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Introduction
Cancer has a major impact on humans worldwide, both in 
terms of incidence and mortality.1 Despite the significant 
decrease in incidence and death rates seen over the last couple 
of decades in developed countries as a direct result of improve-
ments in diagnostic and treatment strategies, inverse epidemi-
ological trends have been detected in developing countries.1–3 
Moreover, the survival of patients with end-stage solid tumors 
is still low everywhere, irrespective of the socioeconomic sta-
tus of the country.4 In this context, breast cancer is particularly 
relevant, since it is the main cause of death among cancers in 
women worldwide and a perfect prototype of the epidemio-
logical patterns stated above.5

For many years, the answer to the question of why malig-
nant neoplasms resist the main therapeutic modalities (even 
when combined), both primarily (treatment failure) and sec-
ondarily (tumor recurrences), has involved many theories, the 
most recent of them being the cancer stem cell (CSC) concept.

Normal and cancer stem cells. Stem cells participate 
actively in different physiological processes and developmen-
tal stages of pluricellular organisms. Accordingly, they have 
been classified into many subtypes, two of which stand out: 
the embryonic and the adult stem cells. Embryonic stem 
cells derive from the first division of a fertilized egg and give 
rise to virtually all cell types during intrauterine life, while 
adult stem cells are present in different somatic tissues and 

give rise to only the specific cell types of these adult tissues, 
hence bearing a lesser multilineage potential when compared 
to embryonic stem cells.

Normal stem cells (NSCs), regardless of subtype, have 
two main defining properties. First, they can renew them-
selves, which allows self-perpetuation and maintenance of 
a pool of totipotent stem cells.6–8 Self-renewal can occur by 
means of symmetric mitosis in which a stem cell produces 
two daughter stem cells, or asymmetric division in which a 
stem cell produces a daughter stem cell and another cell that 
is committed to a certain line of differentiation.6–9  Second, 
NSCs can differentiate into multiple lineages (such as epithe-
lial and mesenchymal), thus replacing and maintaining the 
major functional elements that characterize the surrounding 
tissue. In the mammary gland, for example, these differenti-
ating cells generate two main cell types: 1) luminal epithelial 
cells, which line internally ductal and lobular structures, and 
2) myoepithelial cells, which are contractile cells enclosing 
the former.10

Besides these two fundamental characteristics, NSCs 
have other features that increase significantly their chance of 
survival when challenged by xenobiotics. NSCs are naturally 
protected against xenobiotics, especially those able to modify 
nucleic acids, because they are quiescent (ie, in G0 phase) most 
of the time and express a number of efflux pumps, such as the 
ATP-binding cassette (ABC) superfamily of transporters.10
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CSCs are a subpopulation of cells found within any type 
of malignant neoplasm (ie, hematological or solid neoplasms), 
usually comprising 2% (especially in breast cancer cases) or 
more, depending on cancer type and detection assay.11,12 Cur-
rently, CSCs are related to several and confusing synonyms 
in the literature, which include terms like tumor stem cells, 
neoplastic stem cells, tumor initiating cells, tumorigenic cells, 
and cancer progenitor (or progenitor-like) cells.

Currently, there is no consensus on the definition of 
the terms “cancer stem cell”, “cancer progenitor cell”, and 
“tumor-initiating cell”. In some studies, these terms are used 
loosely and interchangeably as synonyms. In others, the use 
of “cancer stem cell” is limited to a more immature, totipo-
tent (ie, full multilineage potential) stem cell, while “cancer 
progenitor cells” is generally applied to designate CSC 
daughter cells with more restricted capacity of differentiation  
(ie, stem cells with less multilineage potential). “Tumor ini-
tiating cells”, on the other hand, can be applied to neoplastic 
cells that account for the successful occurrence of xenotrans-
plants and metastasis, even if they do not bear other stem-cell-
defining features (eg, the expression of stem cell phenotypic 
markers) and regardless of their status/post in the maturation 
hierarchy. Therefore, “tumor initiating cells” can be used as a 
broad synonym for CSCs or cancer progenitor cells. Further-
more, it may also be used by those who are not convinced of 
the existence of CSCs, when referring to the first cells that 
reach and successfully colonize a given tissue, in xenotrans-
plant assays or in metastatic spread processes.

The most employed term, namely “cancer stem cell”, 
derives from the observation that they bear most of the fun-
damental features of NSCs as pointed out above.6–8 They are 
capable of self-renewal by means of symmetric or asymmetric 
mitosis, thereby controlling tumor maintenance and growth. 
They can give rise to all cell types seen within a certain tumor, 
which explains its morphologic heterogeneity and similarities 
between primary and metastatic neoplasm.7 It is to be noted 
that their tumorigenic activity is not limited to the metastatic 
phenomenon (ie, giving rise to a new tumor mass within 
the same organism), but also enables them to form tumors 
when transplanted into immunodeficient animals.7 Finally, 
they usually display low proliferation rates and are frequently 
found to express a variety of cytoplasmic membrane-bound 
efflux transporters.13

Efflux transporters, also known as efflux pumps or ABC 
transporters, are ATP-dependent pumps that can promote 
the translocation of substrates across biological membranes 
against a concentration gradient.13 By doing so, these trans-
porters help in protecting different cell types against the 
potential toxic effects of many xenobiotics (including several 
chemotherapeuticals). ABC transporters have been found to 
be highly expressed on normal and CSCs, and contribute to 
multidrug-resistance phenomena in the latter case. Forty-
eight ABC transporter encoding genes have been identified 
in the human genome, and they are categorized into seven 

 subfamilies A–G.13 The most studied and relevant efflux 
pumps for CSCs so far, from the pathophysiologic point of 
view, are ABCB1 and ABCG2. ABCB1 or P-glycoprotein 
(P-gp) is the product of the MDR1 gene and provides resis-
tance against a multitude of structurally unrelated hydro-
phobic compounds (including chemotherapeutic agents such 
as etoposide, doxorubicin, and vinblastine).13 ABCG2, also 
known as BCRP (breast cancer resistance protein) or ABCP 
(ABC transporter in placenta), is a 72-kDa protein capa-
ble of transporting doxorubicin, mitoxantrone, topotecan, 
methotrexate, and tyrosine kinase inhibitors, among other 
substances.13

Despite these similarities with NSC, they differ in that 
the mechanisms that normally regulate these processes are 
absent or anomalous, such that in response to variable selec-
tion pressures they may continuously originate more adapted/
resistant clones.14

Historical aspects: the evolution of the CSC concept. 
It is generally accepted that the CSC hypothesis started with 
Cohnheim, who postulated in 1875 that NSCs, which had 
been misplaced during embryonic development, could later be 
implicated in tumorigenesis.8,15,16

This hypothesis was based on the many biologic simi-
larities that can be traced between embryonic and neoplas-
tic tissue. Indeed, both tissues are composed of cells that can 
self-renew, originate distinct cell types, migrate, resist toxic 
substances, and live for longer periods.17,18 In addition, ovar-
ian and testicular teratomas contain a variety of cell types 
that are not normally found in these primary sites, suggesting 
that such tumors could originate from cells with multilineage 
potential, just like embryonic stem cells.

Subsequently, in 1974, Pierce further  developed Cohnheim’s 
concept by suggesting that malignant neoplasms could initi-
ate from NSCs that had accumulated carcinogenic mutations 
that impair normal regulatory mechanisms of proliferation and 
differentiation.16,19 Carcinogenic mutations take time to occur 
and accumulate in a single cell, but NSCs are long-lived, so it 
makes sense that these cells should be the preferred origin of 
malignant neoplasms.8,18,20,21 Moreover, extra mutations would 
be necessary for a differentiated cell to acquire the self-renewal 
capacity, while this is an innate feature of NSCs.22

Despite the theoretical background summarized above, 
the first solid evidence for the stem cell origin of cancer came 
in 1997 with the demonstration by Bonnet and Dick23 that 
only very immature CD34+/CD38− cells, derived from acute 
myeloid leukemia patients, could successfully reconstitute the 
referred malignancy in nonobese diabetic/severe combined 
immunodeficient (NOD/SCID) mice. Since then, the exis-
tence of neoplastic cells with stem cell-like features has been 
demonstrated in most if not all malignant neoplasms, includ-
ing solid tumors such as breast cancer, prostate adenocarcino-
mas, brain gliomas, lung cancer, colorectal carcinomas, and 
melanoma.17,24–27 In these studies, such cells are often denom-
inated CSCs. It seems that the CSC concept has received 
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greater acceptance and development among  leukemia and 
breast cancer studies; however, a growing number of studies 
show that the model can be generalized to other solid tumors 
as well (in particular, gliomas and colorectal cancers).24,25 It is 
important to emphasize that, regardless of the type of neo-
plasia, a better understanding on the biology of these cells, 
particularly on the signaling pathways that control their 
growth, is needed. It is clear that the current lack of reliable 
CSC markers hampers significantly the development of new 
CSC-specific drugs.

The first report on the presence of CSCs on solid tumors 
was made by Al-Hajj et al17 and involved breast cancer. Using 
flourescence-activated cell sorting (FACS), they isolated a 
tumorigenic population of cells with the phenotype CD44+/
CD24−/low. Less than 200 of these cells were sufficient to gen-
erate tumors when xenotransplanted into NOD/SCID mice, 
although an average of 50,000 were needed in the unsorted 
population to produce the same results. Enhanced tumor-
forming capacity of CD44+/CD24−/low cells was later con-
firmed by many others.14,28 Recently, by contrast, some critics 
have suggested that the CSC hypothesis could be simplistic and 
artificial, since the gold standard for defining stemness is the 
tumorigenicity in immunodeficient mouse models. They argue 
that the mammary fat pads of immunodeficient mice may not 
necessarily be a realistic surrogate for the microenvironment/
niche where CSCs thrive in the human body. Therefore, some 
have proposed a more complex model of cancer development, 
merging the classic “clonal evolution” model (often referred to 
as the stochastic model) and the concept of CSCs.29

Cancer stem cells and carcinogenesis models. In the 
course of history, several models of carcinogenesis have been 
proposed.30 Lately, at least two main models have survived 
criticisms to become the most commonly reported theories in 
the literature on cancer: (1) the clonal evolution and (2) the 
stem cell models (Table 1).

The classic or stochastic clonal evolution model postu-
lates that any normal cell (regardless of its maturation status or 
hierarchical post in a given tissue) may originate a malignant 

neoplasm and that all cells within a tumor may contribute 
in varying degrees to its maintenance and further develop-
ment.30–32 According to this theory, cancers originate and 
evolve as a consequence of the cumulative/multistep acquisi-
tion of genetic and epigenetic alterations, which depend on 
random phenomena as well as on certain driving forces (or 
selection pressures) such as the exposure to carcinogenic and 
therapeutic agents.33 Compelling evidence from clinical stud-
ies on B-cell lymphoblastic leukemias supports this model.32

The other model is represented by the CSC hypoth-
esis, which states that cancers arise not from any cell type 
of a given somatic or germinal tissue but exclusively (or at 
least most frequently) from stem cells.31,32 Again, upon the 
progressive accumulation of genetic/epigenetic aberrations, 
this transformed stem cell (from now on called CSC) would 
then be responsible for the maintenance, repopulation, pro-
gression, and local/systemic dissemination of the malignant 
process.31,34–37 The CSC model is supported mainly by studies 
on germ line and breast cancers.32 In breast cancer, on the 
basis of a growing body of evidence, it has been hypothesized 
that tumor initiation would take place preferentially in nor-
mal mammary stem or progenitor cells expressing the CSC 
marker CD44.38 Furthermore, it has been assumed that the 
relative frequency of these cells would also determine tumor 
progression by increasing the chances of metastasis and of a 
worse clinical outcome.39,40

Breast cancer is not a single disease with a single tumori-
genesis pathway but a highly heterogenous group of diseases 
from both clinicopathologic and molecular points of view. 
Currently, based on gene expression profiling (or alternatively, 
on immunohistochemistry phenotyping), breast cancer can 
be classified into five molecular subtypes: luminal A, lumi-
nal B, HER2/neu-positive, and triple-negative/basal-like. 
These subtypes reflect differences not only in the expression 
of estrogen receptors (ERs), progesterone receptors (PRs), 
and human epidermal growth factor type 2 (HER2/neu) but 
also in metastasis rates and post-treatment recurrence.41–43 
 Furthermore, a growing number of studies now suggest that 

Table 1. Brief summary of the main carcinogenesis models reported in the literature of cancer: clonal evolution (stochastic) versus the stem cell 
models.

STOCHASTIC CANCER STEM CELL

Origin of the neoplastic process any cell type (including a stem cell) the cancer stem cell (a mutated stem cell)

Maintenance of the neoplasia any cell type that proves to be resistant to the 
 presenting selection pressures

the cancer stem cell

the existence of neoplastic 
cells with stem cell features

it is just another phenotypic subtype of cancer 
cell (frequently associated with heterogeneous 
tumors), and possibly bearing a greater potential 
to promote resistance

the cancer stem cell (a “stable” subtype of cell)

supporting evidence the existence of cancer stem cells has not been 
demonstrated in all malignancies

it is “easier” to obtain a neoplasia from a mutated 
stem cell than from a normal well-differentiated cell.
Most neoplasms have cells with stem cell phenotypic 
features

Notes: refs: shackleton et al,32 Kakarala and Wicha,10 al-hajj and Clarke,9 dick,60 Polyak and hahn.42
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the presence of CSCs in breast tumors is highly associated 
with specific subtypes44,45

In support of this theory, Honeth et al46 recently 
demonstrated a significant association between basal-like 
phenotype—a poor prognosis molecular subtype of breast 
cancer—and the number of CD44+/CD24− cells. Additional 
experimental studies have also confirmed the relationship 
between CD44+/CD24− breast cancer cells and increased 
in vitro expression of other stem cell biomarkers (such as 
the capacity for mammosphere formation), not to mention 
enhanced invasion, resistance to radiation, and metastatic 
potential.47–49 Also, consistent evidence derived from clinical 
studies demonstrates that CD44+/CD24− breast cancer cells 
express an invasive gene signature that is associated with an 
increase in the risk of distant metastases.38,49,50

Most importantly, CD44+/CD24− should not be rega-
rded as the only CSC profile to predict increased aggres-
siveness and worse prognosis. Honeth et al,46 in the study 
mentioned above, states that not all basal-like tumors contain 
CD44+/CD24− cells, suggesting the CSC phenotype may 
not be limited to this expression profile and that the quest for 
alternative breast CSC markers should proceed. As a result, 
other markers and specific expression profiles have been asso-
ciated with CSC features, including adverse outcomes. Stingl 
et al,51 for instance, reported a significant association between 
the fundamental stem cell characteristics of self-renewal and 
multilineage potential and the expression of the stem cell 
markers CD24, CD29, and CD49F. In agreement with these 
findings, Shackleton et al32 demonstrated enhanced tumori-
genic capacity among CD29high/CD24+ and CD49Fhigh/
CD24+ cells.

Some studies have provided the description of full organ 
reconstitution from a single normal epithelial stem cell, 
and this fact bears significant implications for the isolation/
detection of stem cells from other tissues. It is not yet certain 
whether there is a stable hierarchy of stem/progenitor cells in 
breast tissue, such as the one described in bone marrow hema-
topoietic tissue. Some evidences suggest that one single stem 
cell would be sufficient to reconstitute a complete mammary 
gland, although distinct progenitor cells (ie, first-generation 
daughter cells of a single stem cell) would be necessary for 
the development of different histologic components, such as 
ductal and lobular structures.32 It is likely that β1-integrin 
(CD29) and α6-integrin (CD49f) participate in the interac-
tions between stem cells and mammary stroma. The identi-
fication of the genes that are differentially expressed within 
stem and progenitor cells could contribute to the discovery of 
new stem cell and CSC markers.

As stated previously, many critics of this hypothesis 
claim that the current gold standard for assessing CSCs  
(ie, heterotransplantation of human neoplastic cells into 
immunocompromised mice) may be biased by the selection 
of cells that are more adapted to surviving and proliferating 
in the mouse microenvironment with foreign growth factors 

and cytokines.52,53 In the light of these criticisms, interme-
diate models combining elements of both models1 have been 
created, adding considerable complexity to the current under-
standing of tumorigenesis. These merged models predict that 
the frequency of CSCs in each patient should vary considerably 
and be dependent on the type of cancer, dominant mutations, 
as well as gene amplifications and deletions. Furthermore, 
these mixed models propose that dominant CSC clones could 
emerge during tumor progression, as resistant CSCs are pref-
erentially selected by ongoing therapies.7,54

The distinction between the classic clonal evolution model 
and the CSC hypothesis is not just an academic one, because 
these models have different therapeutic implications. In the 
clonal evolution model, cure can be achieved only if treatment 
resulted in the death of all potentially resistant clonal sub-
populations, whereas in the CSC model, resolution is possible 
only by the eradication of CSCs. Even in mixed models, the 
doubt persists because the origin and nature of CSCs remain 
unclear. Are they dedifferentiated cells that have acquired a 
more stem cell-like phenotype, or are they NSCs that through 
longevity have accumulated a sufficient number of mutational 
hits required for carcinogenic transformation? Evidence sug-
gests that conventional chemotherapy targets the bulk of the 
tumor cells, allowing slow-cycling cells such as CSCs to per-
sist after treatment and promote further metastatic disease.8

Despite the current theoretical controversies, it is impor-
tant to note that regardless of the true origin of cancer, it is 
possible to detect neoplastic cells with stem cell features in 
most malignant neoplasms (from leukemias to solid tumors) 
and to consistently confirm their relationship with local agres-
siveness, systemic dissemination, therapeutic resistance, and 
worse prognosis.55,56 So, at least for treatment purposes, per-
haps we should put aside the concept of CSCs as the primary 
origin of cancer (as emphasized by the CSC hypothesis), and 
focus on the more practical concept of CSCs as (1) potential 
drivers of therapeutic failure in most established neoplasms 
and, consequently, (2) major targets in pharmacological and 
pathophysiological studies of cancer.

Limitations to the study of CSCs. The study of CSCs 
has two major constraints. First, CSCs account for a very 
small subset of the neoplastic cells (usually 2%) and the iso-
lation techniques can be laborious.23,57–60 Second, even now 
the identification and characterization of CSCs is limited by 
the lack of specific markers and biomarkers.61

Currently, there are four main approaches to the detec-
tion and quantitation of CSCs, and they are all based on their 
fundamental properties, such as (1) the capacity to originate 
solid tumors in immune-deficient mice (the tumorigenicity 
assays), (2) the ability to form spheres in cultures (such as the 
mammosphere and neurosphere assays),18 (3) the presence and 
activity of antixenobiotic defense mechanisms (eg, membrane 
efflux pumps and aldehyde dehydrogenase 1 expression and 
functional assays),62,63 and (4) the expression of specific cell 
markers (most of which are constitutively displayed on the 
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surface of the cells) and whose detection depends mostly on 
immuphenotyping techniques, such as immunocytochemis-
try and flow cytometry.17 Although a detailed description of 
these methods is beyond the scope of this review, it is worth 
mentioning that the first approach is the closest to the defini-
tion of the “gold standard” (though seriously limited by ethical 
and biological criticism, as already established). In addition, 
sphere-forming tests and those assays designed to assess anti-
xenobiotic mechanisms are limited by “logistics” and technical 
difficulties because they require considerable amounts of fresh 
CSC-rich specimens. Because of these relevant problems, the 
last approach has become the most widely recommended and 
reported in the literature.

Ways of Targeting Cancer Stem Cells and Successful 
Pharmacological Agents
Targeting CSCs can, theoretically, be achieved by exploring 
two of their fundamental properties, namely (1) the deregu-
lated pathways implicated in self-renewal, and (2) typical sur-
face or intracellular stem cell markers. Here, we summarize 
the current knowledge about these specific targets and the 
studies describing the most promising agents (see Table 3), 
with emphasis on breast cancer literature.

Signaling pathways. The signaling pathways that are 
most frequently deranged in CSCs are Notch, Hedgehog, 
Wnt, p53, and HER-2. The aberrant activation of Notch-1 
favors chemoresistance and radioresistance47 of CSCs, whereas 
Hedgehog, Wnt, and HER2 expressions seem to correlate 
with stem renewal and increased CSC numbers.64–66 Because 
of this, Notch, Wnt, Hedgehog, and HER-2 have been stud-
ied as critical signaling pathways for the self-renewal process, 
proliferation, metastasis, and tumor development.67–69

Recent studies have shown that the inhibition of the 
Notch pathway by gamma-secretase inhibitors (GSI) (eg, dual 
antiplatelet therapy, DAPT) results in the reduction of CSC 
marker expression and parallel decrease in tumor growth 
in vivo. In glioblastoma studies, Notch pathway blockade by 
GSIs reduced the immunoexpression of CSC markers (such as 
CD133 and nestin) in neuroespheres. In addition, by block-
ing the Notch pathway, the cells lose their colony-forming 
efficiency both in vitro and in vivo.70 In preclinical studies, 
Schott et al71 have shown that the inhibition of the Notch 
pathway could reduce the number of CSCs in xenograft mod-
els of breast cancer. The same authors have also demonstrated 
in clinical trials the viability of combining GSI and a chemo-
therapeutic agent (docetaxel) for advanced breast cancer, while 
encouraging further studies to define better drug combina-
tions. These findings have been confirmed for several other 
malignancies using preclinical models.72,73 As a result, these 
compounds have entered clinical trials.71,74

In breast cancer, it is important to mention that any 
novel strategy to target Notch must take into account 
 potential  crosstalks with other prominent signaling path-
ways, such as those involving ERs and the product of the 

HE2 oncogene.75 For instance, in ER+ cells, estrogens inhibit 
Notch activity, while anti-estrogens and estrogen withdrawal 
can activate Notch.76 Notch signaling, in turn, may stimulate 
ER-dependent transcription, suggesting the existence of feed-
back mechanisms controlling Notch–estrogen crosstalk.77 
These data indicate that the combined inhibition of estrogen 
and Notch pathways may prove to be effective in treating 
luminal-type breast cancers.76 Similarly, the combined inhibi-
tion of Hedgehog and Notch signaling by Genetech’s GDC-
0049 and Roche’s RO4929097, respectively, has resulted in 
a more efficacious anti-neoplastic effect, thus highlighting 
their role in CSC pathology and possible Hedgehog–Notch 
interactions.55,78,79

The Hedgehog pathway by itself has been shown to play 
a prominent role in chronic myeloid leukemia (CML) patho-
genesis by regulating the process of self-renewal of CSCs.80 
Using the Hedgehog antagonist cyclopamine, Zhao et al81 
improved the efficacy of tyrosine kinase inhibitors by deplet-
ing CSCs and subsequently improving survival of CML-
bearing mice.

Concerning the Wnt/β-catenin canonical pathway, which 
is one of the most studied molecular pathways in oncogenesis, 
a number of inhibitors have been tested. These include non-
steroidal anti-inflammatory drugs, molecularly targeted agents 
(such as the CREB-binding protein/β-catenin antagonist 
ICG-001), and biologic inhibitors (antibodies, RNA interfer-
ence agents, and recombinant proteins).82 These attempts to 
inhibit this pathway followed the evidence provided by Heidel 
et al83 and Hu et al,84 who first showed that the Wnt/β-catenin 
pathway is involved in CSC renewal (particularly, in CML), 
and that deletion of the β-catenin results in a significant loss 
of remaining CSCs in the bone marrow of mice bearing CML, 
previously subjected to imatinib therapy.83,84

Another promising way to inhibit CSCs may be achieved 
by targeting tumor supressor genes such as p53, which has 
been implicated in the self-renewal of these cells. Korkaya 
and Wicha11 suggest that a deregulation in p53 and in PTEN 
genes could lead to an altered self-renewal, which could lead 
to resistant tumors. Although fundamental in many aspects of 
carcinogenesis, p53 has not been addressed as a specific target 
in the context of CSC inhibition.

Finally, targeting these signaling pathways remains a 
challenge, since they are held as crucial in the homeostasis of 
NSCs. Therefore, inhibiting these signaling pathways may be 
detrimental to the maintenance of normal tissues.85 Moreover, 
one should consider the possibility of a CSC subclone devel-
oping resistance to the inhibition of any one of these signaling 
pathways, thus preventing future combination therapies tar-
geted to CSC-associated signaling pathways.86

Phenotypic stem cell markers. In this case, the therapeu-
tic strategy is to target surface or intracellular antigens that are 
known to be preferentially expressed by CSCs. Several of these 
markers have been investigated with the use of  diagnostic anti-
bodies, which allows the identification, isolation/separation, 
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and monitoring of leukemic and solid tumor CSCs, in both 
preclinical and clinical settings.6 In spite of the dispute con-
cerning the specificity of these molecules as true markers of 
the CSC phenotype, they have been consistently associated 
with resistance to conventional therapy, including chemo- and 
radiotherapy, by different sources.55 CD34, CD44, CD133, 
and EpCAM are the most commonly used proteins to identify 
CSCs in various cancers (Table 2).87 For that matter, they have 
become major targets in the development of new therapeuti-
cal monoclonal antibodies (MoAbs) against several types of 
cancer.55 Successful examples in preclinical studies include the 
P245 anti-CD44 and the MT110 anti-EpCAM MoAbs, both 
of which exhibited activity against breast cancer stem cells in 
xenograft mice models.55 It is important to remember, how-
ever, that what is generally considered as “typical” CSC mark-
ers may vary considerably among cancer types. For instance, 
the profiles CD44+/CD24− and ALDH1+/CD44+/CD24−/
lin− are more frequently used as CSC markers in breast and 
prostate cancers, while CD133 is the preferred CSC marker 
for brain and colorectal tumors.12,17,24,70

The expression of CSC marker proteins can be heter-
ogenous both intra- and inter-tumors. Such heterogeneity 
may not only undermine the primary response of the tumor 
to MoAbs but also favor the development of secondary 
resistance. Therefore, future studies should concentrate on 
the variability of CSC marker expression across different 
types neosplams and stages of tumor progression, in order 
to facilitate the personalization of CSC-targeted medicine. 
Other equally illustrative examples of recent experiences 

with anti-CSC agents, not mentioned in the text, are 
summarized in Table 3.

Concluding Remarks
•	 Despite the growing number of publications dedicated to 

the study of CSCs as major therapeutic modality, there 
are still many unsolved questions, particularly regard-
ing their existence as phenotypically stable cell types/
subpopulations and the best methods to detect them. 
In our opinion, as long as there is no consensus on the 
true nature of CSCs and on the most reliable methods 
to identify them (specially, in different sample contexts), 
preclinical studies seeking to demonstrate an anti-CSC 
effect should be done with more than one detection 
method. When using immunophenotyping-based meth-
ods, at least two CSC markers/profiles (optimized for 
tumor type/site) should used.

•	 In the past decade, approximately 40 different substances 
have been tested as possible anti-CSC agents in the con-
text of breast cancer, half of which are represented by 
repurposed drugs.

•	 Unfortunately, in most instances, the molecular mecha-
nisms that account for the alleged anti-CSC effect were 
not clearly demonstrated. In addition, only a minor-
ity of studies provided in vivo supporting evidence for 
the in vitro findings, not to mention that only very few 
studies investigated the risk of adverse effects concerning 
NSCs. Local or systemic inhibition of NSCs and progen-
itor cells should be a major concern in preclinical studies 

Table 2. Main cancer stem cell immunophenotypic markers across different neoplasms.

STEM CELL 
MARKER

SYNONYM MOST COMMONLY FOUND ON PUTATIVE ROLE OF THE MOLECULE

Cd24 heat stable antigen Breast CsCs adhesion molecule expressed in the majority of lymphocytes 
and differentiating neuroblasts

Cd44 – Breast and prostate CsCs surface glycoprotein cell–cell interaction, cell adhesion,  
and migration

aldh1 – normal and cancer stem cells  
in a wide range of tissues

aldh isoform involved in the metabolism of aldehydes  
and retinol

epCaM Epithelial-specific 
antigen (esa)

Breast and pancreatic CsCs transmembrane glycoprotein involved in Ca2+ dependent 
cell–cell interactions associated to cell signaling, migration, 
proliferation, and differentiation

Cd133 Prominin-1 Gliomas and colorectal carcinoma 
CsCs

Glicoprotein coded by PROM1 gene in human genome. 
highly expressed in plasma membrane protrusions of 
several epithelial cell types. important for the topological 
organization of plasma membranes

Oct-4 POU5F1 Cancer stem cells in a wide range 
of tissues

Protein coded by POU5F1 gene in human genome. 
 Commonly expressed on undifferentiated tumor cells

Cd34 – intestinal, hepatic, and pancreatic 
CsCs

Cell adhesion glycoptrotein

c-Kit Cd117 intestinal, hepatic, and pancreatic 
CsCs

tyrosin kinase receptor coded by the KIT gene. expressed 
in hematopoietic stem cells and in granulocyte precursors

Cd10 Calla head and neck squamous cell 
 carcinoma CsCs

surface metalopeptidase, expressed in lymphoid progenitor 
cells, and in immature B cells in the bone marrow

Note: adapted from Klonisch et al5 and Oliveira et al.41
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like these, given the biological similarities between 
NSCs and CSCs. Furthermore, a better understanding 
on the underlying mechanisms of action of these drugs 
could foster the discovery of molecular targets that would 
be specific to CSCs and safer for NSCs.
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