 17 cells, in the pathogenesis of the central nervous system (CNS) of neu-
rodegenerative diseases. In the present study, we summarized current knowledge about the function of Th17/IL-17A, 
the physiology of Th17/IL-17A in diseases, and the contribution of Th17/IL-17A in AD, PD, and ALS. We also update 
the findings on IL-17A-targeting drugs as potentially immunomodulatory therapeutic agents for neurodegenerative 
diseases. Although the specific mechanism of Th17/IL-17A in this group of diseases is still controversial, uncovering 
the molecular pathways of Th17/IL-17A in neurodegeneration allows the identification of suitable targets to modulate 
these cellular processes. Therapeutics targeting IL-17A might represent potentially novel anti-neurodegeneration 
drugs.
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Background
Neurodegenerative diseases are a group of disorders 
characterized by progressive loss of certain populations 
of neurons, which eventually lead to dysfunction. These 
diseases include Alzheimer’s disease (AD), Parkinson’s 
disease (PD), and amyotrophic lateral sclerosis (ALS). At 
present, the treatment of neurodegenerative diseases is 
still very difficult, so it is very important to understand 
the pathophysiological mechanism of neurodegenerative 
diseases. Neurodegenerative diseases are characterized 
by selective susceptibility of certain nerve cells, different 
protein aggregation, and abnormal immune responses 
[1]. The pathogenesis of neurodegeneration is the joint 
action of many factors, and neuroinflammation is con-
sidered to be part of the cause of neurodegeneration. 

Neuroinflammation is characterized by elevated levels 
of inflammatory mediators or cytokines in the central 
nervous system (CNS) parenchyma [2]. Recently, there is 
growing interest in the specific role of T helper 17 (TH17) 
cells and Interleukin-17A (IL-17A), the most important 
cytokine of Th 17 cells, in the pathogenesis of the CNS 
of neurodegenerative diseases. Studies have shown that 
IL-17A acts on multiple resident cells of the central nerv-
ous system, enhances neuroinflammatory response, and 
plays a pathogenic role in a variety of neurodegenerative 
diseases [3]. However, the role of TH17/IL-17A in neu-
rodegenerative diseases is still unclear and contradictory. 
Therefore, we summarized current knowledge about the 
function of Th17/IL-17A, the physiology of Th17/IL-17A 
in diseases, and the contribution of Th17/IL-17A in AD, 
PD, and ALS. We also update the findings on IL-17A-tar-
geting drugs as potentially immunomodulatory thera-
peutic agents for neurodegenerative diseases.
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Biology of Th17 cells and IL‑17A
Th17 cells were recognized in 2005 as a distinct lineage 
of T helper (Th) CD4+ cells [4, 5]. The differentiation of 
Th17 cells requires stimulation with certain cytokines, 
including IL-6, IL-23, IL-1β, transforming growth 
factor-β (TGF-β), and IL-21 [6–14]. These cytokines can 
trigger the JAK–STAT3 axis, and increase the expression 
of transcription factors, including retinoic orphan recep-
tor (ROR)γt and RORα [15–19]. Th17 cells would achieve 
the pathogenic potential under the stimulation by pro-
inflammatory cytokines IL-6, IL-23, and IL-1β, whereas 
cytokine TGF-β drives the development of protective 
Th17 cells by inducing the production of anti-inflamma-
tory cytokine IL-10 [19–21]. IL-21 stimulates the expan-
sion of Th17 cells in an autocrine loop [22]. IL-17A, 
initially called cytotoxic T-lymphocyte antigen (CTLA)-8 
and cloned firstly in 1993, is the signature cytokine of 
Th17 cells [23], and it was described as an RNA transcript 
homologous to a Herpesvirus Saimiri gene. In 1995, 
the IL-17-binding receptor was first reported [24, 25]. 
Besides Th17 cells, other variable sources also produce 
IL-17A, including γδT, T-cell receptor (TCR)-β+ natural 
Th17, natural killer T (NKT), group 3 innate lymphoid 
cells (ILC3), Paneth cells, macrophages, and microglia in 
the CNS [26–29].

The function of Th17 cells and IL‑17A
First, Th17 cells can trigger pro-inflammatory danger 
signals, recruit and activate neutrophil granulocytes, 
upregulate the expression of antimicrobial factors, and 
promote the clearance of extracellular bacteria and fungi 
[30, 31]. IL-17A has an important capacity to induce 
the expression of chemokines and cytokines [3]. The 
chemokines, including C-X-C motif ligand 1 (CXCL1), 
CXCL2, and CXCL8 can attract myeloid cells to infected 
or injured tissues [32]. The cytokines, including granu-
locyte colony-stimulating factor (G-CSF) and IL-6 can 
promote myeloid-driven innate inflammation [33]. The 
pro-inflammatory cytokines and antimicrobial peptides 
are upregulated to put a synergistic effect on limiting fun-
gal overgrowth [34, 35]. For example, in healthy skin, the 
IL-17A production is induced by commensal microflora 
to provide anti-fungal protection [23]. When the epithe-
lial barrier of the skin is destroyed by injury, IL-17A can 
promote the proliferation of epithelial cells and the clear-
ance of the pathogenic agents [36]. In the intestine, the 
IL-17A production is driven by the microbiota from the 
local epithelium to provide the antimicrobial function, 
and it can be helpful to control dysbiosis and to maintain 
a homeostatic balance in the gut [37, 38]. In the lamina 
propria of the small intestine, Th17 cells can mediate the 
protection against pathogenic microorganisms. In the 
brain of AD patients, Malassezia species, one of the most 

common fungi detected can lead to neuroinflammation 
via activating Th17 immune response [39].

Second, Th17 cells and IL-17A are mainly pro-inflam-
matory, and they are considered to be associated with 
several autoimmune diseases, including psoriasis, anky-
losing spondylitis (AS), rheumatoid arthritis (RA), sys-
temic lupus erythematosus (SLE), and inflammatory 
bowel disease (IBD) [40]. In psoriasis, the pathogenic 
inflammation was promoted by dysregulated IL-17 sign-
aling. Th17 cells could infiltrate the psoriatic skin lesions, 
and inhibition of IL-17A had an effective treatment for 
psoriasis [41]. In AS, Th17 cells and IL-17A contribute 
to pathogenic inflammation, and it is effective to use 
an anti-IL-17A monoclonal antibody to treat AS [42]. 
In patients with RA, IL-17A was present at the sites of 
inflammatory arthritis, and higher numbers of IL-17+ 
CD4+ T cells were found in peripheral blood, but the 
efficacy of brodalumab, a human anti-IL-17A monoclo-
nal antibody, in the treatment of RA was negative [40, 43, 
44]. In patients with SLE, increased levels of IL-23, IL-21, 
and IL-17 were identified, which was associated with the 
expansion of Th17 cells [40, 45]. In patients with IBD, 
high levels of IL-17 and IL-21 in serum were reported 
[40, 46].

Third, the role of Th17 cells and IL-17A as indicated in 
the pathogenesis of CNS autoimmune disorders. Multi-
ple sclerosis (MS) is a chronic CNS inflammatory disease, 
and the most characteristic animal model of MS is exper-
imental autoimmune encephalomyelitis (EAE), used to 
explore the pathogenesis of MS. Th17 cells are one of the 
key effectors in MS and EAE, and MS was marked as a 
primarily IL-17-mediated autoimmune disease [47]. In 
MS patients, the expression of IL-17A and Th17-associ-
ated transcript IL-6 was increased in the demyelinated 
plaques [48], and the gene expression of IL-17 ranked at 
the highest in the CNS at autopsy [48]. The IL-17 level in 
serum was higher in MS patients with relapses and remis-
sions [49], with an association to disease activity [50]. The 
proportion of Th17 cells in serum was increased during 
relapses [51, 52]. In the cerebral fluid (CSF), IL-17A level 
was elevated in patients with relapses and remissions, 
with a correlation to the level of the blood–brain barrier 
(BBB) dysfunction [53]. The EAE mouse model showed 
that Th17 cells could infiltrate the brain [54] and IL-17 
could disrupt BBB [55]. In the cell model, Th17 cells were 
proved to cross the BBB, and the presence of Th17 cells 
in the lesions of CNS was related to enhanced neuroin-
flammation [56]. Th17 cells contribute to the disruption 
of the BBB [57], promote the activation of astrocytes and 
microglia within the CNS, and amplify neuroinflamma-
tion in EAE by targeting resident glial cells [58, 59]. Stud-
ies have shown that IL-17 neutralization could attenuate 
EAE progression through alleviating the generation of 
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pathogenic cytokines [60], and EAE severity could be 
ameliorated in IL-17-deficient mice [61–63]. Phase IIa 
study of secukinumab showed that an IL-17A-neutraliz-
ing monoclonal antibody might be effective in reducing 
MRI lesion activity in MS [64].

Th17 cells and IL‑17A in neurodegenerative diseases
Neurodegenerative diseases are characterized by the 
selective vulnerability of certain neuronal cells, diverse 
protein aggregation, and abnormal immune responses 
[1]. Studies have shown that IL-17A played a pathogenic 
role in several neurodegenerative diseases [3]. Regarding 
the contribution of Th17 cells and IL-17A in Alzheimer’s 
disease (AD), Parkinson’s disease (PD), and amyotrophic 
lateral sclerosis (ALS), we systematically retrieved and 
critically evaluated available literatures, aiming to pro-
vide a compendium to clarify the possible benefits of tar-
geting Th17/IL-17 to develop novel treatments for these 
patients (Fig.  1). A total of 146 reports were retrieved 
by the following keywords: “TH17”, “IL-17”, “Parkinson’s 
disease”, “PD”, “Alzheimer’s disease”, “AD”, “Amyotrophic 
lateral sclerosis”, “ALS”, “neurodegenerative diseases”. 
Finally, six studies [65–70] on targeted therapy for IL-17 
were screened out (Table 1).

Th17 cells and IL‑17A in AD
AD is the most common neurodegenerative disease, con-
tributing up to 70% of all cases of dementia, and has an 
exponentially increasing prevalence after the age of 65. 
Pathologically, AD is characterized by the deposition of 
extracellular senile plaques composed of amyloid-β (Aβ) 
and intracellular neurofibrillary tangles, resulting from 

the accumulation of hyperphosphorylated tau. Till now, 
there is no definite IL-17A alteration in AD patients. 
Some studies found that the IL-17A levels in the serum, 
brain and CSF of AD patients were increased, but other 
studies reported reduced IL-17A levels in AD patients. 
The conflicting results may be due to the lack of clinical 
dementia rating [71], but a recent meta-analysis showed 
a negative correlation between the disease progression of 
AD and the CSF IL-17A level [72]. Still, studies showed 
that plasma IL-17 levels could be used as a plasma bio-
marker to distinguish AD patients from cognitively 
healthy individuals [73], and CSF IL-17 concentrations 
could be used to identify frontotemporal lobar degenera-
tion (FTD) with tau pathology [74]. Activated Th17 cells 
in the CNS could produce pathogenic cytokines IL-17A, 
recruit neutrophils, heighten the inflammatory cascade, 
and promote AD neuroinflammation and neurodegener-
ation [75, 76]. The genetic variations are considered to be 
an important candidate to induce AD via upregulation of 
IL-17A [77]. Increasing evidence showed that IL-17 did 
play a role in the neuronal degeneration of AD; the mech-
anisms included Aβ interaction, microglia activation, 
BBB disruption, systemic neuroinflammation, etc. [77].

Interaction with Aβ
The insoluble Aβ peptides could promote the produc-
tion of reactive oxygen and nitrogen species, resulting 
in Th17 cells stimulation and IL-17 production [75, 78]. 
A previous study developed Aβ-reactive Th17 Teff cells, 
and adoptively transferred them into amyloid precur-
sor protein/presenilin1 (APP/PS1) transgenic AD mice; 

Fig. 1  The function of TH17/IL17-A in AD, PD, and ALS
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the result showed that Aβ-specific Th17 Teffs cells play 
a role as disease perpetrators [79]. In the rat model gen-
erated by Aβ injection, IL-17 level was increased in both 
the circulation and CSF, and was also correlated with the 
cognitive function decline, indicating that Th17/Tregs 
balance was disrupted in AD [80]. Similarly, intraperi-
toneal injection of lipopolysaccharide (LPS) to trans-
genic mice (Tg2576), which overproduces human Aβ 
and develops plaques, resulted in the increase of eight 
cytokines, including IL-17A [81]. In an AD mouse model, 
Aβ aggregates were shown to mediate the recruitment 
of neutrophils in the CNS. The effects of IL-17A in AD 
pathogenesis are highly related to the attraction of neu-
trophils and the stimulation of neutrophils’ function [82]. 
Neutrophils were found to be present in areas with Aβ 
deposits, and this extravasation could lead to amplifica-
tion of neutrophil entry in the CNS and IL-17 production 
[3]. In  vitro study showed that IL-17A played a role in 
promoting neuronal autophagy and inducing neurode-
generation [83]. A previous study tested the therapeutic 
effect of salidroside (SAL), an herb-derived phenylpro-
panoid glycoside compound, in the senescence-acceler-
ated mouse prone 8 (SAMP8) strain, which is a reliable 
and stable mouse model of AD strain, a reliable and sta-
ble mouse model of AD. The results showed that SAL 
decreased the IL-17A levels in the peripheral circulation, 
and alleviated hippocampus-dependent memory impair-
ment [84].

Microglia activation
It was shown that exposure of microglia to IL-17A led 
to activation and increased production of pro-inflam-
matory cytokines [65]. In  vitro study also showed that 
TLR-dependent activation of microglia could polarize 
γδ T cells toward neurotoxic IL-17+ γδT cells [85]. Peri-
odontal bacteria were shown to be able to induce Aβ-42 
accumulation and IL-17 expression in the cortex; IL-17 
expression in microglia was negatively correlated with 
the memory test latency and positively correlated with 
Aβ-42 accumulation [86].

BBB disruption
IL-17A could disrupt BBB integrity by reducing BBB tight 
junctions (TJ) molecules and disrupting oxidant–antioxi-
dant balance [61, 62]. The endothelial cells of BBB could 
express IL-17A receptors, and the binding of IL-17A to 
the receptors could cause the disruption of TJ [63] and 
downregulate the expression of the TJ molecules [62]. 
Blocking L-17A could reduce the BBB disruption and 
reverse the decrease of TJ molecules [64]. Zhang et  al. 
constructed an AD rat model by intrathecal injection of 
Aβ-42 peptide, and they found that Th17 cells entered 
into the CNS with the disruption of the BBB, and levels 
of IL-17 and RORγt were increased in the hippocampus, 
CSF, and serum [87]. With the disruption of BBB integ-
rity, more neutrophils and Th17 cells will migrate into the 
brain parenchyma, leading to more IL-17A production 
and more severe neuronal dysfunction [75, 78].

Table 1  Anti-IL-17 and IL-17R

Disease Model Intervention Result References

AD LPS treated rat IL‐17Ab IL-17A Abs improved LPS-induced memory impairment [64]

AD Vivo animal model
Inject Aβ1-42 into the ventricle

IL‐17Ab, IgG2A, clone 50104
Control: IgG2A, clone 54447

Preconditioning with IL-17Ab significantly reduced neurode-
generative changes induced by Aβ 1–42, improved memory 
function, and inhibited the increase of pro-inflammatory 
mediators in a dose-dependent manner
Administration of IL 17Ab after a β 1–42 injection reduced 
neurodegenerative memory decline and pro-inflammatory 
mediators and cytokines levels

[65]

PD HiPSC-derived neurons of PD Anti-IL-17/antiIL-17R/secuki-
numab+ T lymphocyte
Control: + T lymphocyte
Blank control group

Anti-IL-17Ab, anti-IL-17R, and secukinumab reduced T lympho-
cyte-induced neuronal death, with no significant difference in 
cell death levels compared to neurons cultured without T cells

[66]

PD MPTP-treated mice
MPP+-treated rats

Anti-IL-17Ab Injection of anti-IL-17Ab into the lateral ventricle of PD rats 
can improve the activation and dyskinesia of microglia in BBB-
disrupting dopaminergic neurodegeneration

[67]

PD MPTP-induced PD mice Anti-IL-17Ab Anti-IL-17Ab eliminated th17-induced death of DAergic 
neurons

[68]

ALS iPSC-derived MNs (ALS)+
TH-17(ALS/HCs/MS)

Anti-IL-17Ab and anti-IL-17R Th17 cells and IL-17A did directly promote MN degeneration. 
Anti-IL-17Ab and anti-IL-17R therapy reversed all effects of 
IL-17A

[69]
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Systemic neuroinflammation
In a transgenic mouse model of AD, the activation of T 
and B lymphocytes was increased [88], and these lym-
phocytes could produce high levels of IL-2, granulocyte 
macrophage-colony stimulating factor (GM-CSF), tumor 
necrosis factor-alpha (TNF-α), and IL-17, which pointed 
to the Th17 polarization [88]. In AD patients, the num-
ber of CD4+ and CD8+ T lymphocytes was increased 
in vascular endothelium and brain parenchyma [89]. 
The production of Th17-related cytokine IL-21 was 
increased and the expression of Th17 transcription factor 
RORγt was upregulated in naive lymphocytes obtained 
from AD patients [90]. In AD patients, the circulating 
CD3+CD8−IL-17A+interferon-gamma (IFN-γ)−Th17 
cells were found to be increased, indicating that the 
adaptive immune system is related to neuropathological 
changes in AD [91]. In an animal model, LPS injection 
in male Sprague-Dawley (SD) rats increased the IL-17A 
expression in serum and in the hippocampus [65]. It was 
reported that inadequate immune surveillance in the gut 
[92] or respiratory infection [93] could induce higher IL-
17A production in the CNS, which would result in Aβ 
deposition. However, there may be opposite sequences 
of events, Aβ deposition and inadequate clearance of Aβ 
would stimulate the receptors of innate immune cells, 
promote IL-17 production, and induce AD pathogen-
esis. In a double transgenic APΔE9 mouse with overpro-
duced Aβ, a higher frequency of CD4+ IL-17a and IFN-γ 
secreting T cells was revealed in the brain, indicating 
T-cell infiltration may be associated with the neuroin-
flammatory state in AD [94]. In AD patients, cognitive 
impairment progression was found to be related to Th17 
cells and c-Jun N-terminal kinase (JNK) pathway-asso-
ciated phosphatase (JKAP), the latter play a key role in 
regulating inflammation and immune responses; JKAP 
and Th17 cells were dysregulated and inter-correlated in 
AD [95]. Some compounds from plants could reduce the 
associated neuroinflammation in AD. For example, acid 
alpha-glucosidase (GAA), a kind of lanostane-type triter-
penoid isolated from Ganoderma lucidum, was found to 
have an alleviating neuroinflammatory effect on AD mice 
via regulating the imbalance of the Th17/Tregs axis [96]. 
OMT, an alkaloid component extracted from the root 
of Sophora flavescens Ait, could reduce the level of pro-
inflammatory cytokines including IL-6, IL-1β, TNF-α 
and IL-17A in AD mice [97]. Kavalactones, extracted 
from the rhizome and roots of kava, could decreased 
microgliosis, astrogliosis and secretion of the pro-inflam-
matory cytokines TNF-α and IL-17A, and attenuated the 
long-term memory decline of APP/Psen1 mice [98].

Strategic therapy targeting on IL‑17A
In an AD mouse model, administration of anti-IL-17A 
antibody to block IL-17A generation could decrease the 
neuroinflammation induced by Aβ-42 injection, reduced 
neuronal neurodegeneration, and improve the cognitive 
impairment of the mice [66]. In male SD rats injected 
intraperitoneally with LPS, the use of IL-17A-neutraliz-
ing antibodies inhibited the expression of APP and Beta-
site APP-cleaving enzyme 1 (BACE1), and prevented the 
expression of TNF-α, IL-6 and inflammatory proteins, 
indicating the role of anti-IL-17A strategy in the treat-
ment of endotoxemia-induced neuroinflammation and 
cognitive dysfunction [65]. Anti-IL-17A antibodies could 
also interfere with neutrophil infiltration into the CNS 
and inhibit AD progression [99]. It was proposed that 
a desirable AD vaccine should be effective in inhibiting 
Th17/IL-17A immune responses to Aβ deposition aim-
ing to limit the neuroinflammation in neurodegenera-
tion [100]. A systemic review reported that none of the 
current AD drugs is specifically designed to target the 
dysregulated balance in the Th17/Treg axis, indicating 
that future therapeutic approaches should specifically 
consider inhibiting CD4+ Th17 in AD [101]. However, a 
protective role of IL-17A was also indicated in an animal 
model of AD, and overexpression of IL-17A intracrani-
ally could reduce cerebral amyloid angiopathy, improve 
glucose metabolism, decrease soluble Aβ levels in the 
hippocampus and CSF, relieve anxiety, and improve 
learning deficits [102]. Further, injected ICR mice with 
IL-17 could improve spatial learning, indicating a com-
plex role of IL-17 in regulating adult neurogenesis [103]. 
These above-mentioned findings indicate that the role of 
IL-17A in AD is complicated, it may switch from a pro-
tective role to a pathogenic role depending on the disease 
state.

Th17 cells and IL‑17A in PD
PD is the second most common neurodegenerative dis-
ease after AD, characterized by the progressive degenera-
tion of dopaminergic (DA) neurons within the substantia 
nigra pars compacta (SNpc) in the midbrain, the for-
mation of Lewy bodies with aggregated a-synuclein in 
intracellular inclusions, and the presence of neuroinflam-
mation [104–109].

In PD, Th17 cells were assessed by means of surface 
markers or intracellular IL-17 staining. The former found 
similar or even reduced Th17 cells in PD patients [110–
112], while the latter reported increased Th17 cells in 
PD patients or no differences in Th17 cells between PD 
patients and healthy subjects [67, 113–116]. Therefore, 
the results of different studies concerning the frequency 
of Th17 between PD patients and controls were contra-
dictory, but the published studies consistently reported 
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an increased frequency of IL-17-producing cells in PD 
patients [117]. However, some studies reported decreased 
plasma levels of the IL-17A in PD patients [118, 119].

Interaction with a‑synuclein
In a mitochondrial permeability transition pore (MPTP) 
mouse model of PD, stimulation of Th17 cells with 
a-synuclein could cause neuronal cell death in the sub-
stantia nigra (SN) [119]. Liu et al. used rabies virus gly-
coprotein (RVG) peptide-modified exosome (EXO) 
curcumin/phenylboronic acid-poly(2-(dimethylamino)
ethyl acrylate) nanoparticle/small interfering RNA tar-
geting SNCA (REXO-C/ANP/S), a nano-scavenger for 
clearing α-synuclein aggregates in neurons, as a platform 
for PD treatment, and they found that REXO-C/ANP/S 
could achieve immune activation clearing by inhibiting 
Th17 and enhancing Treg to regulate the immune system 
in mice with PD [120].

Involvement of peripheral immune cells
The involvement of peripheral immune cells [121] was 
reported in PD patients [122]. A previous study found 
that global or CD4+ T cell-specific dopamine 2 recep-
tor (DRD2) deficiency could exacerbate MPTP-induced 
dopaminergic neurodegeneration and CD4+ T-cell 
depolarization towards pro-inflammatory Th17 pheno-
types, indicating that DRD2 expressed on CD4+ T cells 
is protective against neuroinflammation and developing 
a therapeutic strategy of stimulating DRD2 may be prom-
ising for amelioration of Th17-inflammatory response 
in PD [123]. In  vitro analyses showed about threefold 
increase in Th17 cells frequency, a phenotype favored 
by DRD3-signalling, in ex  vivo activated CD4+ T cells 
obtained from PD patients, indicating that DRD3-sig-
nalling in lymphocytes plays a relevant role favoring the 
development of PD, and selective DRD3-antagonism in 
CD4+ T lymphocytes may exert a therapeutic effect in 
PD [124]. Vitamin D was reported to inhibit the produc-
tion of IL-17 and IFN-γ, and promote the differentiation 
and function of Treg in both rodent and human T cells 
[125–127]. The vitamin D-induced benefits in PD might 
partly depend on its immune effects of Th17 and Treg 
cells [117], but more studies are needed to verify the 
exact contribution of vitamin D in modulating Th17 and 
Treg in PD.

Neurotoxic effects
In cell models of PD, the co-culture of Th17 cells with 
MPTP-treated neurons could exacerbate neuronal cell 
death [68, 128]. Sommer et al. had shown that Th17 cells 
obtained from PD patients induced neuronal death in the 
midbrain, indicating the neurotoxic effect of Th17 cells in 
PD [67], and this neurotoxicity of Th17 cells was driven 

by T cell-derived IL-17, upregulated IL-17R, downstream 
Nuclear factor-kappa-B (NFκB) activation, as well as 
lymphocyte function-associated antigen-1/intercellular 
adhesion molecule-1(LFA-1/ICAM-1) system [67, 119]. 
Moreover, the rescue of Th17-mediated neuronal death 
could be achieved by blocking ICAM-1 and IL-17R, or by 
blocking LFA-1 and IL-17 in Th17 cells with anti-IL-17 
antibodies, directs us toward new potential immunother-
apeutic targets for PD [67, 119].

BBB disruption
In PD patients, the disruption of BBB was reported [122], 
and the increased permeabilization of BBB allowed infil-
tration of peripheral immune cells into the CNS [129]. In 
PD animal models, BBB was disrupted and IL-17A level 
was increased in the SN [68].

Systemic neuroinflammation
Previous studies had found increased circulating Th17 
cells in PD patients at the early stages of the disease [84, 
104], indicating an important role of Th17-driven inflam-
mation in PD. Furthermore, in Porphyromonas gingi-
valis (Pg)-treated leucine-rich repeat kinase 2 (LRRK2) 
R1441G mice, dopaminergic neurons in the SN were 
reduced, but serum IL-17A, brain IL-17 receptor A, and 
activated microglial cells were increased; these findings 
indicated that neuroinflammation might play an impor-
tant role in the pathophysiology of LRRK2-associated 
PD [130]. A previous study showed that auricular vagus 
nerve stimulation (aVNS) treatment decreased Th17 cells, 
and reduced the levels of inflammatory cytokines, includ-
ing TNF-α and IL-1β in 6-OHDA treats rats, indicating 
that aVNS could suppress the evolution of inflammation 
and modulating innate immune responses to play a neu-
roprotective role against dopaminergic damage [131]. 
In PD mice, administration of purified bee venom (BV) 
phospholipase A2 (bvPLA2) inhibited loss of dopaminer-
gic neurons within the SN in a dose-dependent manner, 
and this concentration-dependent action appeared to be 
related to the inhibition Th17 polarization; these results 
suggest that standardized bvPLA2 may have a neuro-
protective effect against PD through neuroinflammation 
modulation [132]. JKAP, the regulator of immunity and 
inflammation, was also found to be correlated with Th17 
cells and disease severity in PD [133]. Repetitive tran-
scranial magnetic stimulation (rTMS) was proved to have 
therapeutic effects on neuroinflammation via reducing 
the production of pro-inflammatory cytokines IFNγ and 
IL-17A [134].

Microglia activation
Addition of IL-17A to co-cultures of microglia and 
neurons led to activation of microglia cells and TH+ 
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neuronal cell death. Interestingly, IL-17A exacerbated 
dopaminergic neuronal loss only in the presence of 
microglia. Furthermore, the inhibition of the IL-17A 
receptor on microglia was sufficient to attenuate these 
effects [68]. A network of communication may exist 
between glial cells and Th17 cells, a greater understand-
ing of this interaction may provide a novel therapeutic 
approach [135]. A previous study found that High mobil-
ity group protein B1 (HMGB1) A box inhibited the acti-
vation of microglia-mediated by HMGB1, inhibited the 
infiltration of Th17 cells, and decreased the proportion 
of Th17 in CD4+ T cells, indicating that HMGB1 A box 
may play a different role in protecting neurons in PD via 
influencing the activation of microglia cells, the infiltra-
tion of Th17 cells, and the differentiation of T cells to 
Th17 [136].

Alteration of gut microbiota
Altered gut microbiota was described in PD patients, 
and it also had strong potential to mediate motor deficits 
and neuroinflammation in PD model [137]. Furthermore, 
intestinal microbiota has the ability to induce Th17 differ-
entiation [37]. Therefore, the specific Th17 cells and their 
role in directing against gut microbiota might inspire 
the development of gut immunomodulatory therapeutic 
approaches in PD patients [129].

Strategic therapy targeting on IL‑17A
In the experimental phase, the anti-Th17 therapeutics 
in PD can be achieved by using nuclear receptor ago-
nists, including peroxisome proliferator-activated recep-
tor gamma (PPARγ) and liver X receptor (LXR), both of 
them are known to negatively regulate differentiation of 
Th17 cells [138, 139]. These agonists may have therapeu-
tic prospects in PD because they effectively inhibit PD 
pathology [140]. Furthermore, an anti-IL-17A-neutraliz-
ing antibody proved to be effective in alleviating the PD 
manifestations in the PD rat model [68].

Th17 cells and IL‑17A in ALS
ALS is a neurodegenerative disorder characterized by 
progressive degeneration of upper and lower motor neu-
rons (MNs), resulting in muscle weakness and paralysis. 
The possible involvement of Th17 in ALS is indicated by 
circumstantial evidence. Studies had shown increased 
IL-17 levels in serum and CSF of ALS patients, and in 
the cell model, the IL-17 production was upregulated by 
cultured peripheral blood mononuclear cells [141, 142]. 
ALS patients had a higher expression of IL-17A in serum 
than controls, indicating a greater vulnerability of ALS 
patients to IL-17A-mediated damage. In ALS patients, 
the immune profile in peripheral blood was shifted 
towards a Th1/Th17 cell-mediated pro-inflammatory 

immune response, and Th1 and Th17 cells were moder-
ate negatively correlated with disease severity, evalu-
ated by forced vital capacity and ALS functional rating 
scale revised (ALSFRS-R) [143]. The spinal cords of ALS 
patients were found to be infiltrated by IL-17A-positive 
CD8 cells and IL-17A-positive mast cells. Mononuclear 
cells treated with aggregated superoxide dismutase-1 
(SOD-1) protein could induce the expression of IL-6, 
IL-23, and IL-1β, which may be responsible for the 
induction of IL-17A [144]. IL-17A may be involved in 
chronic inflammation in ALS, and could be a new thera-
peutic approach by immune modulation of inflammatory 
cytokines.

Strategic therapy targeting on IL‑17A
A recent study developed a co-culture system of human-
induced pluripotent stem cells (hiPSCs)-derived MNs 
and Th17 cells, derived from ALS patients, MS patients, 
and healthy controls. They found that Th17 cells from 
MS patients induced severe degeneration of MNs, and 
IL-17A yielded a decline of viability and neurite length 
of MNs in a dose-dependent manner. Furthermore, neu-
tralizing IL-17A and anti-IL-17A receptor treatment 
reverted this detrimental effect of IL-17A [143].

Conclusions
In 2021, we compared 761 age–gender matched healthy 
controls with 761 PD patients and found that the ratio of 
CD4/CD8 in PD patients was higher than that in healthy 
controls, and the percentage of CD4+ T cells was nega-
tively correlated with the Hoehn and Yahr (H&Y) stage 
[145]. However, we did not compare the subtypes of 
CD4+ T cells. Although the function of TH17/IL-17A 
on AD or PD is still contradictory and the mechanism 
of TH17/IL-17A is still unclear, the results of the latest 
research on IL-17A targeted treatments are still valid, so 
the pathogenesis and targeted therapy of IL-17A in neu-
rodegenerative diseases are still worth exploring.
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