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Abstract

Background

Genome-wide association study (GWAS) is a powerful tool to identify novel pharmacoge-

netic single nucleotide polymorphisms (SNPs). Leukotriene receptor antagonists (LTRAs)

are a major class of asthma medications, and genetic factors contribute to variable

responses to these drugs. We used GWAS to identify novel SNPs associated with the

response to the LTRA, montelukast, in asthmatics.

Methods

Using genome-wide genotype and phenotypic data available from American Lung Associa-

tion - Asthma Clinical Research Center (ALA-ACRC) cohorts, we evaluated 8-week change

in FEV1 related to montelukast administration in a discovery population of 133 asthmatics.

The top 200 SNPs from the discovery GWAS were then tested in 184 additional samples

from two independent cohorts.

Results

Twenty-eight SNP associations from the discovery GWAS were replicated. Of these,

rs6475448 achieved genome-wide significance (combined P = 1.97 x 10-09), and subjects

from all four studies who were homozygous for rs6475448 showed increased ΔFEV1from

baseline in response to montelukast.
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Conclusions

Through GWAS, we identified a novel pharmacogenomic locus related to improved monte-

lukast response in asthmatics.

Introduction
Two major classes of leukotriene modifiers, including leukotriene antagonists (e.g. montelu-
kast) and lipoxygenase inhibitors (zileuton), are commonly prescribed for management of
asthma symptoms. Montelukast [1, 2] targets the cysteinyl leukotriene receptors (CysLTRs) at
the cell membrane to block binding of cysteinyl leukotrienes [3], whereas zileuton [4, 5], a
5-lipoxygenase (5-LO) antagonist, exerts its effects upstream of montelukast through inhibi-
tion of 5-LO mediated leukotriene biosynthesis from arachidonic acid [6–8]. As with all
asthma medications, therapeutic responses to montelukast are highly variable, with some
patients responding preferentially to leukotriene modifiers vs. other medications, such as
inhaled corticosteroids [9–11]. However, 40–50% of patients do not respond to this class of
medication and require additional therapeutic intervention [12]. Mounting evidence suggests
that this heterogeneity in treatment response to montelukast is due, in part, to patient genetics
[10, 13–15].

To date, multiple genes within the leukotriene pathway, in addition to networks for immune
response, have been implicated in differential treatment responses to montelukast, including:
corticotrophin releasing hormone receptor 1 (CRHR1) [16, 17], histone deacetylase 2 (HDAC2)
[18], arachidonate 5-lipoxygenase (ALOX5) [10, 11, 13, 14, 16, 19], arachidonate 5-lipoxygen-
ase-activating protein (ALOX5AP) (20–22), cysteinyl leukotriene receptor 2 (CYSLTR2) [13, 16],
ATP-binding cassette, sub-family C (CFTR/MRP),member 1 (ABCC1) [10, 16], leukotriene A4
hydrolase (LTA4H) [19–22], leukotriene C4 synthase (LTC4S) [13, 14, 16, 19, 23], solute carrier
organic anion transporter family,member 2B1 (SLCO2B1) [16, 24], thromboxane A2 receptor
(TBXA2R) [25–27], prostaglandin D2 receptor (DP) (PTGDR) [23], and interleukin 13 (IL-13)
[28]. However, evidence for genetic associations with montelukast treatment response are
available only from candidate gene studies, and additional pharmacogenetic loci for montelu-
kast likely remain undiscovered.

We hypothesized that we could identify novel loci associated with montelukast response
using a GWAS approach. We first tested our hypothesis in a discovery GWAS using genotype
and phenotype data from two montelukast treatment arms of the Leukotriene Modifier or Cor-
ticosteroid or Corticosteroid-Salmeterol (LOCCS) trial [29] and Effectiveness of Low Dose
Theophylline as Add On Therapy for the Treatment of Asthma (LODO) trial [1]. We then
tested our top SNP associations for replication in two independent cohorts taking montelukast
from the Childhood Asthma Research and Education (CARE) Network trials, the Characteriz-
ing the Response to a LT Receptor Antagonist and Inhaled Corticosteroid (CLIC) trial [30] and
the Pediatric Asthma Controller Trial (PACT) [31].

Materials and Methods

Clinical Cohorts and Phenotyping
The discovery cohort included two asthmatic clinical trials with treatment arms evaluating monte-
lukast response, the American Lung Association Asthma Clinical Research Center (ALA-ACRC)-
supported trials, the Leukotriene Modifier Or Corticosteroid or Corticosteroid-Salmeterol Trial
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(LOCCS) and Effectiveness of Low Dose Theophylline as Add On Therapy for the Treatment of
Asthma (LODO) [1, 29]. While the LOCCS and LODO clinical trials each analyzed over 400 sub-
jects, for this study, we evaluated a sub-population consisting only of the montelukast treatment
arms from these studies that consisted of 133 individuals. For replication, publicly archived,
genome-wide SNP data and clinical phenotype information from patients taking montelukast as
part of the Childhood Asthma Research and Education (CARE) Network- Characterizing the
Response to a LT Receptor Antagonist and an Inhaled Corticosteroid and Pediatric Asthma Con-
troller Trial (CLIC and PACT) (30, 31) (total sample size = 184), were used (dbGaP Study Acces-
sion: phs000166.v2.p1 (http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id =
phs000166.v2.p1)). The data evaluated in this study were obtained from four previously published
clinical trials (clinicaltrials.gov identifiers: NCT00156819 (LOCCS); NCT00046644 (LODO);
NCT00272506 (PACT); NCT00000622 (CLIC)) [1, 29–31]. Study participants for these trials pro-
vided written informed consent, and this consent procedure was approved by the institutional eth-
ics committee/IRB. The Brigham andWomen’s Hospital Institutional Review Board approved
this study. For all cohorts, subjects were consented for genetic studies and their data was de-identi-
fied. Table 1 provides a summary of the populations evaluated in this analysis.

For all populations, the primary outcome phenotype was defined as a change in FEV1 fol-
lowing 8 weeks of treatment while on montelukast, minus FEV1 at baseline (ΔFEV1), adjusted
for age, gender, and race.

Genotyping and Quality Control (QC)
Genome-wide genotyping of the LOCCS and LODO trials was conducted using the Illumina
HumanHap550 chip (San Diego, CA). For CLIC and PACT, genotyping was performed as
described (30, 31), using the Genomewide Affymetrix SNP 6.0 Array (Santa Clara, CA). The
software PLINK v.1.07 [32] was used for QC of genotype data. SNPs with a study-wise missing
data proportion above 0.05 were removed from the analysis. SNPs failing to meet Hardy-Wein-
berg equilibrium (HWE) (P< 0.0001), in addition to SNPs with a minor allele frequency
(MAF)< 5% and more than 10% missing genotypes, were also dropped from the analysis. A
total of 532,264 SNPs with acceptable quality were genotyped and analyzed in the discovery
GWAS for both LOCCS and LODO, and 591,268 SNPs were genotyped and analyzed in both
CLIC and PACT.

Table 1. Demographic information for the clinical cohorts evaluated in this study.

LOCCS LODO CLIC PACT

N 64 69 126 58

Age, mean yrs. (SD) 35.2 (14.9) 40 (15) 11.7 (3.4) 9.9 (2.3)

Sex- male % 38.9 30.6 40.6 40.2

% European 64.3 68.3 53.7 56.7

% African 8.3 7.3 20.2 13.3

% Asian 27.4 24.4 26.1 30

Mean (SD) change in FEV1, mL 11 (32.9) 21.1 (30.5) 1.9 (10) 2.5 (9.1)

Definition of abbreviations: N = number of subjects providing DNA samples evaluated in this study;

SD = standard deviation; FEV1 = forced expiratory volume in 1 second (mL); LOCCS = Leukotriene

Modifier Or Corticosteroid or Corticosteroid-Salmeterol Trial; LODO = Effectiveness of Low Dose

Theophylline as Add On Therapy for the Treatment of Asthma; CLIC = Characterizing the Response to a

LT Receptor Antagonist and Inhaled Corticosteroid trial; PACT = Pediatric Asthma Controller Trial.

doi:10.1371/journal.pone.0129385.t001
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Statistical Analysis
For the GWAS, an additive genetic association model was evaluated, adjusting for baseline
FEV1, age, race (self-reported ancestry) and gender as covariates, using PLINK. Due to small
sample sizes, both white and non-white subjects were included. However, the genomic inflation
factor values for the subset of montelukast treated patients in these populations was 1, indicat-
ing that minimal population stratification was present despite population racial heterogeneity.
Due to differences in genotyping platforms used, our analysis focused on the SNPs that were
genotyped in all four populations. For replication, the one-sided association P values from
261,076 SNPs that had the same direction of effect in the LOCCS and LODO discovery cohorts
were combined, and the top 200 SNPs (as ranked by combined P values) were then carried for-
ward for replication in CLIC and PACT. The one-sided P values of the SNPs that had the same
direction of effect (β) in LOCCS-LODO and at least one replication cohort, and that also met
nominal significance (P< 0.05) [33, 34] in at least one replication cohort, were combined
using a weighted Z-test [35] in ‘R version 3.0.2’ (http://www.r-project.org). SNPs with com-
bined P values below the multiple test correction threshold (P = 0.00025) were considered to be
replicated. The threshold for genome-wide significance for associated SNPs was determined
using the Bonferroni correction (P = 9.40 x 10−08). SNP P values below 10−05 were considered
suggestive of genome-wide significance.

Results
The discovery GWAS was conducted in LOCCS and LODO asthmatic cohorts to evaluate the
association of patient genotype with 8-week ΔFEV1 following treatment with montelukast (133
patients). Plotted results of the discovery GWAS are shown in Fig 1. Non-white subjects were
included, and after adjusting for age, race and gender as covariates, plots of the genomic-con-
trol adjusted P values demonstrated no evidence of population stratification. In LOCCS, none
of the SNPs exceeded the threshold for genome-wide significance (P = 9.40 x 10−08); however,
25 SNPs approached genome-wide significance (P<10−05), of which the top-ranked SNP
(rs12659144) achieved a P value of 2.2 x 10−06, although it did not also replicate in LODO. In
LODO, one SNP, rs2247977, achieved genome-wide significance (P = 4.95 x 10−08), although it
did not also replicate in LOCCS.

For replication of the discovery SNP associations, the P values of the SNPs with the same
direction of effect in LOCCS and LODO were combined, and the top-ranked 200 SNPs from
LOCCS-LODO were carried forward for evaluation in CLIC and PACT (S1 Table). Four SNPs,
s6475448, rs7794356, rs953977 and rs1364805, survived correction for multiple testing (com-
bined P< 0.00025) (Table 2). Three of these SNPs, rs6475448, rs7794356, and rs953977, also
approached or achieved genome-wide significance (Table 2).

The top-ranked SNP, rs6475448, achieved genome-wide significance (combined P = 1.97 x
10−09) (Table 2). Patients from all four studies who were homozygous for rs6475448 showed
markedly increased mean ΔFEV1 from baseline in response to montelukast (Fig 2). The largest
increase between the variant homozygous and reference genotypes was observed for LOCCS,
wherein the rs6475448-AA was associated with a LS-mean ΔFEV1 of 344 mL vs. -4.66 mL for
rs6475448-GG, followed by CLIC (285 mL for rs6475448-AA vs. -31.7 mL for rs6475448-GG),
PACT (101 mL for rs6475448-AA vs. -10.6 mL for rs6475448-GG) and LODO (172 mL for
rs6475448-AA vs. 192 mL for rs6475448-GG) (Fig 2).

Discussion
Leukotriene modifier drugs represent a major treatment modality for asthma patients, and the
ability of physicians to determine which patients are likely to benefit from these drugs would
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greatly enhance therapeutic outcomes for asthmatics. We undertook a genome-wide interro-
gation of 532,264 SNPs to evaluate association of genotype with 8-week ΔFEV1 following treat-
ment with montelukast in four asthma clinical trials (LOCCS, LODO, CLIC and PACT). We
identified four SNPs that replicated in LOCCS-LODO, CLIC and PACT, of which one variant,
rs6475448, achieved genome-wide significance (combined P = 1.97 x 10−09) (Table 2). rs6475448

Table 2. Replicated*GWAS SNPs.

LOCCS LODO CLIC PACT

SNP Minor Allele Chr. Chr. Location Gene Symbol β (mL) P value β (mL) P value β (mL) P value β (mL) P value Joint P Value‡

rs6475448 A 9 20487142 MLLT3 187 1.22x10-04 23.7 3.08x10-01 129 4.62 x10-05 57.6 3.29 x10-02 1.97 x10-09

rs7794356 A 7 70376665 WBSCR17 215 2.86x10-04 47.8 1.39 x10-01 110 1.69 x10-04 25.3 2.04 x10-01 9.15 x10-07

rs953977 T 13 39598622 -150 5.57x10-03 -116 2.49 x10-03 -85.8 4.48 x10-03 -41.1 1.25 x10-01 5.26 x10-05

rs1364805 T 4 107893297 55.1 1.57x10-01 154 1.45 x10-04 74.9 6.07 x10-03 25.1 1.80 x10-01 1.69 x10-04

Definition of abbreviations: “SNP” = single nucleotide polymorphism; “Chr.” = chromosome (1–22); “Chr. Location.” = chromosomal position of listed SNP;

“β” = effect size estimates (ΔFEV1, (mL)) for the minor allele.

*Table lists GWA results adjusted for baseline FEV1, age, race and gender as covariates (additive genetic model), for the SNPs that met criteria for

replication in all cohorts (see Methods) and remained significant after correction for multiple testing. Minor allele frequencies for all SNPs in all cohorts is

>5%.
‡Combined P value for all cohorts.

doi:10.1371/journal.pone.0129385.t002

Fig 1. Results of the discovery GWAS.Manhattan plots (A andB) contain −log P values (y-axis) associated with 8-week change in FEV1 after montelukast
treatment, for 532,264 genotyped SNPs organized by chromosome (x-axis), for LOCCS (A) and LODO (B). The threshold for genome-wide significance and
suggestive genome-wide significance are indicated as blue and red lines, respectively, in the Manhattan plots. Q-Q plots (C andD) demonstrate the
observed −log P values vs. expected −log P values, for SNPs from LOCCS (C) and LODO (D) populations. In all plots, individual SNPs are represented as
filled circles.

doi:10.1371/journal.pone.0129385.g001
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was a novel locus associated with an improvement in response to montelukast in four indepen-
dent asthmatic populations.

rs6475448 is present withinMLLT3, which is proposed to regulate cell fates for megakaryo-
cytes and early erythroid cells in humans [36]. Functional and molecular studies have also
shown thatMLLT3 acts as a positive regulator of erythroid and megakaryocyte differentiation
[36]. Red blood cell precursors including megakaryocytes and erythroid cells are capable of
transforming arachidonate and LTA4 to bioactive eicosanoids [37, 38]. Megakaryocytes give
rise to platelets, which are also activated in asthmatics and contribute to leukotriene production
during inflammation [39]. In our study, rs6475448 was associated with a genotype-dependent
improved response to montelukast in LOCCS-LODO, CLIC and PACT (Table 2 and Fig 2).
While the SNP was intronic, and thusMLLT3 expression was unlikely to be affected, using the
web server SCAN [40], we found that this SNP is also an expression quantitative trait locus
(cis-eQTL) for SHROOM3, a gene that encodes a cytoskeleton protein responsible for cellular
shape during morphogenesis [41], and can affect this gene’s expression in the HapMap

Fig 2. Improvement in lung function related to montelukast treatment, by rs6475448 genotype. The
least-squares (LS) means (adjusted for study, race and gender) and 95% confidence intervals for ΔFEV1

related to montelukast treatment were generated using R (http://cran.r-project.org/web/packages/lsmeans/
lsmeans.pdf), and plotted for each study (panels), by rs6475448 genotypes: homozygous reference (“GG”:
LOCCS = 32; LODO = 38; CLIC = 25; PACT = 65), heterozygous (“GA”: LOCCS = 28; LODO = 21;
CLIC = 30; PACT = 75) and homozygous variant (“AA”: LOCCS = 9; LODO = 5; CLIC = 5; PACT = 5).

doi:10.1371/journal.pone.0129385.g002
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lymphoblastoid cell lines (LCLs). Therefore, rs6475448, and its eQTL, SHROOM3, may poten-
tially represent novel candidate loci for asthma, and/or treatment response to leukotriene
modifiers.

Our study has several limitations. First, as is common to many pharmacogenomic GWAS,
our sample size is modest; however, our sample size is comparable to recently published
GWAS of symptomatic response to corticosteroids in asthma [33–34]. In addition, we were
able to replicate four SNPs in multiple independent, montelukast-treated populations, provid-
ing supportive evidence of true positive associations. Furthermore, because the cohorts evalu-
ated in this study included non-white subjects, racial heterogeneity may also represent a major
limitation of the study; however, we accounted for this by including race, age and gender as
covariates in our GWAS models, and saw no evidence of population stratification based on
genomic inflation factor and Q-Q plot behavior. A third limitation is that the genotyping plat-
forms used to generate the genome-wide genotype data differed among the four cohorts. To
overcome this, we focused our analysis on the SNPs in common between platforms. A fourth
limitation is that the ages of our replication and discovery populations differed; while LOCCS
and LODO evaluated adults, a pediatric population comprised CLIC and PACT montelukast
cohorts. While this supports the generalizability of the reported associations, one reason for
failure to replicate additional loci may lie in the innate differences in response between children
and adults. For instance, we recently described a pharmacogenetic locus for corticosteroid
response [33] that was replicably associated in children, but not in adults. A fifth limitation is
that, while we were able to identify a novel montelukast treatment-related gene through
GWAS, we did not also find SNPs in reported candidate genes for montelukast response (e.g.
CYSLTR1) from among the replicated SNP data, which could reflect a limitation of the sensitiv-
ity of GWAS, in addition to differences in genotyping platforms used in this study. Finally,
additional mechanistic and functional studies will be necessary in order to discern the potential
role ofMLLT3 in montelukast response.

Conclusions
Through a GWAS of differential montelukast response in four asthmatic cohorts, we have
identified a genome-wide significant SNP, rs6475448, which is present withinMLLT3. This
SNP may represent a novel mechanism for differential responses to leukotriene modifying
agents in asthma.

Supporting Information
S1 Table. Table of top 200 SNPs from LOCCS-LODO tested for replication in CLIC and
PACT.
(DOCX)
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