
Introduction

In its contribution to tumourigenesis the protein kinase family is
overrepresented compared to other protein families [1, 2].
Mutations of kinase genes (point mutations, gene amplification,
deletion, insertions and translocations) in cancer are common.
In some disease settings, certain kinases are known to be

mutated with high incidence. In melanoma BRAF is often
mutated (up to 70%) [3], in non-small lung cancer EGFR is asso-
ciated with the disease [4] and recently some myeloproliferative
neoplasms were described to harbour Jak2 mutations with high
incidence [5]. Based on the structural knowledge about Janus
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kinases, we discuss the recently discovered disease-driver
mutations in Jaks and the currently available Jak inhibitors. We
address chemical genetics approaches which may be applied to
Jaks to further elucidate their role in biology as well as relevant
drug targets.

Jaks in disease

The family of Janus kinases comprises four mammalian members:
Jak1, Jak2, Jak3 and Tyk2. While Jak1, Jak2 and Tyk2 are ubiqui-
tously expressed, Jak3 is confined mainly to cells of the
haematopoietic system [6–8]. Janus kinases (Jaks) as mediators
of cytokine signalling are involved in a variety of biological
processes including haematopoiesis and the regulation of the
immune system. The Jak binding preference of cytokine receptors
(see Table S1; [7, 9–12]) and the specificity of the various sig-
nalling proteins for phosphotyrosine motifs within this receptor,
along with other factors, determines the signalling characteristics
of the different cytokines.

Evidently, Jaks are involved in inflammatory and immune
disorders in which cytokines play crucial roles (e.g. rheumatoid
arthritis and psoriasis) [13, 14] and in cytokine-dependent can-
cers such as multiple myeloma. Jak3 mutations and deletions
are described to lead to severe combined immunodeficiency
(SCID) [15]. Activating Jak2 fusion proteins (TEL-Jak2, PCM1-
Jak2, ETV6-Jak2 and SSBP2-Jak2) have been described to
evoke lymphoid and myeloid leukaemia and MPN-U [16–24]. In
2005, an acquired gain-of-function mutation affecting the
kinase-like domain of Jak2, V617F, was found in patients with
polycythemia vera, essential thrombocythemia and primary
myelofibrosis [25–29] (incidence: PV (99%), ET (50%), PMF
(50%); estimated 2–5 new cases per 100,000 per year; esti-
mated cases for PV, ET and PMF is 80,000–100,000 in the
United States) [30]. Gain of function mutations of Jak3 were
found in ALL and AMKL patients while activating mutations in
Jak1 have also been described in ALL (Table 1).

Jak2-V617F signal transduction

In murine bone marrow transfer models, introduction of the Jak2-
V617F mutation is sufficient to induce a PV phenotype [31–34].
Cytokine receptor binding is necessary for the transforming
potential of the Jak2-V617F mutant [31, 35], in obvious contrast
to the cytosolic TEL-Jak2 protein. The presence of the EpoR, TpoR
or GCSFR is required for cytokine-independent growth in Ba/F3
cells. Interestingly, these cytokine receptors form homodimers
upon ligand binding, thus bringing two constitutively activated
Jak2-V617F into close proximity. Furthermore mutations in the
TpoR were described in ET and PMF, and are known to activate
signal transduction [36–38].

The constitutively active Jak2 mutants have been shown to lead
to cytokine receptor-dependent constitutive activation of various

signalling proteins, such as STATs, MAPKinases and PI3K/AKT [25,
35, 39, 40]. Jak2-V617F was also described to promote G1/S
phase transition trough a redox-dependent regulation of cyclinD1
and p27 [41]. Signalling through Jak2-V617F has been described
to lead to genetic instability [42]. SOCS1 and SOCS3 mRNA up-
regulation has recently been reported in patients with Jak2-V617F-
associated myeloproliferative disorders [43, 44]. These proteins
are known to down-regulate Jak activity and mediate their degrada-
tion [45–48]. It was reported that Jak2-V617F may escape the
direct inhibition by SOCS3 [49]. In contrast, SOCS3 was recently
shown to negatively regulate Jak2-V617F activity via its kinase
inhibitory region and SH2 domain and to mediate Jak2-V617F
ubiquitination and degradation [50]. Despite this negative regula-
tion, the constitutive signalling capacity of Jak2-V617F was not
totally abrogated and higher levels of steady state Jak2-V617F were
observed to have higher levels of constitutive signalling [50]. In
patients with PV and PMF, the Jak2-V617F mutation frequently pro-
gresses to homozygosity through mitotic recombination, which is
less frequently observed in patients with ET [26] and in these MPN
the expression level was reported to reflect the allele load [51].
Animal studies also support the hypothesis that higher levels of
Jak2-V617F lead from a thrombocytic to an erythrocytic and a
fibrotic phenotype [32, 51, 52]. Thus, mechanisms interfering with
the negative regulation and degradation of activated Jaks could
considerably contribute to the development and progression of
MPD and Jak2-V617F-positive leukaemia by increasing the levels
of constitutively active Jak2 mutants. Epigenetic silencing of
SOCS3 and SOCS1 was recently reported in about 40% of patients
with Ph-negative chronic myeloid disorders [53, 54]. Negative reg-
ulation of Jak2-V617F by SOCS2 was also described and in the
same study inactivation of the SOCS2 gene by hypermethylation
was reported in Jak2-V617F positive leukaemic cell lines and in
MPN patient cells [55]. The expression and potential mutation of
SOCS proteins could be important clinical parameters in patients
carrying constitutively active Jak2 proteins.

Structure/function: the potential 
interest of the Jak domains 
as drug targets

The domain structure of Jaks (MW: 120–140 kD) is shown in
Figure 1. Due to the lack of crystallographic data, the struc-
ture–function relationship of the interaction between cytokine
receptors and Janus kinases still remains largely elusive as does
the exact sequence of events involved in Janus kinase activation.
Sequence similarities between Jak family members have led to the
description of seven Jak homology (JH) domains [56], which
match the domain structure of Jaks only partially. Only the JH1
and JH2 domains correspond to the kinase and pseudokinase
domain. The JH3 to JH7 regions are better described as a FERM
and an SH2 domain [56, 57].
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Jak Domain Mutation Validated effecta Diseaseb Corresponding
mutants in other Jaks

Ref.

Prl Sig

Jak2 Pseudokinase M535I (Exon12) � – ch-AMKL Jak3-M511 [82, 202]

F537I (Exon12) ni ni PV / [203]

K539L (Exon12) � � PV, IE / [40, 204, 205]

F537-K539delinsL (Exon12) � � PV, IE / [40, 204–207]

H538-K539delinsL (Exon12) ni ni PV, IE / [207, 208]

H538Q�K539L (Exon12) �
c

�
c PV, IE / [40, 205]

H538D�K539L�I546S
(Exon12)

ni ni PV / [205]

H538-K539del (Exon12) ni ni PV / [205]

V536-F547dup (Exon12) ni ni PV / [205]

V536-I546dup11 (Exon12) ni ni PV/IE / [207]

F537-I546dup10�F547L
(Exon12)

ni ni PV/IE / [207]

I540-E543delinsMK (Exon12) ni ni PV/IE / [207, 209]

R541-E543delinsK (Exon12) ni ni PV, IE / [207–209]

N542-E543del (Exon12) � � PV, IE / [40, 204–208]

E543-D544del (Exon12) ni ni PV, IE / [204, 205, 207, 210]

D544-L545del (Exon12) ni ni PV / [205]

K607N (Exon14) ni ni AML / [211]

L611S (Exon14) � � ch-B-ALL / [82, 212, 213]

C616Y �V617F (Exon14) ni ni PV / [214]

V617F (Exon14) � �

PV, ET, PM, HES,
CMML, SM, CNL,
JMML, RARS,
RA RCMD, RAEB,
AML, IE, RARS-T,
MDS/MPN-U,
MPN-U 

Jak1-V658
[25–29, 82, 208,
211, 215–221]

C618R�V617F (Exon14) ni ni PV CR: Jak3-A593 [222, 223]

D620E (Exon14) ni ni PV, leukocytosis / [224, 225]

�exon15�16 (�N622-D710) ni ni MDS/MPN-U / [226]

I682F (Exon16) � � ch-B-ALL / [97]

I682AQG (Exon16) ni ni DS-B-ALL / [97]

R683G (Exon16) � �
DS-B-ALL, B-
ALL

Jak1-R724 Jak3-
R657

[97, 188, 227, 228]

Table 1 Patient-derived mutations in Janus Kinases identified in haematological diseases*

Continued
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Jak Domain Mutation Validated effecta Diseaseb Corresponding
mutants in other Jaks

Ref.

Prl Sig

R683S (Exon16) � � DS-B-ALL, B-ALL
Jak1-R724 Jak3-
R657

[82, 97, 188, 227,
228]

R683T (Exon16) ni ni DS-B-ALL Jak1-R724 Jak3-R657 [227]

R683K (Exon16) � � DS-B-ALL Jak1-R724 Jak3-R657 [188]

�IREED ( � I682-D686del)
(Exon16)

� � DS-B-ALL / [229]

I682delinsMPAP (Exon16) ni ni DS-B-ALL / [188]

L681�I682delinsTPYEGMPGH
(Exon16)

ni ni DS-B-ALL / [188]

Kinase R867Q ni ni ch-B-ALL / [97]

D873N � � ch-B-ALL / [97]

T875N � � AMKL-cell line / [39]

P933R � � ch-B-ALL / [97]

Jak1 FERM I62V ni ni B-ALL, T-ALL / [186]

K204M ni ni B-ALL / [186]

R360W ni ni T-ALL / [186]

SH2 T478S – � AML / [230, 231]

S512L ni ni T-ALL / [186]

Pseudo-kinase V623A – � AML / [230, 231]

L624_R629>W ni ni ch-B-ALL / [97]

A634D � � B-ALL, T-ALL / [186]

S646F � � ch-B-ALL / [97]

L653F ni ni ch-T-ALL / [186]

V658F � �
T-ALL, AML, 
ch-B-ALL 

Jak2-V617 [96–98]

R724H � � B-ALL, T-ALL Jak2-R683 Jak3-R657 [186]

L783F ni ni T-ALL / [98]

Kinase R879C – – T-ALL / [186]

R879H ni ni T-ALL / [186]

R879S ni ni T-ALL / [186]

Jak3 FERM I87T � � TMD / [232, 233]

P132T � � AMKL, AML / [191, 231]

Table 1 Continued

Continued
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The FERM domain

The N-terminal FERM domain promotes binding to the membrane-
proximal box1/2 region of cytokine receptors [58–63]. The FERM

domains are clover-shaped domains comprising three subdo-
mains: subdomain F1 with a ubiquitin-like �-grasp fold, F2 with an
acyl-CoA-binding-protein-like fold, and F3, which has a PH-domain
(pleckstrin homology) fold [64]. Structural data of a growing

Jak Domain Mutation Validated effecta Diseaseb Corresponding
mutants in other Jaks

Ref.

Prl Sig

P151R�2851–3442del592 nid nid DS-TMD / [234]

splice.�exon2–5., �exon3–5 nie nie DS-TMD / [234]

splice.�exon3–5. , �exon3, 5 nie nie DS-AMKL / [234]

SH2 P434R ni ni DS-TMD / [234]

SH2-Psk-linker Q501H�R657Q �
f

�
f MGS cell line

(DS-AMKL)
/ [232]

Pseudo-kinase
(Psk)

M511I�V722I ni ni DS-ML Jak2-M535 [235]

A572V � �
cell line CMK
(AMKL)

/ [191, 202]

A573V � �
DS-AMKL, CMY
cell line (AMKL)

/ [202, 234]

M576L ni ni AMKL / [233]

A593T�A573V ni ni DS-AMKL Jak2-C618 [233]

R657Q�Q501H �
f

�
f MGS cell line

(DS-AMKL)
RQ: Jak1-R724,
Jak2-R683

[232]

V722I � � DS-AMKL / [191, 202]

Psk-K-linker S789P ni ni ch-B-ALL / [97]

Kinase (K) 2851–3442del592 nid nid DS-AMKL / [234]

Tyk2 FERM G363S ni ni AML / [231]

Table 1 Continued

*SCID mutations and Jak fusion proteins were not included.
aEffect demonstrated by introducing the mutant into a wild-type cellular system. Prl: monitoring of proliferation, Sig: monitoring of activated sig-
nalling components, ni: not investigated, (�): increased activity compared to wild-type kinase, (�): no effect compared to wild-type kinase.
bAbbreviations used: ALL: acute lymphoblastic leukaemia, AMKL: acute megakaryoblastic leukaemia, AML: acute myeloid leukaemia, B-ALL: B cell
precursor ALL, ch: childhood, CML: chronic myelogenous leukaemia, CMML: chronic myelomonocytic leukaemia, CNL: chronic neutrophilic
leukaemia, DS: Down syndrome, ET: essential thrombocythemia, HES: hypereosinophilic syndrome, IE: idiopathic erythrocytosis, JMML: juvenile
myelomonocytic leukaemia, MDS/MPN-U: unclassifiable myelodysplastic syndrome/myeloproliferative neoplasms, ML: myeloid leukaemia, MPN-U:
unclassifiable or atypical myeloproliferative neoplasms, PM: primary myelofibrosis, PV: polycythemia vera, RA: refractory anaemia, RAEB: refrac-
tory anaemia with excess of blasts, RARS: refractory anaemia with ringed sideroblasts, RARS-T: RARS with thrombocytosis, RCMD: refractory
cytopenia with multilineage dysplasia, SM: systemic mastocytosis, T-ALL: T cell ALL, TMD: transient myeloproliferative disorder.
cThe effect of the H538Q mutation alone was not investigated.
d2851–3442del592 results in a deletion of 192 c-terminal aa of the kinase domain and will thus lead to an inactive kinase.
eResults in an alternatively spliced protein with deletions within the FERM domain that will probably lead to an inactive kinase.
fQ501H and R657Q show constitutive activity alone and a stronger effect in combination.
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number of solved FERM domains [64–68] have been the basis for
structural modelling and for exploring the function of the postu-
lated Jak FERM domain [57, 69–71], reviewed in Ref. [63]. Taken
together, the involvement of rather long sequence stretches within
the receptor and Jaks suggests that the interaction is mediated by
multiple contact sites, which dictate the Jak position in a defined
orientation, and which ultimately become critical for activation.
The receptor-Jak interaction probably induces a restructuring of
certain receptor residues into defined interaction interfaces. This
‘induced fit-like’ scenario seems probable since the length of the
non-structured 65 amino acids of the receptor (23 nanometres) is
about three to four times the dimension of the FERM domain (6 to
7 nanometres across). Alternatively, a non-structured cytoplasmic
tail of a cytokine receptor would have to adopt a loop structure,
which would require to wind repeatedly through the clefts or along
the surface of the FERM domain [7, 63]. Whatever the binding
mode really is, the involvement of several subdomains (FERM
subdomains and SH2) of the Jak and long stretches of protein
within the receptor harbours the potential for a very tight and
long-lasting interaction. It seems to be a general phenomenon that
the mere proximity of Jaks in receptor complexes is not sufficient
for their activation, but needs further conformational changes
induced by cytokine binding to its cognate receptors [72–75]
(reviewed in [63]).

FERM domains of the ERM proteins (ezrin, radixin, moesin) are
endowed with the ability to associate to membranes by binding

phospholipids. Interestingly, the residues which mediate phos-
pholipid binding in the FERM domain of radixin [65] are not con-
served in Jaks, thus indicating that the Jaks are recruited to mem-
branes solely by interaction with cytokine receptors.

Data obtained from Jak3 and Jak1 suggest that even the kinase
domain may affect receptor binding [71, 76]. Staurosporine, a
broad activity kinase inhibitor, was described to decrease Jak3
binding to the �c receptor chain [76].

The FERM domain as drug target
The FERM domain harbours great potential for the development of
specific inhibitors targeting the Jak-receptor interaction, because
activating mutations in Jaks are not able to promote signal trans-
duction if the protein is dissociated from cytokine receptors [77,
78]. Interestingly, the intracellular regions of different cytokine
receptors show limited similarity concerning the nature and the
position of the residues involved in Jak binding, although they
bind the same Janus kinase (for review see [63]). Hence, interfer-
ing with the receptor/Jak interaction by just disturbing the interac-
tion site of a defined cytokine receptor might be a very specific
way to inhibit cytokine signal transduction. What might be limiting
the use of interaction inhibitors is the fact that one Jak can 
promote pathogenic signal through different receptors, i.e. for fac-
tor-independent growth of Ba/F3–Jak2-V617F cells the presence
of the EpoR, TpoR or GCSFR is sufficient. If several cytokine

Fig. 1 Domain structure of Janus kinases and general functions of the different domains. Model structures of the Jak1-FERM, -SH2 and pseudokinase
domain as well as the solved crystal structure of the Jak2 kinase domain (PDB entry code: 2B7A) are represented.
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receptor-Jak interactions have to be targeted, finding one com-
pound inhibiting all will complicate the task. The lack of structural
information on the FERM-cytokine receptor interface is a major hin-
drance to the rational development of such interaction-inhibitors.
Nanomolar allosteric inhibitors for Jaks have not been described
yet. Nevertheless, this approach might be superior concerning
specificity compared to kinase inhibitors and could be a less costly
alternative to protein drugs such as cytokine antagonists.

The SH2 domain

The FERM domain is followed by a predicted SH2 domain which
does not seem to fulfil a classical SH2 domain function, and which
shows some unconventional features [63, 79]. There is a striking
discrepancy in conservation between structural (conserved in all)
and functional residues (conserved in only some Jaks) within the
Jak SH2 domains. The essential functional arginine residue at
position �B5, conserved to 99.8% in SH2 sequences, is only con-
served to 80% in all Jak SH2 sequences. The divergent Jak SH2
domain is structurally important for binding to cytokine receptors
[79] and for the up-regulation of cytokine receptor surface expres-
sion [79–82] but could not be shown to have a phosphotyrosine
binding function [79].

The SH2 domain as drug target
SH2 domain inhibitors, interfering with the phosphotyrosine bind-
ing ability of SH2 domains, have been described [83–85] and
nanomolar activities have been achieved in the case of the Grb3
SH2 domain. Because Jaks have a divergent SH2 domain for
which no phosphotyrosine binding has been shown to date, this
approach might have lower priority until new data on the SH2
domain are uncovered.

The pseudokinase domain

Of the 518 protein kinases, 48 family members contain pseudoki-
nase domains [86]. Only five of these contain an additional func-
tional kinase domain. These are the four Janus kinases and the
serine/threonine kinase GCN2. Even pseudokinases with important
sequence degeneration have a classical kinase fold quite close to
the fold of their nearest functional relative [87].

Pseudokinases are kinase domains that lack conserved residues
critical for kinase activity. The loss of functionality is thought to be
mainly due to sequence degeneration in the G-loop (ATP binding),
the VAIK motif (ATP orientation), the HRD motif in the catalytic loop
and the DFG motif (Mg2� binding and ATP orientation). The major
defect in Jak pseudokinase domains is the loss of the catalytic
aspartate residue in the catalytic HRD loop. In addition to this, the
Jak pseudokinase domains have a non-optimal G-loop, although
ATP binding is not necessarily precluded. In the VAIK motif, Jaks
have a large residue instead of the conserved alanine, which could
represent a hindrance to ATP binding. Furthermore, the pseudoki-

nase domains in Jaks lack tyrosine residues in the activation loop
whose phosphorylation would stabilize the activation loop in the
active conformation of a functional kinase.

Pseudokinases have been described to have diverse functions,
e.g. to be scaffolding domains or to interact with kinase domains
to regulate kinase activity [88]. Pseudokinases and kinases from
two different protein chains have been described to interact and
the pseudokinase domain could thereby activate the kinase 
[89, 90]. In the four Jaks and in GCN2 the pseudokinase domains
suppress the activity of the adjacent kinase domain [91–95].
Many mutations in the pseudokinase domain that lead to hyper-
active Janus kinases have recently been discovered in patients
(see Table 1). However, because no structural data are yet avail-
able, the mechanism by which the pseudokinase domain inhibits
the kinase can only be speculated about.

Interestingly, the Jak2-V617F mutation was described to be
transferable to Jak1 and Tyk2 but not to Jak3 [96]. Later, the cor-
responding Jak1-V658F mutant was identified in ALL and AML
patients [97, 98]. Similarly, transfer of the Jak3-A572V mutation
to Jak2 does not lead to activation of Jak2 (C. Haan, unpublished
data). Although it is too premature to be sure, there might be a dif-
ference in how Jak3 activity is inhibited by the pseudokinase
domain compared to the three others.

The pseudokinase domain as drug target
The lack of structural information on the pseudokinase–kinase
domain interface and the lack of knowledge about the activation
mechanism of Jaks preclude any attempts of rationally designing
possible inhibitors which target this interaction. Different molecu-
lar models exist and are discussed later.

The pseudokinase domain might have the ability to bind ATP
or inhibitors and, as in the case of kinase domains, this might
impact on its conformation and on the activation state of the pro-
tein. In RNAseL the binding of nucleotides to the pseudokinase
domain regulates the RNAse domain [99]. Potentially, a protein
kinase inhibitor could preferentially bind the pseudokinase
domain and have an impact on kinase activation. Since binding
assays of inhibitors into kinase domains exist [100], it would be
interesting to investigate binding of inhibitors to pseudokinase
domains too.

The kinase domain

The kinase activity is mediated by the C-terminal kinase domain.
All protein kinases possess a catalytic domain that comprises
approximately 300 amino acids. They share the bilobal kinase fold:
The N-terminal lobe is composed of five �-strands and a single �-
helix. The C-terminal lobe is predominantly �-helical and contains
the regulatory activation loop (A-loop). The active site is located in
the cleft between the two lobes. The inactive conformation of
kinases seems to present more differences between kinases than
the active conformation. For more and more kinases structures of
the active and inactive conformations exist and have helped
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explain the conformational rearrangements that are observed dur-
ing the transition from the inactive to the active state of the kinase
[101]. The major events of kinase activation are largely conserved
although there are subtle but important differences. For example,
Jak3 is the only Jak family member in which an alanine residue
directly precedes the DFG-motif (in contrast to a glycine residue in
the other Jaks). This subtle difference could directly affect the
conformation of the A-loop in the way that was already discussed
for the inactive insulin receptor (GDFG-motif) and fibroblast
growth factor receptor (ADFG-motif) kinase domains [102].
Applied to the Jaks this could mean that the A-loop in inactive
Jak1, Jak2 and Tyk2 would adopt an ATP-competitive conforma-
tion and allow the accommodation of an A-loop tyrosine into the
substrate binding site whereas the A-loop of inactive Jak3 would
allow ATP binding and potentially preclude binding of an A-loop
tyrosine to the substrate binding site.

Alignments of all published Janus kinase sequences show that
all family members, with the exception of hopscotch, the
Drosophila homologue, contain a 14–15 amino acid Jak-specific
insertion (JSI) which was predicted to contain an �-helix and has
been shown to be crucial for kinase activity [103, 104]. Such an
insertion is absent in the pseudokinase domains of the Jaks. The
published crystal structures of the Jak1, Jak2 and Jak3 kinase
domains have proven the existence of this additional helix within
the C-lobe of the Jak kinase domain which was termed �H-helix
for Jak2 and FG-helix in the case of Jak3 [105–107]. The region
encompassing the Jak2 �H-helix and the preceding 3/10 helix was
also named Lip-region [105]. This special feature in Jaks is lining
the substrate binding site of the kinase and lies in close proximity
to the catalytic cleft of the enzyme. Mutations of structurally
important residues within the JSI impair kinase activity while the
mutation of an exposed residue, M1062, conferred constitutive
activity [104]. Interestingly, mutations within the JSI differentially
affect IFN� and Epo signalling.

Another interesting feature of the Jak kinase domains is that
they harbour a large methionine gatekeeper residue, reducing the
size of the so-called ‘hydrophobic pocket II’ [108], which often
confers specificity of the binding to kinase inhibitors.

The sequential similarity of the Jak kinase domains is quite
high and the solved structures of three of the Jaks also show little
difference in and around the ATP binding pocket. Figure S1 high-
lights some of the non-conserved residues in and around the cat-
alytic site and the predicted substrate-binding site of the Jaks
which might be exploited for the design of more specific
inhibitors. Interestingly, Jak3 is the only Janus kinase having a
cysteine residue at position C909 in close proximity to the ATP
binding pocket. In the case of the EGFR, which also carries a cys-
teine at this position, irreversible inhibitors were developed by
attaching an electrophilic group to ATP-competitive inhibitors. The
electrophilic group targets the cysteine residue and covalently
attaches the inhibitor to the kinase domain [109, 110]. Irreversible
inhibitors for EGFR are tested in clinical trials [111–114] and these
trials will show how these compounds perform with regard to
selectivity and toxicity. The toxic potential is hard to evaluate but

the amount of possible off-kinase-targets potentially reacting with
the electrophile is a risk [115]. Nevertheless, it could be worth a
try to modify an existing Jak-specific inhibitor with an according
electrophilic group to exploit the uniqueness of the cysteine of
Jak3 within the Jak family.

The kinase domain as drug target
The potential of the kinase domain as a target for ATP competitive
inhibitors is obvious and a variety of those inhibitors are described
below. There is, however, one special feature in the Jak kinase
domains which might be used to develop specific allosteric
inhibitors. As mentioned above, the JSI region contains an extra
�-helix which is lining the substrate binding site of Jak kinase
domains and which was shown to be crucial for kinase activity
[104]. It is an almost unique feature in kinases as such a long
insertion at this position can only be found in the mitogen-acti-
vated protein kinase kinase 1 (MEK1). MEK1 has a longer insert of
about 40 aa and the crystal structure of MEK1 shows that the
insert also contains an additional �-helix which is located further
away from the substrate binding site at the base of the C-lobe of
the kinase domain [116]. As the JSI region shows some differ-
ences between the Jaks and is quite close to the substrate binding
site, the JSI region and its surrounding may represent a suitable
target site for allosteric inhibition (Fig. S1).

Summary

Although the exact sequence of events in the activation mechanism
of the Jaks remains elusive, it is evident that the different domains
influence their neighbouring domains structurally and functionally.
The FERM and SH2 domains regulate binding to cytokine receptors
and are involved in the regulation of surface expression of at least
some cytokine receptors. The FERM domain has also been
described to influence kinase activity. Even the structural integrity
of the pseudokinase domain of Tyk2 is vital for high affinity bind-
ing of cytokines to the IFNAR [94, 117], suggesting a role of Tyk2
in ‘organizing’ the receptor complex. Data obtained from Jak3 and
Jak1 show that also the kinase domain may affect receptor binding
[71, 76]. All this is indicative of a complex interplay of the different
Jak subdomains with each other and with the cytokine receptor,
which very likely reflects different activation states, all of which
might be susceptible to allosteric inhibitor treatment.

The growing family of ATP-competitive
nanomolar Jak inhibitors

Only a small fraction of the kinome is targeted by selective
inhibitors, although the situation is improving at least as far as the
Janus kinase family is concerned. The specificity of inhibitors is
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thought to be of critical importance for its clinical utility and for its
utility in research. The experience with kinase inhibitors in clinical
trials has obviously changed this view since multikinase inhibitors
have been approved for the use in patients with cancer and are
now tested in many disease settings. Some were well tolerated
with minor side effect even though they target many signalling
pathways (e.g. sunitinib) [100]. Nevertheless, clinical trials will
have to show if higher selectivity, which could translate into better
tolerability, is indeed dispensable, especially in diseases where
prolonged treatment is necessary. But specific inhibition of one
Jak certainly does not guarantee that one biological response is
targeted specifically. The whole variety of cytokine receptors use
only four Jaks which means that even a specific inhibitor targets
multiple cytokine pathways. Especially Jak1 is involved in sig-
nalling through many classes of cytokines. Table S1 summarizes
the different cytokine families and the Jaks which are activated
upon stimulation [7, 9–11].

The recent discovery of more and more Jak mutations in dis-
ease has sparked the development of a host of low nanomolar
inhibitors with different selectivity within the Jak family, and some
compounds are tested in clinical trials [5, 13]. Taken together, Jak
inhibitors are tested for use in transplant rejection, inflammatory
diseases (rheumatoid arthritis, psoriasis, and chronic obstructive
pulmonary disease), haematologic disorders (MPN, leukaemia,
multiple myeloma) and prostate cancer (for an overview, see e.g.
http://clinicaltrials.gov). While Jak3, Jak2, and Jak1 are in the main
focus in Jak inhibitor development, Tyk2 might also be an interest-
ing target. A naturally occurring point mutation in the pseudokinase
domain of Tyk2 impairs IL-12 and IFN-mediated signalling and was
associated with resistance to collagen-induced arthritis in a murine
model [118]. Moreover, it has recently been shown that polymor-
phisms at the Tyk2 locus are associated with systemic lupus ery-
thematosus [119]. In this regard, an inhibitor of Tyk2 may become
a potential future drug for autoimmune diseases.

CP690,550, initially thought to be Jak3-specific, is now recog-
nized to have significant activity also against other Jaks. The com-
pound is tested for use in transplant rejection, psoriasis and
rheumatoid arthritis, all disorders in which a suppression of
immune responses is desired, and has proved active in human
disease [13]. An increasing number of Jak inhibitors enter clinical
trials (R348, INCB18424, TG101348, XL019, CEP701, SB1518,
AT9283, AZD-1480, VX680,…). Some trials have already shown
preliminary encouraging results. For example, patients with PMF
greatly benefited from INCB18424 treatment (e.g. reduction of
spleen size, inflammatory cytokine reduction). Interestingly, the
allele load of V617F was not significantly reduced [5, 13,
120–126]. However, combination therapy with TG101209 and
panobinostat, an HDAC inhibitor or AUY922, an HSP90 inhibitor,
attenuates Jak2V617F levels [127]. Another HDAC inhibitor,
ITF2357, showed selective activity against Jak2-V617F-positive
cells in comparison to Jak2-WT expressing cells [128, 129]. Thus,
combining epigenetic therapy (HDAC inhibitors, DNA methyltrans-
ferase inhibitors) with Jak inhibitors might be generally effective in
treatment of V617F-positive disease (reviewed in [130]).
Interestingly, also long-term IFN-� treatment has been described

to lead to complete and sustained molecular remission in patients
with PV [131–133]. Because IFN-� signals via Jak1 and Tyk2, a
specific Jak2 inhibitor might potentially be combined with IFN-�
treatment to also achieve a reduction of the allele load.

Table 2 summarizes characteristics of Jak inhibitors described
to date which show 	200 nanomolar activity in kinase assays or
have 	500 nanomolar activity in cellular assays. Some of these
inhibitors are selective pan-Jak inhibitors, others have a prefer-
ence for one or several family members. The list does not repre-
sent the whole activity in the field of nanomolar Jak inhibitors. For
instance, some publications described the development of
nanomolar compounds for Jak2 and Jak3, but some of these were
not further characterized [134–137]. The chemical structures of
some of these nanomolar Jak inhibitors are shown in Figure S2.
There is a whole range of structural scaffolds (pyrrolopyrimidines,
pyridones, bisubstituted pyrimidines, nicotinonitrils, oxindoles,
staurosporine analogues, pyrazole-benzimidazoles, aminoinda-
zoles…) that can be used to inhibit Jaks.

Quite a number of compounds that were described to have
micromolar activity in kinase and cellular assays are not men-
tioned here since many nanomolar inhibitors are now known.
These compounds are more likely to have off-target effects since
it was estimated that off-kinase-target effects in cellular assays are
low below 1 
M, borderline between 1 and 10 
M and high above
10 
M [138]. For instance, largely used micromolar Jak inhibitors
(WHI-P131/Janex1/Jak3-inhibitor-I, WHI-P154/Jak3-inhibitor-II
and AG490 and others) were recently described to have micromo-
lar activity on Jak in in vitro kinase activity and to have an effect
on Jak mediated cell growth above a concentration of low- to mid-
micromolar ranges [139–141]. WHI-P131 and WHI-P154 were
shown to be EGFR inhibitors with IC50 values in the low nanomo-
lar range [140]. The two inhibitors also had activity against 5,
respectively 8 other kinases out of 30 tested. They showed no
activity below 10 
M in cellular assays in comparison to the
nanomolar activity of CP-690550 and PF-956980.

Analogue-sensitive kinases 
and possible applications to Jaks

Chemical genetics to characterize kinases

Small molecule kinase inhibitors have been very useful to better
understand the pathways activated by Janus kinases in different
physiological and disease settings. However, most compounds
do not only inhibit one Jak but also inhibit other kinases, in par-
ticular other Janus kinases. Thus, it is not possible to directly
attribute the biochemical effects of an inhibitor only to its effects
on the kinase in question. Off-target effects of drugs often con-
tribute to toxicity although they may also have beneficial clinical
effects which can be exploited (e.g. gleevec also inhibits c-Kit)
[142]. A better understanding of the function of a given kinase as
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Inhibitor
Primary targets IC50

(nM)
Other targets IC50

(nM)
PY-STAT IC50

(nM)
Cell growth IC50 (nM)
*Patient cells

Literature

CP-690,550 Jak3 (0.7) (2.2) (1§) DCAMKL3 (4.5) �100 11–100 [100, 139, 236–238]

Jak1 (3) (112§) Tyk2 (250)

Jak2 (2) (5) (20§)

PF 956980 Jak3 (4) Other Jaks (n.d.) 23–188 [140]

TG101209 Jak2 (6) Jak3 (169); Flt3; RET 300–600 16–200;* 300–600 [127, 239]

TG101348 Jak2 (3) Jak1 (105); Tyk2 (405) 300;* 300 [30, 240, 241]

Jak3 (1040); Flt3;RET

INCB018424 Jak1 (2.7); Jak2 (4.5) Jak3 (322); Tyk2 (19) 100–300 81–300;* 67 [120, 123, 125, 126, 242]

INCB16562 Jak1 (9); Jak2 (2) Jak3 (1895); Tyk2 (28) 50–128 133;* 110 [243]

AZD1480 Jak2 (0.4) Jak1 (1.3); Jak3 (3.9) 46 60 [244]

Pyridone 1 Jak1 (1); Jak2 (2,1) 85 500 [245]

Jak3 (11); Tyk2 (7)

Pyridone 6/Jak
inhib.I

Jak1 (15); Jak2: (1) 67 50–100 [246]

Jak3 (5); Tyk2 (1)

XL019 Jak2 (2) Jak1(130); Jak3 (250) 60 [124, 247, 248]

Tyk2 (340)

AT9283 Jak2 (1.2); Jak3 (1.1) Aurora A/B; AblT315I 100–300 88 [249, 250]

CEP-701 FLT3; Jak2 (1) 10–30 30–100;* 	100 [251, 252]

AZ960 Jak2 (3); Jak3 (9) TrkA; Ark5; Aurora-A 15–22 25–33 [253]

R348 Jak1/Jak3 pathways Syk 260 180 [254]

R723 Jak2 (2) Jak1(~1000); Jak3(~20) 130–200 [255]

CYT387 Jak2 (18); Jak1 (11) Jak3 (155); CDK1;TBK1 400 �200;*�500 [256–258]

SGI1252
Jak2 (2–19); Jak1 (15);
Tyk2 (8)

Jak3 (1302) 76 63–472;* 100 [259]

ONX0803/SB1518 Jak2 (19–22) 81 [260]

PS-020613 Jak3 (3.4) Jak2 (105) 64 [261]

Jak3 inhib. VI Jak3 (27) Jak2 (600) ~1000 250–750 [262]

Pyrimid. 26 Jak3 (45) Jak2 (124) 90 [134]

Gö6976 PKC Jak2 (130); Jak3 (370) 500 �500;* �500 [263]

MK-0457/VX680 Aurora (18–36) Jak2 (190) 295 [100, 264–266]

Table 2 Jak targeting inhibitors

If several values between parentheses are given these represent alternative measurements from different publications. PY-STAT: phosphorylation of
signal transducer and activator of transcription (STAT); §: Initial values given in the first description paper of CP-690,550; ~: approximation.
DCAMKL3: Doublecortin-like and CAM kinase-like 3; Aurora: Aurora kinase; PKC: Protein kinase C; CDK1: Cyclin dependant kinase 1; TBK1: Tank
binding kinase 1; TrkA: Tropomyosin Related Kinase A; Ark5: AMPK-related protein kinase 5; FLT3: fms-related tyrosine kinase 3; AblT315I: Ableson
kinase T315I; RET: Rearranged during transfection. *Data were generated using patient derived cells.
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well as the effects of its specific inhibition would be very helpful
in drug development.

Different approaches are available to investigate the impor-
tance of a given kinase. ‘Knockout’ approaches have provided
important insights into the roles of specific proteins. However,
knockout mice may not be viable at all, or ‘secondary’ adaptations
may occur as surviving cells (and organisms) have been selected
for survival. si-RNA-based suppression of a certain protein may be
incomplete and could evoke double-stranded RNA-mediated side
effects. ‘Knockout’ or si-RNA approaches might also have effects
which cannot be attributed to the enzymatic activity of the targeted
kinase but, e.g., to a potential structural role of the kinase.

A chemical genetic approach has been established recently to
address the importance of a given kinase: A genetically modified
kinase and a chemically modified ATP or inhibitor are the key
ingredients in this approach which confers specificity to a bulky
ATP/inhibitor by engineering the kinase of choice so that it can
accommodate the modified ATP/inhibitor. The so-called ‘ATP’- or
‘inhibitor-analogue’ is thus specifically inhibiting the so-called
‘analogue-sensitive kinase’ (as-kinase). To achieve this, the ‘gate-
keeper’ residue in the ATP binding pocket of a kinase is mutated
to a smaller residue (e.g. glycine) (Fig. 2). Thereby, the space of
the ATP binding pocket is increased and is now accessible to a
‘bulky’ derivative of a kinase inhibitor (or of ATP) which does not
fit into the ATP binding pocket of the wild-type kinase of interest,
nor into the one of other kinases present in the cell [143, 144]. The

chemical genetic approach is applicable to the whole kinome, and
presents some advantages over other systems. Table 3 provides
an overview of tyrosine kinases that were successfully investi-
gated in this way.

Chemical genetics in practice: possible pitfalls
and requirements

A newly generated ‘analogue-sensitive’ mutant kinase has to be
tested to see whether it fulfils certain criteria:

First, it has to be verified that the mutated kinase still performs
‘normally’, like the wild-type kinase, as it has been reported that
the introduced gatekeeper mutation may impair ATP and substrate
binding or catalysis. Interestingly, the significance of the gate-
keeper for the structure of the active site also becomes evident by
gatekeeper mutations ‘naturally’ occurring in kinases in cancer. A
good example for this is the disease-relevant mutation of the small
gatekeeper residue (threonine 790) in the EGF receptor to a larger
methionine. This mutation was identified in lung cancer patients
and confers resistance to the kinase inhibitors erlotinib and gefi-
tinib [112, 145]. A similar mutation of the gatekeeper was also
described for BCR-Abl (T315I) in CML patients [146, 147]. It is
thought that the EGFR mutation T790M derepresses kinase activ-
ity by favouring the active conformation of the conserved DFG-
motif within the catalytic cleft and by increasing the affinity of ATP

Fig. 2 Principle of the specific
inhibition of analogue-sensi-
tive kinases. (A) Top view and
(B) side view of the catalytic
cleft of the Jak2 kinase
domain with the bulky ATP-
analogue N6-benzyl-ADP
(highlighted in orange). The
sterical clash between the
benzyl group of the bulky
inhibitor and the gatekeeper
residue M929 in the wild-type
Jak2 kinase domain is high-
lighted as a red frame (A) or
surface (B). Mutation of the
gatekeeper residue to glycine
(Jak2-M929G) extends the
catalytic pocket and allows
the accommodation of the
bulky compound. The repre-
sentation was generated
using the solved crystal
structure of the Jak2 kinase
domain (PDB entry code
2B7A).
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binding [148]. Furthermore, it was postulated that this mutation to
a bulkier residue may increase the stability of the ‘hydrophobic
spine’, a stack of hydrophobic residues that forms upon activation
of protein kinases [148, 149]. The converse argument could thus
be applied for the chemical genetic approach where a large gate-
keeper (notably a methionine residue in case of the Janus kinases)
is mutated to a smaller residue such as glycine (Fig. 2). The effects
of such a mutation cannot be precisely predicted but a reduced
activity of the kinase could be a consequence. In line with this, a
reduced kinase activity upon mutation of the gatekeeper residue
for chemical genetic approaches has been described [150–152].
In cases for which the gatekeeper mutation led to an inactivation
of the kinase, this could be overcome by exchanging the gate-
keeper by another amino acid (e.g. alanine instead of glycine [144,
151]) and/or by introducing secondary mutations, either by ran-
dom mutagenesis or by a structure-guided mutational approach
[150–153]. However, even in cases in which the gatekeeper muta-
tion resulted in an inactive kinase, valuable results could be
obtained, e.g. for IRE1. Here, the addition of a bulky inhibitor
resulted in an activated conformation of the kinase domain and the
activation of the RNAse domain involved in RNA splicing of the
ER-stress response transcription factor XBP1 [154, 155].

Second, it has to be verified that the kinase can indeed be
inhibited by a bulky inhibitor or accepts a bulky ATP analogue as
cofactor. Several of these analogue compounds are commercially
available, and novel inhibitors are being developed that have even

less effect on any wild-type kinase [156]. Ideally, inhibition should
be selective, inducible and reversible.

Advantages and possible applications 
of the chemical genetics approach

Investigation of specific kinase-mediated effects
This approach circumvents problems inherent to the use of knock-
out scenarios which are unable to distinguish between catalytic
activity-dependent and -independent kinase functions and which
might be subject to potential compensation by other kinases.
Many kinases are recognized to have other functions in addition to
their kinase activity. Many kinases are multidomain proteins which
are embedded in signalling complexes with multiple contacts and
even kinase domains have been described to have additional func-
tions [154, 157–159]. As for Jaks, they are, apart from their func-
tion as enzymes, involved in the stable surface expression of at
least some cytokine receptors [63, 79–82, 160–163]. A recent
review focuses on cases in which kinase inhibitors and knockouts
have produced different functional outcomes [164].

Specific and flexible pharmacologic intervention allows 
target validation of compounds from drug screens
A clear advantage is the fact that the as-kinase can be reversibly
inhibited, and the time period of inhibition can be tightly controlled
which is not possible when, for example, the whole protein expres-
sion is regulated or if kinase inactive mutants are used [165, 166].
The activity of an analogue-sensitive kinase can be inhibited quickly
in a time-dependent manner and can be directly compared to the
actions of other small molecule inhibitors (of which the specificity
profile is not clear yet) on the corresponding wild-type kinase. With
regard to drug screening, this approach promises to be useful in
generating gene expression profiles characteristic of inhibition of a
certain kinase of the kinome, such a ‘finger print’ may be used, e.g.
to identify ‘unspecific’ targets of a novel drug candidate [167].
Mutant alleles encoding as-kinases have also been successfully
introduced into mice [168–170]. Administration of bulky inhibitors
(by intraperitoneal injection and/or by addition into the drinking
water) indeed allowed the assignment of novel in vivo functions, in
particular to the BDNF receptor TrkB [168, 171–173]. Such in vivo
model systems can also be very valuable for pharmacologically rel-
evant target validation [174]. Using an inhibitor selective of the as-
kinase as a reference compound in comparison with a novel drug
candidate, it will be possible to clearly differentiate off-target effects
from those elicited by the kinase in question. Moreover, these
transgenic mice expressing an analogue-sensitive allele could be
used to detect biomarkers associated with the activity and inhibi-
tion of a given kinase [175].

Identification of direct substrates
Moreover, such analogue-specific mutant kinases can be applied
to unequivocally identify direct substrates of the kinases by

Y-Kinase Gatekeeper residue Citation

v-Src I338 [144, 156, 177–179, 267, 268]

c-Src T338 [144, 180, 201]

fyn T339 [144, 179, 201, 268]

Abl T325 [144]

BCR-Abl T315 [269]

lck T316, [270]

v-erbB T210 [271–273]

EGFR T790 [201, 271]

TrkA F592 [168]

TrkB F616 [168, 171–173, 274]

TrkC F617 [168]

Btk T474A [167]

Zap70 M414 [150]

Syk M442 [151, 152]

Table 3 Described analogue-sensitive tyrosine kinases: (a list of ana-
logue-sensitive serine/threonine kinases as well as those of yeast and
other organisms is provided in [181])
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employing a bulky ATP analogue that is no substrate to wild-type
kinases [170, 176, 177]. Direct substrates can be identified by the
radioactive label of the transferred gamma-phosphate group of a
bulky ATP analogue [177–180]. Recently, also a non-radioactive
method for substrate identification has been published. Here, the
direct substrates of an analogue-sensitive kinase are thiophospho-
rylated (using correspondingly modified bulky ATP analogues),
followed by alkylation which creates an epitope for a thiophos-
phate ester-specific antibody [170, 181].

Structure-based interpretation of the
Jak mutations

With a rapidly growing number of Janus kinase mutations that are
reported it is tempting to speculate about their impact on the
molecular events that favour disease development and/or progres-
sion. An obvious way to approach this is to bring structural con-
siderations into the game. For the Jaks, this is facilitated by the
availability of solved crystal structures of the kinase domains of
Jak1, Jak2 and Jak3. Furthermore, molecular modelling
approaches allow to rather accurately predict the location of amino
acid residues in protein domains that show a high degree of con-
servation. However, the prediction of the molecular effects of spe-
cific mutations requires biochemical information about the activa-
tion status of the respective mutant Janus kinase. Here we provide
an overview of the Jak mutations that have been reported in the
context of haematologic diseases (Table 1), with the exception of
the Jak3 SCID mutations and the different Jak fusion proteins.
Many of these mutations have not yet been functionally investi-
gated. As illustrated in Table 1, mutations associated with haema-
tologic diseases can occur in any of the four Jak protein domains.
However, most of these activating or potentially activating muta-
tions have been identified in the pseudokinase domain of the Jaks.
This is not surprising because this domain is known to be involved
in the negative regulation of kinase activity by interacting with the
kinase domain [93, 182]. Mutations within the FERM domain and
the kinase domain have a much higher probability to either inter-
fere with receptor binding or abrogate kinase activity. Receptor
binding is crucial for constitutive activity in mutated Jaks. The
Jak2-V617F mutant is rendered inactive if cytokine receptor bind-
ing is abrogated, and concomitantly looses its transforming
potential [77, 78]. The location of the reported mutations in
haematologic neoplasm (Table 1) within the primary sequence of
the Jaks is illustrated in Figure S3. The figure shows an alignment
of the four human Janus kinases with the sequences of struc-
turally resolved FERM, SH2 and kinase domains. In Figures S4-7,
we included representations showing the location of all the muta-
tions in model structures or solved crystal structures of the different
Jak domains. Mutations whose activating effects were biochemi-
cally validated, i.e. those mutations leading to constitutive activa-
tion of signal transduction and promoting factor-independent
growth when transfected into cells are underlined or presented in

a separate figure for the pseudokinase domain (Figs. S4 and S7).
For interpretations, we only considered the biochemically charac-
terized mutations. This is due to the fact that large sequencing
studies have shown that the bulk of kinase mutations in cancer are
‘passenger’-mutations. Because ‘driver’-mutations seem to
appear at frequencies undistinguishable from the ‘passenger’-
mutations, functional testing of candidate ‘driver’-mutations is
necessary [183–185].

Mutations within the FERM and SH2 domains

Various mutations within the FERM and SH2 domains of Jak1,
Jak3 and Tyk2 were described to be associated with haematologic
diseases (Fig. S4 and Table 1) but only for I87T and P132T in the
FERM domain of Jak3 as well as for T478S within the SH2 domain
of Jak1 biochemical data have been gathered.

Due to the divergent nature of the Janus kinase FERM domain in
comparison to other FERM domains, molecular models such as the
one presented in Figure S4 can only provide information about the
location of highly conserved and structurally important residues. As
the alignment in Figure S3 shows, these mutations mostly affect
residues which are not well conserved between the Jaks and the
sequences of other FERM domains. Thus, the information provided
by the model structure remains very hypothetical, especially con-
cerning the location of the residues K204, R360 in Jak1 and P151R
in Jak2. The accuracy of the predicted location of I62, P132 and I87
is more reliable. Our model structure of the Jak3 FERM domain sug-
gests that P132 and I87 could be involved in the positioning of the
alpha helix in the F1 subdomain by contacting residues at both ends
of the helix (L49 for P132/G63 and L64 for I87). As mutation of both
P132 and I87 has been shown to lead to constitutive activity of the
kinase, one could speculate that the region around the F1 �-helix is
involved in the regulation of kinase activity. Interestingly, a mutation
within the corresponding helix in Jak1, I62V, was also reported, but
unfortunately not further characterized [186].

The effect of the reported mutations within the SH2 domain of
Jak1 and Jak3 is hard to predict as two of the mutations are
located in loop regions (S512 in the EF-loop of Jak1 and P434 in
the DE-loop of Jak3). However, in principle both S512 and P434
are located in interesting regions within the SH2 domain as the EF-
loop participates in the recognition of phosphotyrosine motifs in
SH2 domains and the DE-loop of the N-terminal SH2 domain of
SHP2 was shown to inhibit the phosphatase activity of this
enzyme [187]. The reported activating effect of the T478S muta-
tion in Jak1 is also not that obvious. Although this residue is usu-
ally involved in the formation of a hydrogen bond network around
the phosphate group of a bound phosphotyrosine residue, an
exchange to serine should not impair that function. In fact, most
SH2 domains contain a serine residue at this position (serine
residue in ~50% and threonine in ~25% of SH2 domains (see also
Fig. S3). Rather than directly affecting a potential interaction with
a phosphotyrosine motif, the T478S mutant may partially destabi-
lize the SH2 domain and could thereby affect interdomain interac-
tions in a way that leads to constitutive signalling.
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Mutations within the kinase-like domain

The alignment of the pseudokinase domains (Fig. S3) shows that
several mutational ‘hotspots’ exist in the primary sequence where
mutations in two or three of the Jak family members occur (e.g. the
region preceding the �1-strand, the region between the �3- and �5-
strands as well as the region between the �6 and �7-strands).
Model structures of the pseudokinase domains of Jak1, Jak2 and
Jak3 allow predicting the position of the different mutations. As
illustrated in Figures 3, S5 and S6, the majority of the pseudokinase
domain mutations affect the N-terminal lobe of the domain and
modify residues involved in either the postulated interface with the
kinase domain [27] or structurally important residues whose muta-
tion can destabilize the N-lobe and thus also affect a possible inter-
face between the pseudokinase and kinase domains. Mutations in
the C-lobe of the pseudokinase domain are rare, which could sug-
gest that the structural integrity of this region is essential for Jak
function and/or that its surface does not participate in the kinase
domain activity regulation. Figure 3 shows a model structure of the
Jak2 pseudokinase domain with the positions of the biochemically
validated activating mutations (please refer to Figure S5 for a repre-
sentation of validated activating pseudokinase mutants for all the
Jak family members and to Figure S6 for all identified pseudokinase
mutations in the Jaks). Based on our model structures, we hypoth-
esize that the activating exon 12 mutations (referring to Jak2) and
the mutations between the �3 and �5 strands (e.g. the Jak2-V617F
and most other Jak2 exon 14 mutations) belong to the same struc-
tural hotspot (structural hotspot I in Fig. 3) and exert their effects
via a similar molecular mechanism. For example, the exon 12-
encoded residue K539 (which seems to be a key residue in exon 12)
and the amino acid V617 are in close proximity (Fig. 3) and are both
exposed at the surface. Thus, the corresponding mutant K539L and
V617F could well act via the same molecular mechanism, which is
in line with the clinical phenotype of both mutants (MPN, myeloid
leukaemia) (Table 1). Aside this first structural hotspot, a second
structural hotspot for mutations is apparent at the interface between
the N- and C-lobe which regroups the activating exon 16 mutants in
the �-sheet of the C-terminal lobe as well as the exon 14 mutant
L611S. Interestingly, in the case of Jak2, the mutations located in
this structural hotspot II lead to a different clinical phenotype,
namely lymphoblastic leukaemia (Table 1). Such genotype-pheno-
type specificity was recently proposed by Bercovich and colleagues
who postulated that the residues R683 and V617F are located in dif-
ferent protein–protein interfaces [188]. Considering all reported
activating mutations in the Jak2 pseudokinase domain, we postulate
that this genotype-phenotype specificity can be extended to also
incorporate the other activating exon 12, 14 and 16 mutations.
Thus, mutations in the structural hotspots I and II might, in addition
to activating Jak2, influence the recruitment to different signalling
complexes including different cytokine receptors and lead to differ-
ent signalling events. Such a genotype-phenotype specificity is not
yet obvious for the corresponding mutations in Jak1 and Jak3,
where the same structural hotspots are affected by mutations
(please refer to Figs. S5 and S6 and to Table 1).

In the context of the Jak2-V617F mutation, previously
described molecular models of the full length Jak2 were used to
interpret the observed biological effects. The generally accepted
theory concerning the effects of the V617F (or more general
pseudokinase domain mutations) postulates that the residue
V617 is part of the binding interface by which the pseudokinase
domain contacts the kinase domain and negatively regulates its
activity [27]. Accordingly, mutation of this residue to a larger
hydrophobic residue should prevent optimal contact and reduce
the affinity of the inhibitory interaction. However, it was shown
that a V617Y exchange does not lead to constitutive activity, indi-
cating that the situation may be more complex [189]. Although
the hypothesis concerning the interface between the pseudoki-
nase and kinase domain makes a lot of sense and explains much
of the biological data, it must be noted that the true molecular
mechanism could be different and that only a solved structure
encompassing at least the pseudokinase and the kinase domains
would provide reliable evidence for the mechanism. As the 

Fig. 3 Model structure of the pseudokinase domain of Jak2 with the pre-
dicted locations of patient-derived mutations with validated activating
effect. Residues for which point mutations were reported in patients are
represented as green stick models with spheres indicating the Van-der-
Waals radii of atoms. Regions carrying insertions and/or deletions are
indicated by a green coloured backbone without stick models (black
frames). The structural mutation hotspots I and II are highlighted in red.
The model structures of the FERM, SH2 and pseudokinase domains of
Jak1, Jak2 and Jak3 shown in this review were generated as described in
the Supporting Information. For molecular modelling and graphic repre-
sentation of all protein structures in this review, the programs WHAT IF
[275] and Pymol [DeLano, WL (2002) The PyMOL Molecular Graphics
System. DeLano Scientific, San Carlos, CA, USA] were used.
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existing Jak1 and Jak2 pseudokinase model structures (refer-
ences [27, 97, 186, 188, 190, 191] and references [40, 192, 193]
which use previously generated model structures of Lindauer 
et al. [190] and Giordanetto et al. [192]) are based on the confor-
mation of active kinase domains or non-phosphorylated kinase
domains which were co-crystallized with an ATP competitive
inhibitor, they may reflect neither the real conformation of the
activation loop segment of the pseudokinase domain nor the real
orientation between the N- and C-lobes of the kinase. In the exist-
ing pseudokinase models, the proposed activation loop (A-loop)
conformation is an ‘out’-conformation in which the activation
loop is oriented away from the catalytic site. As the pseudokinase
domain does not have intrinsic kinase activity, one could specu-
late that the conformation of the A-loop may rather be an ‘in’-con-
formation resembling the conformation found in the crystal
structures of inactive kinase domains (for reviews: [101, 102]). In
such a conformation, the A-loop would cross the catalytic cleft,
the regulatory �C-helix would be rotated and the relative orienta-
tion between the two lobes of the pseudokinase domain would
change. In addition, the models which were used to develop the
potential inhibitory mechanism are not based on the later
described crystal structures of the Jak kinase domains. It would
be interesting to incorporate the solved structures of Jak1, Jak2
and Jak3 and their special features such as the Lip/JSI-region
into these interaction models. However, the solved kinase domain
structures are also not optimal because they reflect the activated
states of the kinases with an ‘out’-conformation of the A-loop and
all its consequences for the structure. As described above, there
may be important differences between the inactive A-loop confor-
mations of Jak3 compared to the other Jaks due to the alanine
residue preceding the DGF-motif. On the other hand, the confor-
mation of the activated A-loops of Jak1, Jak2 and Jak3 seen in the
crystal structures are almost identical (see Fig. S7). The potential
difference in the inactive state could suggest a different inhibitory
interface between the kinase and pseudokinase domains in the
case of Jak3. Most interestingly, such a theory would be in line
with experimental data as it was reported that the Jak3 M592F
mutation, which corresponds to the Jak2-V617F mutation does
not activate Jak3 whereas corresponding mutations in Jak1 and
Tyk2 are activating [96]. Of course, this theory remains specula-
tive and only crystal structures of the different Jaks encompass-
ing at least the pseudokinase and kinase domains will provide
definite proof for these regulatory mechanisms.

Mutations within the kinase domain

In comparison to the kinase-like domain, far less activating muta-
tions have been described for the kinase domain. Mutational
hotspots are well known in protein kinases and they are often
kinase domain mutations. One example is the V600 mutation
within the A-loop in BRAF [194] which generates an active kinase.
The mutation of the corresponding residue is also found in MET,
FLT3 and KIT [195–200]. However, the mutations in the Jak kinase

domain are rare events compared to the occurrence of mutations
in the pseudokinase domain.

Most mutations are confined to a loop-region between the �2
and �3 strands of Jak2 (R867Q, D873N, T875N) (Fig. S7).
Similarly, the other reported mutations (P933R in Jak2 and
R879C/H/S in Jak1) affect residues which are exposed on the sur-
face and do not affect the structure of the domain. Considering the
kinase–pseudokinase interaction model by Lindauer and col-
leagues [190], none of the activating Jak2 mutations can be attrib-
uted to the proposed interface between the two domains.

Perspectives

Further insights into the structure of Janus kinases, ideally solved
structures of domain combinations, will certainly give answers to
questions currently still open: How do the domains interact with
each other and with the cytokine receptor? Which structural
changes are imposed on Jaks during activation of the cytokine
receptor complex? How do the disease-associated mutations in
Jaks translate into a gain-of-function phenotype? What is the
molecular basis of the mutational hotspots associated with either
MPN or leukaemia? Moreover, also proteomic analyses of the Jak-
associated proteins will provide insights into the nature of the sig-
nalling complexes engaged by the different mutants and the wild-
type kinases. As more and more Jak mutations are discovered in
haematopoietic disorders and also in solid tumours [98], and
since Jaks would be potentially interesting targets in inflammatory
disorders, the interest in developing specific Jak inhibitors will
surely increase.

The outlined opportunities of chemical genetics can be used to
understand the consequences of the inhibition of a single given
Janus kinase. This approach may thereby complement previous
studies with knockout cells and mice, kinase-dead mutants and
less specific inhibitors. It is applicable to both, the wild-type and
mutated kinases and can be used in mouse models. Therefore, it
will help to further elucidate the biology of Jaks. Moreover, 
analogue-sensitive kinases enable the identification of the direct
substrates and possibly of a transcriptome signature of a given
kinase. Recent developments of chemical genetics include, e.g.
the possibility to generate analogue-sensitive kinases that can be
inhibited by irreversible kinase inhibitors. These may be fluores-
cently labelled which should enable exact quantitation of kinase
inhibition as required for systems biology approaches [201].

Further structural information will certainly be helpful in the
development of inhibitors. As the bulk of the gain-of-function
mutations affect the pseudokinase domain of Jaks, allosteric
inhibitors targeting domain–domain interactions would seem to
be useful. Inhibitors selective only for the mutated kinase would
seem ideal as they would promise to have the least side effects. In
the end, clinical studies have to prove what works best, highly
selective kinase inhibitors or broad spectrum inhibitors, or drugs
targeting different crucial pathways in combination.
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Additional supporting information may be found in the online ver-
sion of this article:

Molecular modelling of the FERM, SH2 and kinase-like domains
of Jaks: For molecular modeling and graphic representation of pro-
tein structures, the programs WHAT IF [275] and Pymol [DeLano,
WL (2002) The PyMOL Molecular Graphics System. DeLano
Scientific, San Carlos, CA, USA] were used. The structure of the
kinase domain of Protein Tyrosine Kinase 2 Beta (PTK2B),
Brookhaven data bank entry code 3CC6, was used as template for
the model structure of the Jak2 pseudokinase domain (amino acids
540-810). For the modelling of the activation loop region (aa R688-
R715 in Jak2) in an “in”-conformation, the conformation of the inac-
tive activation loop of the insulin receptor (IR; aa T1145-P1172 ; PDB
entry code 1IRK) was chosen as a template. The modelling of the
Exon12 amino acids 533-539 of Jak2 was based on the N-terminal
region of the EGFR kinase domain structure (aa 700-706; PDB code
2GS6). Energy minimizations were performed under vacuum condi-
tions with the GROMOS program library (W. F. van Gunsteren, dis-
tributed by BIOMOS Biomolecular Software B.V., Laboratory of
Physical Chemistry, University of Groningen, Netherlands). The ini-
tial alignment of the pseudokinase domain sequences of human
Jak1, Jak2, Jak3 and Tyk2 with the sequences of the structurally
explored kinase domains of PTK2B, Src, FGFR and IR (PDB entry
codes: 3CC6, 2PTK, 1FGK and 1IRK) was performed by the use of
the BLAST program. Modifications were then introduced to meet
structural requirements derived from the known kinase structures.
The sequential alignment of the known structures is based on the
superposition of their backbone coordinates. The structures of the
pseudokinase domains of Jak1 and Jak3 were generated using 
the Jak2 model as a template. The Swiss-Prot accession numbers for
the used Jak sequences used are: NP_002218 (hJak1), NP_004963
(hJak2), P29597 (hTyk2) and AAC50950 (hJak3). The model struc-
ture of the Jak1 FERM domain was previously described [71]. The
Jak3 FERM model was based on the template of the Jak1 model. The
SH2 domain model of Jak1 and Jak3 are based on the crystal struc-
ture of the C-terminal SH2 domain of SHP2 (PDB entry code 2SHP).

Table S1 Four Janus kinases transmit the signals ofmany
cytokines.

Fig. S1 Non-conserved residues around the ATP- and substrate
binding sites. A: Non-conserved residues in the kinase domains

of Jak1, Jak2 and Jak3 that may be exploited for the design of
more specific Jak inhibitors (PDB entry codes for the structures:
3EYG, 2B7A and 1yvj). An overlay of Jak1, Jak2 and Jak3 kinase
domain structures is shown and the three kinase domains are
shown separately. The Jak1 residues are highlighted in yellow, the
Jak2 residues in green and the Jak3 residues in turquoise. The JSI
region is highlighted by a red frame. The kinase inhibitors are
depicted as stick models. Jak1: MI1; CP-690550; 3-{(3R,4R)-4-
methyl-3-[methyl(7H-pyrrolo[2,3-D]pyrimidin-4-YL)-amino]-
piperidin-1-YL}-3-oxopropanenitrile, Jak2: IZA; CMP6; 2-tert-
butyl-9-fluoro-3,6-dihydro-7H-benz[H]-imidaz[4, 5-F]-isoquino-
line-7-one, Jak3: 4ST; AFN941; 1,2,3,4-tetrahydrogen-stau-
rosporine. B: Table with the selected non-conserved residues in
the kinase domains of Jak1, Jak2, Jak3 and Tyk2.

Fig. S2 Chemical Structures of Jak kinase inhibitors acting in
the nanomolarrange. The measured or approximated IC50 values
for Jak inhibition, Phospho STAT inhibition or growth inhibition
are also indicated.

Fig. S3 Sequence alignment of full length Jak1, Jak2 Jak3 and
Tyk2 with sequences of structurally explored FERM, SH2 and
kinase domains. Residues which are conserved in all the Jaks and
in three of four reference sequences are indicated in red.
Residuesthat are rather conserved in only the Janus kinases are indi-
cated in blue. Residues for which mutations havebeen identified in
patients with haematologicdiseases are highlighted in yellow (Jak1),
green (Jak2), turquoise (Jak3) and grey (Tyk2) and the correspon-
ding mutations are indicated below the sequences. Due to the large
number of exon 12, exon 14 and exon 16 mutations identified in
Jak2, these mutations are not specifically named (please refer to
Table 1 in the main document). Mutation which were only found in
combination with another mutation are followed by a “+” sign.
Regions which are subject to deletions and/or insertions are under-
lined. An initial alignment was performed using the BLAST program
and modifications were subsequently introduced to meet the struc-
tural requirements derived from the known reference structures.
Accession numbers for the used Jak sequences used are:
NP_002218 (hJak1), NP_004963 (hJak2), AAC50950 (hJak3) and
P29597 (hTyk2). A: Reference sequences and structures for the
FERM domain are from focal adhesion kinase (FAK; PDB code:
2AL6), radixin (RAD, PDB code: 1GC7), moesin (MOE, PDB code:
1EF1) and merlin (MER; PDB code: 1H4R). The FERM subdomains
F1 to F3 are indicated above the sequences. B: Reference sequences
and structures for the SH2 domains are from phospholipase C�

(PLC, PDB code: 2PLD), the C-terminal SH2 domain of the p85 alpha
subunit of phosphoinositide 3-kinase (P85aC; PDB code: 1BFJ), the
C-terminal SH2 domain of SHP2 (SHP2C; PDB code: 2SHP) and Bcr-
Abl (BAbl, PDB code: 2ABL). Secondary structure elements for
SHP2C are given. Reference sequences and structures for the
pseudokinase domain were from the following kinases: protein tyro-
sine kinase 2 beta (Ptk2B; PDB code: 3CC6), c-Src (SRC, PDB code:
1FMK), fibroblast growth factor receptor (FGFR; PDB code: 1FGK)
and insulin receptor (IR; PDB code: 1IR3). The 30 amino acid sequence
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from the  epidermal growth factor receptor (EGFR; PBD code: 1m17)
and the corresponding structure served as template for the model-
lingof the N-terminal parts of the Jak pseudokinase domains (e.g.
exon 12 region in Jak2). Secondary structure elements are given
above the sequence. C: Reference sequences and structures were the
same as used for the pseudokinase sequence alignment. Secondary
structure elements for the Jak2 kinase domain are indicated above the
sequence (�: alpha helix; �: beta strand; 3: 3/10 helix).

Fig. S4 Predicted location of Jak mutations within the FERM and
SH2 domains of Jak1 and Jak3. The Jak1 and Jak3 residues for
which mutants have been reported in patients are represented as
yellow or turquoise stick models and Van-der-Waals radii are
shown as spheres. Mutants for which an activating effect has been
shown are underlined. Residues L49, G62 and L64 on both sides
of the Jak3-F1�-helix which can be contacted by P132 and I87 are
represented in orange. The potential phosphotyrosine binding
pocket of Jak1 is highlighted in red.

Fig. S5 Model structures of the Jak1, Jak2, and Jak3 pseudoki-
nase domains highlighting mutations with biochemically vali-
dated activating effects (see table 1). Residues for which activat-
ing point mutations were reported in patients are represented as
yellow (Jak1), green (Jak2) or turquoise (Jak3) stick models with
spheres indicating the Van-der-Waals radii of atoms. Regions car-
rying insertions and/or deletions are indicated by a coloured back-
bone without stick models (black frames). The proposed Jak2
structural mutation hotspots I and II are highlighted in red.

Fig. S6 Model structures of the Jak1, Jak2, and Jak3 pseudoki-
nase domains highlighting all reported mutations (biochemi-
cally validated and non-validated; table 1). Residues for which
point mutations were reported in patients are represented as 
yellow (Jak1), green (Jak2) or turquoise (Jak3) stick models with
spheres indicating the Van-der-Waals radii of atoms. Regions car-
rying insertions (ins) and/or deletions (del) are indicated by a
coloured backbone without stick models. Please refer to table 1
for the detailed denomination of the different insertions and/or
deletions in Jak2 exons 12 and 16. The proposed structural muta-
tion hotspots I and II are highlighted in red.

Fig. S7 Crystal structures of the Jak1, Jak2, and Jak3 kinase
domains highlighting all reported mutations (PDB entry codes
3EYG, 2B7A and 1yvj, respectively). An overlay of Jak1, Jak2 and
Jak3 kinase domain structures is shown and the three kinase
domains are shows separately. Residues for which point muta-
tions were reported in patients are represented as yellow (Jak1) or
green (Jak2) stick models with spheres indicating the Van-der-
Waals radii of atoms. The activation loops of the three Jaks are-
highlighted in the overlay representation by a dashed box. The
phosphotyrosine residues within the activation loop of the kinases
are represented as dotted spheres.

Please note: Wiley-Blackwell are not responsible for the content or
functionality of any supporting information supplied by the
authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.
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