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Abstract: Brown algae (Phaeophyceae) have been consumed by humans for hundreds of years. Cur-
rent studies have shown that brown algae are rich sources of bioactive compounds with excellent
nutritional value, and are considered functional foods with health benefits. Polysaccharides are the
main constituents of brown algae; their diverse structures allow many unique physical and chemical
properties that help to moderate a wide range of biological activities, including immunomodulation,
antibacterial, antioxidant, prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant
activities. In this review, we focus on the major polysaccharide components in brown algae: the
alginate, laminarin, and fucoidan. We explore how their structure leads to their health benefits, and
their application prospects in functional foods and pharmaceuticals. Finally, we summarize the latest
developments in applied research on brown algae polysaccharides.
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1. Introduction

Algae is an important food source consumed by humans since ancient times. Marine
macroalgae, in particular, are important food sources in the coastal regions of East Asia
such as China, Korea, Japan, and Indonesia [1]. The global commercial seaweed market
was calculated at USD 5.9 billion in 2019 and is anticipated to a compound annual growth
rate of 9.1% [2]. Health benefits of seaweed food and snack products are gaining spotlight
as vegan sources of protein, lipid and carbohydrates, and demand is expected to boost both
for consumption and for further applications. For example, microalgae polysaccharide
extracts are used as thickening and gelling agents in the cosmetic and food industries, and
the demand is growing particularly in North America and Europe [3]. Among their many
uses, the portion directly consumed (excluding thickeners and hydrogels used in food and
beverage processing) alone have reached 24 million tons per year, accounting for about
40% of the annual seaweed production [4]. Indeed, the concept of seaweed as healthy
food is deeply rooted in many people’s minds. While new applications of polysaccharides
derived from marine algae are constantly being discovered, the raising awareness of this
ecofriendly, organic, and environmentally sustainable food source further promotes its
consumption. Macroalgae are also used in biorefineries; the carbohydrates are converted
to high-value byproducts with metabolic engineering approach [5]. The prospects of algae
as green, healthy food, and a bioresource is being actively explored.

Macroalgae are classified into green, red, and brown algae [6]. Brown algae is com-
prised of 20 classes; the class Phaeophyceae alone accounts for over 1800 species and 66%
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of the total algae consumption [7]. The most common species are the kelps Laminaria
(kombu), Undaria (wakame), and Macrocystis [8]. The polysaccharides alginate, laminarin,
and fucoidan (Figure 1) account for more than 50% of the total dry weight of brown algae,
and can reach up to 70% in some species. Cellulose is the only crystalline component
which has been reported in the walls from brown algae so far and it only occurs at 1–8%
of algal dry weight [9].Mannitol exists in 2% of laminarin in M-chains, and can also be
found on its own, out of the M-chains, in a range of 5–25% of dry weight [10]. It is a sugar
alcohol derived from the six carbon sugar D-mannose [11] and appears to be the primary
product of photosynthesis [12]. Mixed-linkage-(1,3)-(1,4)-β-D-glucan (MLG) is common
in brown algal cell walls. MLG may perform a distinct role in strengthening the cell wall
of brown algae [13].The polysaccharides’ proportions and structures vary among species,
with some showing markable difference depending on cultivation conditions and harvest
seasons [14]. Such heterogeneity may reflect in their diverse biological activities, including
anti-inflammatory, antiviral, antioxidant, antitumor, anticoagulant, and hypolipidemic
activities, as reported in the literature. This review examines the current knowledge of
the biological activity of brown algae polysaccharides and their derivatives as functional
foods and bioactive substances. Furthermore, we aim to provide practical strategies and
references for developing brown algae-based functional foods and dietary supplements.

Figure 1. Schematic diagram of the dry matter and carbohydrate composition of brown algae; data
summarized from references [9,15–17].

2. Alginate and Alginate Lyase

Alginate is the predominant polysaccharide component found in the cell walls and
intercellular matrix of brown macroalgae. It is a linear polysaccharide composed of two
conformational isomer residues: β-D-mannuronic acid (M) and α-L-guluronic acid (G)
connected through 1,4-glycosidic linkages [18]. Therefore, the polymer may consist of
three types of blocks: homopolymeric sections of consecutive Ms, consecutive Gs, or
heteropolymeric sections of randomly arranged M and G units (Figure 2). The ratio of M
to G is generally 1:1. Nevertheless, the relative proportions of M and G, as well as their
arrangement in the polymer chain, vary according to numerous factors such as the algae
species, growth conditions, season, and part of the algae [19]. The M/G ratio of alginate
from Ascophyllum nodosum, for instance, is about 2:1 [20]. Alginates rich in G residues
have higher water solubility than those rich in M residues [21] which also exhibit stronger
stiffness and gelling properties due to the presence of metal ions such as Ca2+ [22].
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Figure 2. The structure of alginate and the potential applications of alginate oligosaccharides.

Alginate oligosaccharides (AOS) are oligomers with a degree of polymerization of
2 to 25, commonly obtained by chemical degradation (such as acid hydrolysis, alkali hy-
drolysis), physical degradation (such as microwave degradation), enzymatic degradation
(alginate lyase), or chemical synthesis. Compared with physicochemical methods, enzy-
matic degradation of alginate is eco-friendly, energy-saving, selective, and the products
are biologically more active [23]. Alginate lyase degrade alginate through β-elimination
and produce unsaturated oligosaccharides with double bonds at the non-reducing end [24].
Endolytic alginate lyase have been widely used to produce AOSs with various DPs. For
instance, Li et al. found a high activity endo-type alginate lyase from Pseudomonas sp.
HZJ216 and efficiently produced AOSs with DP of 2–7 [25]. Kim et al. reported an endo-
type alginate lyase Alg7D from a marine bacterium Saccharophagus degradans 2-40T, which
produces AOSs DP3–5 [26]. Endo-type alginate lyase Algb from Vibrio sp. W13 mainly
released oligosaccharides DP of 2–5 [27]. Zhu et al. prepared series of AOSs with DP of 2-5
by using a new alginate lyase Cel32 from Cellulophaga sp. NJ-1 [28]. Alginate lyase have
the advantage of controlling the predominant DP of AOS products between two and nine
without significant amounts of monomers or larger oligomers (DP > 10).

AOSs have been reported to modulate a variety of biological activities and are benefi-
cial to health. Studies have shown that AOSs with different degrees of polymerization have
differential biological activity. Therefore, they can be used as antimicrobial, antioxidant,
prebiotic, antihypertensive, antidiabetic, antitumor, and anticoagulant agents; their many
applications are further discussed below. [29–35].
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2.1. Antioxidant Activity

AOSs can scavenge free radicals. The AOS produced by the alginate lyase from
Microbulbifer (DP: 2–5) was capable to scavenge free radicals (DPPH (2,2-Diphenyl-1-
picrylhydrazyl), ABTS+ (2,2′-Azinobis-(3-ethylbenzthiazoline-6-sulphonate), and hydroxyl)
and was non-toxic even at high concentrations [36]. Mia et al. found that the AOS prepared
by enzymatic method has good antioxidant properties and can completely inhibit the
formation of thiobarbituric acid-reactive substances (TBARS) during the iron-induced
oxidation of emulsified linoleic acid. In comparison, traditional antioxidant ascorbic
acid has only 89% inhibition. For the free radicals ABTS�, �OH, and O�

2− , polymeric
alginate scavenged up to 23, 46, and <1%, while monomeric alginate (represented by
glucuronic acid) scavenged up to <1, 25, and 99%, respectively [37]. Due to the conjugated
alkenoic acid structure formed during enzymatic depolymerization, AOSs have a higher
scavenging ability than similar carbohydrates [37]. The possible mechanism for free radicals
scavenging may be a combination of hydrogen abstraction (presumably of hydrogen-
bonded hydrogens) and free radical addition to the conjugated olefin acid, resulting in an
adduct that is stable through resonance [38].

Compared to chitosan and fucoidan-derived oligosaccharides, AOSs showed higher
free radical scavenging capacity [39]. Studies have shown AOSs to play a role in preventing
lipid oxidation in skincare emulsions and to scavenge hydroxyl radicals and superoxide
anion radicals [40]. In the neuronal PC12 cell model, it was found that AOS pretreatment
can block caspase-dependent production of endoplasmic reticulum and mitochondria
induced by H2O2 stress [41]. In mice injured by doxorubicin, AOS pretreatment increases
the survival rate through reducing the oxidative stress and inhibiting the expression of
gp91phox and 4-hydroxynonenal in the heart [42]. Furthermore, AOSs are also introduced
as a new additive in livestock and poultry feed formulation which can effectively im-
prove cellular antioxidative capacity [43]. The free radical scavenging activity of AOSs
is tentatively dose-dependent, and that their molecular weight and M/G ratio modulate
antioxidative activities. Studies have shown antioxidative activity is negatively correlated
with the molecular weight of the oligosaccharide [44,45].

2.2. Antimicrobial Activity

Hu et al. found that oligo-G and oligo-M (DP: 1–5) obtained by enzymatic hydrolysis
had in vitro antibacterial activity against 19 bacterial strains. The antibacterial spectrum
of the M oligomer fractions was wider than that of the G oligomers. Within the former,
mannuronic acid oligomers with a molecular weight of 4.2 kDa had the highest antibacterial
activity and a strong inhibitory effect on Escherichia coli, Salmonella paratyphi, Staphylococcus
aureus, and Bacillus subtilis [46].

The drug candidate OligoG CF-5/20 is developed by the Norway-based biotech com-
pany AlgiPharma. It is a G-enriched alginate oligosaccharide composed of G (85%) and
M (15%) blocks. The OligoG CF-5/20 is effective in disrupting and destroying biofilms
in a dose-dependent manner. The number of colony-forming units (CFU) in the lungs
of infected mice was reduced by 2.5 log; furthermore, 5% OligoG CF-5/20 significantly
reduced the minimum biofilm eradication concentration (MBEC) of colistin from 512 to
4 µg/mL after 8 h [47]. OligoG CF-5/20 treatment also reduced Candida albicans mycelial
infiltration in an in vitro epithelial cell model. OligoG CF-5/20 reduced the expression
of C. albicans virulence proteins (phospholipase B (PLB2), SAP4 and SAP6) [35], but the
mechanism is unclear. Powell et al. also reported AOS exposure to cause changes in biofilm
structure, lowering Young’s modulus compared to untreated biofilm. In the untreated con-
trol, surface irregularity was higher and resistance to hydrodynamic shear was lower [48].
The results suggested that the observed effect might be caused by OligoG induced changes
in the structural characteristics of the extracellular polymers in the bacterial biofilm [48].
Similar effects were found with mucociliary clearance, where lower molecular weight nega-
tively charged G oligomers was found to disrupt the intermolecular interactions of mucus,
weakened the viscoelastic properties of mucus, and led to rheological deformation [49].
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OligoG CF-5/20 has been proposed as inhalation therapy for the treatment of chronic
bacterial respiratory diseases [50]. The oligosaccharides can bind to respiratory mucin, al-
tering its surface charge and the porosity of the three-dimensional mucin network in cystic
fibrosis sputum. It has been found that AOSs can act synergistically with the antibiotic
azithromycin on wild-type antibiotic-resistant Pseudomonas aeruginosa. Azithromycin com-
bined with 2 mg/mL enzymatically produced AOS inhibited the growth of Pseudomonas
aeruginosa, virulence factors, and biofilm formation controlled by quorum sensing [51].
Pritchard et al. found OligoG CF-5/20 (2%) treatment to induce the destruction of Pseu-
domonas aeruginosa biofilm and colistin to maintain its antibacterial activity. OligoG CF-5/20
did not change the orientation of the alginate carboxyl groups, while mass spectrometry
analysis showed the oligomers to reduce pseudomonal quorum-sensing signaling [52]. The
gelation of alginate in the presence of divalent cations, such as Ca2+, in homopolyguluronic
acid, is known to induce changes in coordination of the carboxylate groups [53], which
resulting in formation of robust biofilms [54]. However, CD spectra indicated that the
orientation of the carboxy groups monitored at ~210 nm were not changed upon mixing
OligoG CF-5/20 with high-Mw alginate. This shows that OligoG CF-5/20 combines with
Ca2+, avoiding the formation of a strong biofilm, so that the colistin can better play an an-
tibacterial effect [52]. Tøndervik et al. found that OligoG (>0.5%) also showed a significant
inhibitory effect on mycelial growth in embryonic tube analysis. OligoG (≥2%) alone or in
combination with fluconazole significantly hindered fungal biofilm formation. Through
the combined treatment, the surface roughness of the cells also increased significantly
(p < 0.001) [55].

2.3. Immunomodulatory and Antitumor Activity

AOSs can enhance immune activity and regulate the function of the immune sys-
tem in a variety of ways, including regulating the secretion of cytokines and immune-
complement molecules. The AOSs produced by depolymerization with alginate lyase
increased TNF-α-inducing activity compared to untreated alginate, including the expres-
sions of cytokine-induced TNF-α, granulocyte colony-stimulating factor (CSF), single
nuclear cell chemotactic protein-1 (regulated after activating normal T cell expression and
secretion), granulocyte macrophages (GM)-CSF, and eosinophil chemokine [56]. AOSs
can readily activate macrophages and stimulate TLR4/Akt/NF-κB, TLR4/Akt/mTOR,
and MAPK signaling pathways to exert their immune activity [31]. According to the
Bio-Plex analysis in RAW264.7 cells, M-rich AOSs tend to have higher immune activity
than G-rich oligomers [57]. Uno et al. found that AOSs introduced orally can inhibit
the production of IgE and prevent allergic reactions in mice [58]. When administered
intraperitoneally, AOSs stimulated the production of 20 cytokines such as granulocyte
CSF, monocyte chemoattractant protein-1, IL-6, keratinocyte chemotactic factor, IL-12, and
RANTES [59]. AOSs can also induce the production of nitric oxide (NO) by increasing
the expression of NO synthase in cells. NO is a multifunctional molecule that can act
as a vasodilator, neurotransmitter, inflammatory mediator, and specific immunomodula-
tor [60]. The immunomodulatory activity of AOSs is affected by many factors, e.g., degree
of polymerization, purity, M/G ratio, and MG sequence. The unsaturated end-structure
achieved by the enzymatic degradation of alginate plays a key role in determining the
immunomodulatory activity, as saturated AOSs prepared by acid hydrolysis showed much
lower activity. Xu et al. showed that the unsaturated end-structure, molecular size, and
M/G ratio of enzymatically produced AOSs affect the activation of macrophages through
the NF-κB and MAPK signaling pathways [61–63].

Recent studies have also shown AOSs to have antitumor effects. They exert, for
instance, an inhibitory effect on the proliferation of human leukemia U-937 cells and
produced cytotoxins in human monocytes [56]. AOSs themselves, however, have no
direct cytotoxicity to tsFT210 cells. Sulfated AOS derivative with a molecular weight of
3798 Da (sulfation degree of 1.3) has been reported to suppress the growth of solid sarcoma
180 tumor [64]; adding 100 mg/kg AOS, the inhibition rate of solid sarcoma 180 tumor
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reached 70.4%. It is likely that the AOS and other sulfated derivatives may trigger antitumor
effects through organ-mediated immune defense response, especially the immune defense
response of the spleen. The AOS of DP 2–10 showed a significant inhibitory effect on the
growth of prostate cancer cells. Studies on molecular mechanisms have shown AOSs to
attenuate derivatization (α-2,6-sialylation) and reduce ST6Gal-1 promoter activity through
the Hippo/YAP/c-Jun signaling pathway [65]. At present, the molecular mechanisms of
the contribution of various chemical structural modifications to the antitumor activity of
AOSs have not been clarified. Further studies are also needed on the structure-function
relationships of antitumor AOSs in targeted cancer therapy.

3. Laminarin

Laminarin is another major storage carbohydrate of brown macroalgae. It is commonly
found in the fronds of Laminaria and Saccharina macroalgae, although it is also found in
Ascophyllum, Fucus and Undaria [7]. Laminarin is a β-glucan, mainly composed of β-
1,3-D-glucopyranose residues; the majority of glucose is 6-O-branched, while a part of
it has β-1,6-intrachain links [66]. Laminarin linked to D-mannitol at the reducing end
of the chain is called an M chain, while laminarin without mannitol at the reducing
end is a G chain [67] (Figure 3). The ratio of β-1,3- and β-1,6-glycosidic bonds in the
polysaccharide depends on the type of algae. For example, laminarin from Eisenia bicyclis
has a ratio of 2:1 of (1–3) and (1–6) linkage [68]. Laminariales are known to produce high
amounts of laminarins, with contents reaching up to 35% of total dry weight, particularly
in L. saccharina and L. digitata [14]. Other reported values of laminarin contents include
those of A. esculenta, U. pinnatifida, A. nodosum and F. serratus (11.1, 3, 4.5, and up to 19%
of total dry weight, respectively) [69–71]. The molecular weight of laminarin is about
5 kDa, with a degree of polymerization between 20 and 25 [72,73]. Laminarinases are
the enzymes that degrade β-1,3 and β-1,6 glycosidic bonds of laminarin and produce
oligosaccharides and glucose, which were classified into endolytic (EC3.2.1.39) and exolytic
(EC3.2.1.58) enzymes [74]. The endo-β-1,3-glucanases hydrolyze β-1,3 bonds between
adjacent glucose subunits to release oligosaccharides while exo-β-1,3-glucosidase can
hydrolyze laminarin by sequentially cleaving glucose residues from the non-reducing
end and releasing glucose [75]. For debranching of laminarin, β-1,6-glucanases randomly
hydrolyze β-1,6 glycosidic bonds and release gentio-oligosaccharides or glucose [76]. Endo
laminarinases were widely applied to produce oligosaccharides. Recently, Kumar et al.
reported a thermostable laminarinase belongs to GH81 from C. thermocellum which can
hydrolyze laminarin into a series of oligosaccharides (DP2 to DP7) [77]. Badur et al.
reported four laminarinases from Vibrio breoganii 1C10, of which VbGH16C can hydrolyze
laminarin to oligosaccharides of DP8 and DP9, and VbGH17A can hydrolyze laminarin
into a series of laminarin oligosaccharides (DP4 to DP9) [78]. Wang et al. characterized a
bifunctional enzyme from GH5 subfamily 47 (GH5_47) in Saccharophagus degradans 2-40T

and identified as a novel β-1,3-endoglucanase (EC 3.2.1.39) and bacterial β-1,6-glucanase
(EC 3.2.1.75). This bifunctional laminarinase can degrade both the backbone and branch
chain of laminarin, and is also active on hydrolyzing pustulan which is a linear β-1,6-glucan.
This enzyme also showed transglycosylase activity toward β-1,3-oligosaccharides when
laminarioligosaccharides were used as the substrates [79]. The above findings provide
more possibilities for the green preparation of biologically active oligosaccharides.
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Figure 3. Structures of laminarin.

Laminarins and laminarin oligosaccharides are recognized for their various biolog-
ical activities; they have shown to stimulate innate immunity [80], stimulate antitumor
responses [81,82], increase resistance to infections [83], promote wound repair [84], and
enhance the immune response of macrophages [85]. Laminarins can be used to activate
macrophages, leading to immune stimulation, antitumor, and wound-healing activities [86].
Furthermore, they can be partially or fully fermented by endogenous gut microbiota [87].
Consequently, they have good prospects for application in the field of functional foods
and biomedicine.

3.1. Antioxidant and Antimicrobial Activities

Studies have shown of the crude extracts of laminarin from L. hyperborea and A.
nodosum to remove DPPH free radicals effectively, with clearance rates of 87.6 and 93.2%,
respectively. Compared to extracts obtained with water solvents, acid-extracted laminarin
was showed to have higher antioxidant activity [88].

Laminarin-rich seaweed extracts are found to have inhibitory effects against both
Gram-positive (such as Staphylococcus aureus and Listeria monocytogenes) and Gram-negative
(E. coli and Salmonella typhimurium) bacterial strains. Notably, the inhibitory rate of A. no-
dosum extract against Salmonella typhimurium can reach 100%. Laminarin-rich extracts
obtained using ultrasound and acid solvents had minimum inhibitory concentrations
(MIC) of 13.1 mg/mL for E. coli and S. typhimurium and 6.6 and 3.3 mg/mL for S. aureus
and L. monocytogenes, respectively [88]. Therefore, the polysaccharide can be applied in
the preparation of antibacterial products such as edible packaging materials and even
wound dressings.

3.2. Antitumor and Anticoagulant Activity

Several studies have demonstrated the significant antitumor and anticancer activities
of laminarin and laminarin oligosaccharides [89]. The underlying mechanisms include
apoptosis and the inhibition of cancer cell colony formation [90]. Different concentrations
of laminarin have been used to treat human colon cancer LoVo cells and the intracellular
reactive oxygen species (ROS), pH, intracellular calcium ion concentration, mitochondrial
permeability transition pore, mitochondrial membrane potential, and Cyt-C, Caspase-9 and
Caspase-3 expression levels were analyzed. The studies have found kelp polysaccharides
to induce the apoptosis of human colon cancer LoVo cells through the mitochondrial path-
way [91,92]. The polysaccharide did not show direct cytotoxicity, but exhibited significant
antitumor activity on SK-MEL-28 human melanoma cells and it could effectively inhibit
the colony formation of HT-29 cells [93,94].

Laminarin oligosaccharides can inhibit the proliferation of human tissue lymphoma
cell line (U937 cells) by stimulating monocytes to produce cytokines [95]. Specific enzyme
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products with high content of 1,6-linked glucopyranose residues (laminarin oligosaccha-
rides with DP 9–23) have shown significant anticancer activity and can inhibit the colony
formation of melanoma and colon cancer cells [96,97]. Sulfated laminarins (LAMS) with
a sulfate content of 45.92% proved to inhibit the growth of LoVo cells more significantly
than laminarin, suggesting the better antitumor activity of LAMS. Accordingly, enzymatic
hydrolysis and molecular modification provide new ideas for the production of laminarin
derivatives with high antitumor activity [98].

The anticoagulant activity of Laminaria sp. extract was first reported in 1941 [99].
Although laminarin is a non-sulfated polysaccharide in seaweed, its sulfated products
showed anticoagulant activity [100]. Many studies have been published on the extraction
and modification of laminarin sulfate from algae in the genus Laminaria. If each glucose
residue has an average of two sulfate groups, the anticoagulant activity of the prepara-
tion reaches 25–30% of that of standard heparin [101], while the activity of sulfonic acid
derivatives appears to be higher than that of sulfate esters [102]. A derivative of laminarin
with 1.83 sulfate groups per glucose unit showed 33% of the potency of heparin in rabbits,
although it was extremely toxic to guinea pigs [103]. This suggests that laminarin sulphate
might be effective in the prevention and treatment of cerebrovascular diseases.

3.3. Anti-Inflammatory and Immunostimulatory Activity

Studies have shown that β-glucans cause reduced recruitment of inflammatory cells
and decreased secretion of inflammatory mediators in liver tissues through direct effects on
immune cells or indirect effects as dietary fibers [104]. Laminarin significantly increases the
release of inflammatory mediators, such as hydrogen peroxide, calcium, nitric oxide, mono-
cyte chemoattractant protein-1, vascular endothelial growth factor, leukemia-inhibitory
factor, and granulocyte colony-stimulating factor, and enhances the expression of signal
transducer and transcriptional activators [86]. Recent studies have found laminarin to
induce positive effect of decreasing mitochondrial activities without cytotoxicity caused by
oxidative stress by regulating the interaction between glycans and receptors on the skin
cell surface [105].

3.4. Prebiotic Activity

The prebiotic properties of algae polysaccharides enable them to play an important
role in regulating human intestinal health [106]. For laminarin, it has been confirmed
in vitro that it cannot be hydrolyzed by hydrochloric acid under physiological conditions,
nor by homogenates of the human digestive system [14,107]. Since laminarin is resistant to
hydrolytic enzymes in the human upper digestive tract, it can reach the intestinal flora [108].
Animal experiments have shown that adding laminarin to the diet of mice can significantly
reduce the Firmicutes to Bacteroidetes ratio in the intestines, indicating that it can enhance
the high-energy metabolism of the intestinal microbiota to reduce the side-effects of high-
fat diets [109]. In addition, laminarin oligosaccharides are beneficial for the growth of
Bifidobacterium animalis and Lactobacillus casei, also increasing the production of short-chain
fatty acids, such as lactic acid and acetic acid [110].

4. Fucoidan

Fucoidan is a sulfated polysaccharide that consists mainly of fucose repeating units
besides several other monosaccharide residues. It is commonly found in brown sea-
weed [111,112], and has also been reported in echinoderms and some lower plants [113].
Fucoidan typically acts as a structural polysaccharide in the cell walls of brown macroalgae,
with its relative amount ranging between 4 and 8% of the total dry weight [114]. Since
fucoidan was first isolated in 1913, the structure of fucoidans from different brown sea-
weeds has been studied. Seaweed fucoidan is a heterogeneous material, with varying
composition of carbohydrate units and non-carbohydrate substituents [115]. Fucoidan
is mainly composed of fucose and sulfate groups (Figure 4). For example, the fucoidan
from bladder wrack (Fucus vesiculosus) has a simple composition and contains only fucose
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and sulfate groups (44.1% fucose, 26.3% sulfate) [116]. In addition, it might also contain
other monosaccharides (mannose, galactose, glucose, xylose, etc.), uronic acid, and even
acetyl groups and proteins. For example, the fucoidan from Fucus vesiculosus contains 84%
fucose, 6% xylose, 7.3% galactose, and 2% mannose [117]. The fucoidan found in Fucus
distichus is composed of 51.6% fucose, 2.7% xylose, 1.5% galactose, 0.7% mannose, and 0.2%
glucose [118]. Comprehensive analysis concluded that the fucose content of fucoidans is in
the range of 4.45–84%, besides 1.44–49% galactose, 0.2–45% glucose, and 0.3% to 16% xy-
lose and mannose. As a heterogeneous polymer, fucoidan exhibits considerable structural
diversity that makes it difficult to draw general conclusions. Moreover, its structure cannot
be described solely based on monosaccharide composition.

Figure 4. Structure and biological effects of fucoidan (A: Ascophyllum nodosum and Fucus vesiculosus;
B: Saccharina japonica, adapted from literature [119–121]).

The structural variety of fucoidans is to a large extent related to the different types
of brown algae they are found in. Generally, α (1→3) and/or (1→4) glycosidic bonds
constitute the main chain of the macromolecules, dominating in most backbone structures.
The presence of sulfate groups at the C-2, C-4 and or C-3 position is another important
feature [94,122–127]. Due to the structural heterogeneity of fucoidans, the degradation
of fucoidan requires a large set of enzymes of different activities and specificities [128].
Fucoidanase are mainly from marine bacteria, invertebrates and sometimes fungi. Similar
to the above mentioned polysaccharide-degrading enzymes, endo-type fucoidanase pro-
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duce fuco-oligosaccharides while exo-type fucosidase leads to the formation of mono- or
oligosaccharides with a small degree of polymerization [129]. Natalie et al. purified a new
fucoidanase and hydrolyzed fucoidan without desulfation to form oligosaccharides rang-
ing from 10 to 2 fucose units plus fucose [130]. Dong et al. discovered a new α-L-fucosidase
from marine bacterium Wenyingzhuangia fucanilytica, and found that Alf1_Wf was capable
of hydrolyzing α-1,4-fucosidic linkage and synthetic substrate. Besides, Alf1_Wf could
act on partially degraded fucoidan [131]. Compared to other brown polysaccharides,
there are few studies on the enzymatic degradation of fucoidan and the function of fuco-
oligosaccharides, whereas the functional investigation of biological activities, such as
anti-obesity, antivirus, antitumor, antidiabetic, and antioxidative effects has been widely
proven. It is generally believed that fucoidan can become an important substance in the
functional food and nutrition and health industries [132,133].

4.1. Antitumor Activity

Fucoidan has significant antitumor activity against liver cancer, stomach cancer, cer-
vical cancer, lung cancer, and breast cancer [113,134–138]. The underlying mechanism
includes the inhibition of tumor cell proliferation, stimulating tumor cell apoptosis, block-
ing tumor cell metastasis, and enhancing various immune responses [136,139–141]. Low
molecular weight fucoidan (LMWF), for instance, triggers G1-block and apoptosis in human
colon cancer cells (HCT116 cells) through ap53-independent mechanisms [142]. Through
the assessment of microtubule-associated proteins and the accumulation of Beclin-1, fu-
coidan is also found to induce autophagy in human gastric cancer cells (AGS cells) [143].
The polysaccharide induces the apoptosis of HTLV-1-infected T-cell lines mediated by cyto-
statics that downregulate apoptosis protein-2. The use of fucoidan in vivo thus severely
inhibits the tumor growth of subcutaneously transplanted HTHT-1-infected T-cell lines
in immunodeficient mice [138]. In addition, fucoidan activates the caspase-independent
apoptotic pathway in MCF-7 cancer cells by activating ROS-mediated MAP kinase and
regulating the mitochondrial pathway mediated by Bcl-2 family proteins [144]. Similarly,
fucoidan has shown antitumor activity against PC-3 (prostate cancer), HeLa (cervical
cancer), A549 (alveolar cancer), and HepG2 (hepatocellular carcinoma) cells [145].

4.2. Antiviral and Anti-Inflammatory Activity

Fucoidans isolated from different seaweed species have potential antiviral activity.
For instance, they can inhibit the replication of enveloped viruses, including the human
immunodeficiency virus (HIV) and the herpes simplex virus (HSV) [146]. According to
Queiroz et al. [147], fucoidans from Dictyota mertensii, Lobophora variegata, Spatoglossum
schroederi, and Fucus vesiculosus inhibit the HIV reverse transcriptase (RT) enzyme, while
other studies have shown that they also reduce the amount of the HIV-1 p24 antigen [148].
Compared with other antiviral drugs currently used in clinical medicine, the inhibitory
effect of fucoidan is accompanied by lower cytotoxicity. According to one potential mecha-
nism, fucoidan prevents viruses from entering the cells by changing the characteristics of
the cell surface. The polysaccharide may also directly interact with viral enzymes or viral
proteins on the surface of the pathogen.

Many studies have reported the blocking effect of fucoidan on HSV infection. Fledman
et al. isolated different fucoidan components from Leathesia difformis and verified the selec-
tive antiviral activity of different components against HSV-1 and HSV-2 [149]. Fucoidan
extracted from Undaria pinnatifida has shown antiviral activity against 32 HSV clinical
strains, including 12 ACV-resistant (4 HSV-1 and 8 HSV-2) and 20 ACV-susceptible ones.
Judging by the survival rate and lesion score, oral fucoidan can protect mice from HSV-1
infection by stimulating cytotoxic T lymphocytes, natural killer activity, and neutralizing
antibodies [150].

The above findings clearly indicate the potential antiviral activity of seaweed fu-
coidans, which can also strengthen the immune response of the host and achieve multi-
channel and multi-level regulation of the immune system [151,152]. The polysaccharide is
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able to prevent virus transmission by directly inhibiting virus replication and stimulating
innate and adaptive immune defense functions. The immunomodulatory activity of fu-
coidan is another hot research topic. Numerous studies have already confirmed fucoidan
to exhibit an anti-inflammatory effect through immune regulation (Table 1). This involves
the polysaccharide binding to different receptors, e.g., the Toll-like receptors (TLRs) of
monocytes, such as dendritic cells (DCs) and macrophages, and thereby initiating the
release of pro-inflammatory factors: cytokines and chemokines. They also suppress the
expression of NO synthase (iNOS) and cyclooxygenase (COX)-2 at the protein level, and
dose-dependently inhibit the production of nitric oxide (NO) and prostaglandin E2 (PGE2).

Table 1. Monosaccharide composition, molecular weight, concentration, sulfation degree and anti-inflammatory mechanism
of different fucoidans.

Brown Seaweed Monosaccharide Composition Molecular
Weight Concentration Sulphate

Content (%) Mechanisms References

Cladosiphon
novae-caledoniae

Fucose 73 mol%,
Xylose 12 mol%

Mannose 7 mol%
- 19.35 ng/µL;

80.64 ng/µL 14.5% Inhibited COX-1 and COX-2 [153]

Sargassum horneri Polyphenols 3.9% Mw > 30 kDa 25–100 µg/mL 12% Decreased production of
TNF-α, IL-6, NO and PGE2 [154]

Laminaria japonica

Fucose 79.49%
Xylose 1.08%

Mannose 1.84%
Galactose 16.76%
Rhamnose 0.82%

104.3 kDa 25 µg/mL 30.72%

Decreased production of
TNF-α, IL-1β, IL-6, NO,

iNOS, and COX-2
expression; downregulation

of MAPK and NF-κB
signaling pathways

[155]

Turbinaria decurrens

Fucose 59.3%
Xylose 11.4%

Galactose 12.6%
Mannose 9.6%

- 50 mg/kg 23.51%
Reduced the expression of
genes of COX-2, IL-1β, the
NF-κB signaling pathway

[156]

Turbinaria ornata

Fucose 86.4 mol%
Rhamnose 0.4 mol%
Galactose 1.7 mol%
Glucose 0.8 mol%

- 25–100 µg/mL 38.3%

Suppressed the expression of
COX-2 and pro-inflammatory

cytokines in LPS-induced
RAW 264.7 macrophages

[157]

Undaria pinnatifida

Fucose 50.9%
Xylose 4.2%

Galactose 44.6%
Mannose 0.3%

- 50 mg/kg;150
mg/kg

Reduced the COX-2
expression dose dependently [112]

Ecklonia cava

Fucose 77.9 mol%
Rhamnose 2.3 mol%
Galactose 10.1 mol%

Glucose 2.2 mol%
Xylose 7.5 mol%

- 50–100 µg/mL 39.1%
Reduced NO production

and levels of TNF-α, IL-1β,
and IL-6

[158]

Fucus vesiculosus

Molar rate
1:0.03:0.02:0.04:0.2:1.2 for

Fucose, Galactose, Mannose,
Xylose,

Uronic acid, and sulfate

- 30–60 mg/kg 27%
Inhibition of COX,

hyaluronidase, and MAPK
p38 enzymes.

[159]

Cladosiphon
okamuranus

Fucose 30.9%
Xylose 0.7%

Glucose 2.2%
Uronic acid 23.4%

- 4.0 mg/kg 15.1%
Inhibition of neutrophil

extravasation
into peritoneal cavity

[115]

Fucus vesiculosus Fucoidan - 0–100 mg/mL

Inhibited the release of nitric
oxide, IL-1b, TNF-a,

prostaglandin E2 and
monocyte

chemoattractant protein-1 by
inhibiting NF-κB, Akt and
MAPK kinases activation

[160]

Sargassum
hemiphyllum Fucose 210.99 mmol/g - 100 mg/mL 38.99.4%

Inhibition of IL-1b, TNF-a,
and reduction of IL-10, IFN-c

in production LPS treated
cells

[161]

Macrocystis pyrifera

Fucose 25.77%
Galactose 3.93%
Glucose 1.14%

Mannose 1.12%
Xylose 0.84%

Uronic acid 5.54%

- 5-100 µg/mL 27.32%

Delayed the apoptosis and
promote pro-inflammatory

cytokine production in
human neutrophils

[151]

Ascophyllum
nodosum

Fucose 39.8%
Galactose 3.37%
Glucose 0.88%

Mannose 0.72%
Xylose 3.68%

Uronic acid 1.72%

- 50–100 µg/mL 24.07%

Delayed the apoptosis and
promote pro-inflammatory

cytokine production in
human neutrophils

[151]
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Fucoidan can enhance the various beneficial effects of lactic acid bacteria on immune
function by improving Th1/Th2 immune balance [162], and can also treat gastric mucosal
damage caused by oral aspirin through its ability to regulate immune response and reduce
ulcers’ inflammation [163]. During in vivo experiments, Li et al. evaluated the potential
inhibitory activity of fucoidan on the myocardial ischemia-reperfusion (I/R) model in
rats. The results showed a significant effect by modulating the inflammatory response
through the inactivation of high mobility group box 1 (HMGB1) and nuclear factor kappa
B (NF-κB) [164].

It has been reported that the destruction of connective tissue during inflammatory
diseases such as chronic wounds, chronic inflammation, or rheumatoid arthritis is a result
of a continuous supply of inflammatory cells and increased production of inflammatory
cytokines and matrix proteases [165]. Selectins expressed on endothelial cells, leukocytes,
and platelets contribute to the interaction of leukocytes and platelets on the side of vas-
cular injury, thereby enhancing the inflammatory response during the arterial response
to injury [166]. Fucoidan can effectively inhibit the interaction between selectins and
their ligands leading to reduced inflammation at an early stage. Therefore, fucoidan use
seems beneficial for treating certain inflammations accompanied by uncontrolled extracel-
lular matrix degradation. The above studies have laid the preclinical foundation for the
development of fucoidans as a new generation of polysaccharide immunomodulators.

4.3. Antidiabetic Activity

Studies have shown that fucoidan can also exhibit antidiabetic effects by reducing
postprandial hyperglycemia and pancreatic β-cell damage, increasing insulin secretion,
and regulating glucose metabolism to reduce blood sugar [167,168]. Fucoidan has a sig-
nificant inhibitory effect on the three starch-hydrolyzing enzymes; it is a non-competitive
inhibitor of α-amylase and amyloglucosidase, while being a competitive inhibitor of α-
glucosidase [169]. Its inhibitory mechanism lies in the formation of hydrogen bonds [170]:
the hydroxyl groups of fucoidan, especially the ones at the C-terminus that may be con-
nected to fucose, can easily form hydrogen bonds with the amino acids of the two enzymes.
The negatively charged oxygens of the sulfated groups of the polysaccharide (and the ones
connected to C-2 and/or C-3 in particular) further facilitate the formation of hydrogen
bonds or salt bridges with the proteins, resulting in strong interactions, thereby inhibiting
the enzyme. Furthermore, inhibition of dipeptidyl peptidase-IV (DPP-IV) is one of the
possible mechanisms involved in the antihyperglycemic activity of fucoidan. Dipeptidyl
peptidase-IV (DPP-IV) is an enzyme that is involved in the inhibition of the rapid degrada-
tion of incretin hormones, which prevents postprandial hyperglycemia. Inhibiting DPP-IV
prolongs the action of incretins, which reduces glucose production and increases insulin
production [171]. Fucoidan can be used as a dipeptidyl peptidase-IV (DPP-IV) inhibitor
to block DPP-IV action thereby prolonging the half-life and biological activity of incretin
hormones [172], which play a crucial role in glucose homeostasis by promoting α and β

cell function [173]. It also downregulates the gastric emptying and gastric acid secretion to
reduce the postprandial glucose level [174,175]. Olga N. Pozharitskaya et al. have found a
concentration-dependent inhibition of the enzyme DPP-IV by fucoidan at the concentration
range of 0.02–200 µg/mL, The IC50 was 11.1 µg/mL and the maximum inhibition degree
was 60–75% [176].

In addition, fucoidan may have a positive effect on antidiabetics by reducing β cell
damage in the pancreas and increasing insulin secretion. According to a complex mecha-
nism, the polysaccharide enhances the activity of sirtuin 1, thereby inducing deacetylation
and upregulation of FOXA2 and p-FOXO-1 to promote the expression of PDX-1 and its reg-
ulation of insulin synthesis, thereby reducing β cell apoptosis and dysfunction in mice [177].
Furthermore, fucoidan is able to prevent the occurrence of diabetic nephropathy (DN)
associated with spontaneous diabetes by inhibiting the NF-κB signaling pathway and
lowering blood sugar in a non-toxic way [178]. It has also been found that a combination
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of fucoidan and traditional Chinese medicine has a beneficial effect on hyperglycemia and
DN in rats [179].

4.4. Other Biological Activities

Heparin is a highly sulfated polysaccharide found in mammalian tissues and has been
used as an anticoagulant for more than 50 years [180]. However, the clinical use of heparin
is known to cause various side effects, such as excessive bleeding, thrombocytopenia,
mild transaminase elevation, and hyperkalemia [181]. Therefore, it is necessary to find
alternative drugs with safe and effective anticoagulant properties. It is worth noting that
fucoidan has shown effectiveness for blood clotting, and many studies suggest it as an
alternative to heparin [182,183]. Through studying the anticoagulant activity of fucoidans
isolated from nine species of brown seaweed, the ones from Ecklonia kurome and Hijikia
fusiforme were found to have the strongest effect in terms of thromboplastin time (TT) and
activated partial thromboplastin time (aPTT) [184]. The mechanism of fucoidan action
differs from that of heparin since it can be used in the cases where the application of heparin
itself, for some reason or other, is ineffective. The anticoagulant action of fucoidans (as well
as that of heparin) can be quickly blocked by the intravenous introduction of biocompatible
cationic polymers such as protamine sulfate and VIM-DEMC (a synthetic copolymer of
1-vinylimidazole with diethyl maleate) [185]. Fucoidans may inhibit thrombin activity by
directly acting on the enzyme or through the activation of thrombin inhibitors, including
antithrombin III and heparin cofactor II [186].The position of the sulfate group on the sugar
residues was found to be an important factor, with the concentration of C-2 sulfated and
C-2,3 disulfated residues considerably affecting anticoagulant activity [123].

Fucoidan also has a positive effect in treating and preventing obesity. It has been
shown to suppress the formation of 3T3-L1 adipocytes, thus inhibiting fat accumulation,
by downregulating fatty acid binding proteins, acetyl-CoA carboxylase, and peroxisome
proliferation-activated receptor γ. [187]. Furthermore, Fucus vesiculosus-derived fucoidan
was found to hinder fat accumulation in 3T3-L1 adipocytes by stimulating lipolysis through
increased hormone-sensitive lipase expression and reduced glucose uptake [188].

At present, there is limited information available regarding the antiallergic effect
of fucoidan. Recent studies have shown that the orally administered polysaccharide
suppresses allergic symptoms by promoting the expression of galectin-9 mRNA and serum
galectin-9 levels, thereby preventing immunoglobulin E (IgE) binding to mast cells [189].

5. Conclusions

This review summarized the physicochemical and structural properties of polysac-
charides and oligosaccharides derived from brown algae. Their structure and composition
determine their biological activity and thereby their nutritional and therapeutic potentials.
Although more is now known regarding their biological activities in vitro and significant
advance has been made in their extraction from natural sources and modifications, further
structural-activity investigation is necessary. Sustainable technologies must be established
for the purification of the polysaccharides and the production of oligosaccharides, mini-
mizing energy and chemical consumption while allowing upscaling of consistent quality
and freedom from side-effect causing impurities. Lastly, research on catalytic enzymes,
including alginate lyase, laminarinase, fucoidanase, and fucosidase, with high stability and
desired substrate specificity is needed to enable the production of high-purity oligosac-
charides with uniform structure and degrees of polymerization. Progress in enzyme and
metabolic engineering will further promote the utilization of brown algae polysaccharides
in the food and pharmaceutical industries.
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