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Introduction
Deregulation of RAS homologous (RHO) small GTPases has 
central roles in different diseases, such as virus,1–3 bacteria,3–5 
and parasite infections,3,6 as well as cancer development.7–9 
Particularly in cancer, the importance of small GTPases is 
well known since RAS genes have activating mutations in 
around 30% of human cancers,10 but besides RAS, the RHO 
family of small GTPases and their regulators have been 
found to be implicated in many different cancer types.7–9,11 
Therefore, understanding how these small GTPases have 
coevolved with their regulators may shed light on how their 
interactions evolve during the cancer microevolutionary pro-
cess. RAC subfamily is a group of small GTPases consisting 
of RAC1, RAC2, RAC3, and RHOG, which belongs to the 
RHO family of the RAS superfamily of small GTPases.12 
Most of the effector proteins of RAC proteins are serine/
threonine kinases (such as Mlk3, Pak1–3, and PKCα) as well 
as scaffold proteins (such as p53IRS, Par6α, γ, and SH2/SH3 
domains), which are directly involved in the cytoskeleton 
organization.13 Consequently, alterations in RAC proteins 
can provoke aberrant cell signaling.

Small GTPases function as an on/off amplifying switch 
in signaling pathways initiated by the stimulation of cell sur-
face receptors. When GTPases are in complex with a GTP 
molecule, GTPases undergo a conformational change that 

allows them to interact with downstream effectors, so that 
GTPases are in an active conformation. Once GTPases hydro-
lyze the GTP, they remain in complex with the GDP molecule, 
and this prevents their interaction with effector molecules; 
therefore, the GTPase-GDP complex is considered to be the 
inactive state of GTPases.14 GTPases are involved in signal-
ing pathways that lead to growth, differentiation, adhesion, 
and migration of cells; thus, the precise control of their active 
and inactive states is tightly regulated.9,10 The precise time 
that small GTPases remain bound to the GTP or the GDP 
is controlled by guanine nucleotide exchange factors (GEFs), 
GTPase-activating proteins (GAPs), and guanine nucleotide 
dissociation inhibitors.11 GEFs catalyze the exchange of 
bound GDP for GTP,15 GAPs enhance the GTPase activ-
ity of small GTPases,16 and guanine nucleotide dissociation 
inhibitors recognize inactive GTPases and remove them from 
the membrane.17

Although all GTPases are regulated by proteins that per-
form the same type of biochemical processes, these regulatory 
proteins are evolutionarily unrelated.18 An example of this is 
the GEFs that regulate RACs. GEFs are classified into two 
groups according to their sequence similarity and structure 
of their catalytic domains: DBL and DOCK families.19 
The DBL family consists of at least 71 members, which are 
characterized by the presence of one DBL homology (DH) 
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domain, and membrane-binding domains, which in most 
cases are one or two pleckstrin homology (PH) domains.19 
DH domains catalyze the exchange of GDP for GTP, while 
PH domains perform different functions in different GEFs. 
Some PH domains localize the GEF protein to the plasma 
membrane through interactions with phospholipids, others 
interact with cytoskeleton proteins, and some others regulate 
the DH catalytic activity.15,19 The DOCK family consists of 
11 members that are characterized by the presence of two dis-
tinct domains, the DOCK-homology regions 1 (DHR1) and 
2 (DHR2).20–22 The DHR1 domain is involved in membrane 
localization,23 while the DHR2 domain promotes the gua-
nine nucleotide exchange.24 DBL and DOCK GEF families 
are unrelated in their amino acid sequence; nevertheless, they 
perform the GDP/GTP exchange on the well-conserved 
GTP-binding site of RAC proteins.19

The interaction between proteins is considered to be a 
source of protein coevolution,25 particularly for interactions 
that are important for a biological function; therefore, inter-
acting proteins generally coevolve.26 Evidence of molecular 
coevolution can be searched at the protein level by analyzing 
the similarities between corresponding protein orthologous 
phylogenetic trees.27,28 This approach has already been used 
successfully to estimate the level of coevolution of various 
different interacting proteins, including (1) the ligand SLIT 
and its receptor ROBO involved in axon guidance,29 (2) per-
oxiredoxins and their coevolution across bacteria, archea, and 
eukaryotes,30 and (3) the coevolution of insulin signaling 
pathway proteins,31 among other examples.27,28 Also, mutual 
information and global statistical models of multiple sequence 
alignments have been developed to estimate the covariation 
between different proteins.27,28 Global statistical methods, in 
particular the direct coupling analysis (DCA), have shown a 
higher predictive power for recognizing the interacting resi-
dues between proteins.27,32 Covariation at the residue level dur-
ing the course of evolution of interacting proteins suggests that 
compensatory changes have occurred to maintain their func-
tion, thus implying coevolution.26–28

Therefore, to understand how DBL and DOCK GEF 
families are able to perform the GTP/GDP exchange func-
tion upon RAC protein despite their unrelated protein 
primary structure, phylogenetic analyses of the RAC sub-
family, as well as of the DBL and DOCK families, were 
implemented. Correlation coefficients of RAC–DOCK 
and RAC–DBL phylogenetic trees were estimated, and 
covariation of residues between GEF domains and RAC 
proteins was calculated. Together, the results of these anal-
yses suggest that RAC and GEF proteins have coevolved 
in eukaryotes at different ratios and mainly through their 
interacting domains.

results and discussion
evolution of rAc small GtPases. To investigate the 

evolutionary relationship of the human RHO GTPases, 

a rooted phylogenetic tree of the members of the human RHO 
family was performed (Fig. 1). The resulting phylogenetic tree 
confirms the presence of eight well-defined subfamilies of 
RHO proteins. The topology of the RAC subfamily observed 
here confirms the previous RAC topologies in RHO family 
phylogenetic analyses.13,33 RHOG is the most distant member 
of the RAC subfamily, which suggests that RHOG diverged 
first from the common ancestor of RAC proteins. Moreover, 
the present phylogenetic analysis shows that RAC1 and RAC3 
are the most similar between them compared to RAC2, which 
has not been noted in previous studies.13,33

Previous studies have shown that the presence of small 
GTPases, including the RHO family, is almost ubiquitous 
among eukaryotes12,34,35 and that small GTPases have pre-
served the structural core features.33,36 To study the evolution 
of RAC proteins in eukaryotes, a phylogenetic analysis with 
all the known RAC protein homologs in eukaryotes was per-
formed (Fig. 2A and Supplementary Table 1). The similar-
ity between the RAC protein homologs in eukaryotes is very 
high. Furthermore, the relationship between RAC homologs 
is the same as in the tree of human RAC proteins (Fig. 2). 
This supports the hypothesis that RAC1 and RAC3 are more 
closely related, followed by RAC2, and RHOG being the 
most divergent member of RAC proteins.

coevolution of rAc and docK protein families. 
Human DOCK family of GEFs has 11 members, which have 
been grouped into four groups based on sequence similarity.19 
The phylogenetic tree confirms this similarity among DOCK 
members with bootstrap values of 100% (Fig. 3A). Also, 
DOCK1–5 and DOCK6–11 are more distant between each 
other than any other DOCK proteins. This result may be 
explained if DOCK1–5 and DOCK6–11 came from two dif-
ferent genes duplicated from a common ancestor. Besides, the 
interactions between RAC and DOCK proteins in humans 
appear to be promiscuous, since published data from experi-
mental studies show that RAC1 interacts with all the mem-
bers of the DOCK1–5 group19,37 and also with most of the 
members of DOCK6–11 group.19,37 To estimate the coevolu-
tion at the protein level between DOCK and RAC proteins, 
DOCK7 and DOCK1 were selected as the representatives 
of the DOCK6–11 and DOCK1–5 subgroups, respectively 
(see the “Methods” section). Correlation coefficients of RAC 
and DOCK orthologous phylogenetic tree distances were 
calculated using the MirrorTree method38,39 and compared 
with the negative control GAPDH correlation coefficients 
(Fig. 3B). The correlation between RAC1, -2, and -3 proteins 
and DOCK7 was significantly higher than the negative con-
trol, but none was significantly higher for DOCK1. More-
over, DOCK1 and RHOG have a very low correlation, but 
this could be an artifact due to the low number of DOCK 
and RAC orthologs in eukaryotes, which hampers the predic-
tive power of the MirrorTree method.40 As an orthogonal and  
phylogeny-independent method, the covariances of the DOCK 
domains and RAC proteins were estimated using a mean-field 
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DCA.41,42 Covariance with GAPDH was used as a negative 
control and the covariance between the interacting domains of 
SLIT2 and its receptor ROBO1 was used as a positive control, 
since SLIT and ROBO proteins have coevolved significantly 
in vertebrates.29 The top 1% covariation scores were compared 
because those residues are the most likely interacting ones.41 
As shown in Figure 3C, the covariation between RAC and 
DOCK domains was significantly higher than the negative 
control in all cases, which suggests that these domains have 
coevolved at a higher rate than the background protein coevo-
lution in eukaryotes, and implies that the interaction specific-
ity between RAC and DOCK proteins may be given by the 
GTPase and GEF DHR2 catalytic domains.

duplication of the docK family common ancestor 
before eukaryotes. According to the HomoloGene data-
base,43 51 protein homologs of the DOCK family have been 
reported and 62 homologs have been predicted, which give a 
total of 113 sequences (Supplementary Table 2). To have a more 
readable phylogenetic tree, only DOCK homolog sequences 
of Homo sapiens, Mus musculus, Danio rerio, Drosophila mela
nogaster, Caenorhabditis elegans, and Arabidopsis thaliana, 
which represent major steps in the evolution of eukaryotes, 
were selected for the interspecies DOCK phylogeny analy-
sis. Also, other proteins with the DHR2 domain that have 
been found outside the animal kingdom were included in 
this analysis, because these proteins might have a common 
ancestor with the animals’ DOCK homologs (Fig. 4A and 
Supplementary Table 2). Surprisingly, the DHR2(a) plant 
and fungi proteins and the DOCK1–5 animal homologs 
were clustered together, while outside this cluster, the plant 
DHR2(b) proteins and the DOCK7 homolog (SPK1) of  
A. thaliana form a clade supported by a 100% bootstrap value. 

This result correlates with the phylogenetic analysis of the 
human DOCK family, supporting the idea that DOCK1–5 
and DOCK6–11 have two different common ancestors, 
which may correspond to gene duplication before the emer-
gence of the Eukarya taxon (Fig. 4B).

coevolution of rAc and dbL protein families. Pre-
vious studies have analyzed the phylogeny of 59 and 69 DBL 
GEF proteins.15,19 Here, the human phylogenetic analysis 
includes 71 known human DBL members (Fig. 5 and Supple-
mentary Table 3).44 The phylogenetic tree shows that a few of 
the DBL clades are supported by bootstrap values above 70%, 
which confirms that the members of the human DBL family of 
GEFs are highly divergent. Furthermore, the pattern of inter-
actions among RAC proteins and DBL GEFs is promiscuous as 
the interactions are not specific for any clade (Fig. 5A). ARH-
GEF27, SOS1, and TRIO were selected as DBL representa-
tives for each subgroup found in the phylogenetic tree among 
eukaryotes (Fig. 6A; see the “Methods” section), and their 
coevolution with RAC proteins was estimated. At the protein 
level, the most significant correlation between RAC and DBL 
was observed with TRIO, followed by SOS1, while no signifi-
cant correlation compared to the negative control was detected 
with ARHGEF27 (Fig. 5B). However, when the covariation 
of DBL GEF domains with RAC proteins was analyzed, all 
comparisons were significantly higher than the negative control 
GAPDH (Fig. 5C). Together, these results suggest that RAC 
and DBL proteins have coevolved and that different rates of 
coevolution occurred in different clades of the DBL family. 
Moreover, the coevolutionary analyses suggest that the main 
point of interaction specificity between RAC and DBL proteins 
is the DH domain, which may help to explain the promiscuity 
of interactions between RAC and DBL proteins.

Rac1

RhoQ

Rac2

RhoBTB1

Rnd1

RhoG

Cdc42

Rnd2

RhoV

RhoBTB3

Rac3

RhoBTB2

RhoU

Rnd3

RhoC

RhoF

RhoH

RhoD

RhoB

RhoA

RhoJ

765

511

993

644

990

980

1000

830

987

779

620

661

860

780

994

998

708

Tree scale: 0.1

RHOBTB subfamily

RHO subfamily

RHOF subfamily

RND subfamily

RAC subfamily

RHOUV subfamily

CDC42 subfamily

Figure 1. Phylogenetic tree of the human rHo family of GtPases. Protein members of the human rHo family were aligned, and rHoBtB3 was chosen 
as out-group. the eight subfamilies of the rHo family are labeled on the right side of the relevant clade. Bootstrap values .500 are shown. subfamily 
labels were taken according to Bustelo et al, 2007.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Jiménez-Sánchez

124 Evolutionary Bioinformatics 2016:12

Finally, the divergence of DBL protein members in 
eukaryotes was assessed by construction of the phylogeny of 
DBL proteins that interact with RAC proteins according to 
Rossman et al. Due to the number of DBL homologs, only 
sequences from H. sapiens and the model organisms M. musculus, 
D. rerio, and C. elegans were included, along with the DH 

domains in the fungi species Neurospora crassa, Magnaporthe 
oryzae, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. 
Interestingly, proteins with DH domains belonging to the 
kingdom Plantae have not been reported or predicted by the 
HomoloGene database.43 A low level of similarity between 
DBL proteins can be observed (Fig. 6A). Despite the low 

Rac3(a) - C.elegans

Rac1 - H.sapiens

RhoG - H.sapiens

Rac3(a) - D.rerio

Rac3 - R.norvegicus

Rac2(a) - O.sativa

Rac1 - D.rerio

RhoG - R.norvegicus

RhoG(p) - G.gallus

Rac2(a) - A.thaliana

Rac2 - M.mulatta

Rac3 - H.sapiens

Rac3(b) - D.rerio

Rac1 - B.taurus

RhoG(p) - X.tropicalis

Rac1 - G.gallus

Rac3 - M.mulatta

Rac3 - M.musculus

Rac2 - G.gallus

Rac2 - D.derio

RhoG - B.taurus

Rac1 - M.musculus

RhoG - D.rerio

Rac1(c) - A.thaliana

Rac3 - O.sativa

Rac1(b) - A.thaliana

Rac2 - M.musculus

Rac1 - R.norvegicus

Rac2 - H.sapiens

Rac2 - X.tropicalis

Rac1(b) - D.melanogaster

Rac1 - O.sativa

RhoG - M.musculus

Rac2 - R.norvergicus

Rac3 - B.taurus

Rac1(a) - D.melanogaster

Rac1 - M.mulata

Rac3 - A.thaliana

Rac3 - G.gallus

Rac3(b) - C.elegans

RhoG - M.mulatta

Rac1 - X.tropicalis

Rac2 - T.taurus

Rac2(b) - A.thaliana

Rac1 - A.gambiae

Rac3 - X.tropicalis

Rac1(a) - A.thaliana

Rac2(b) - O.sativa

1000

931

754

656

971

728

533

908

911

711

698

840

1000

595

636

953

913

543

1000

636

507

815

962

882

1000

983

697

970

718

665

958

Tree scale: 0.1

P
la

nt
ae

A
ni

m
al

ia

50

150

100

200

250

300

350

400

450

500

1000

2000

PROTEROZOIC PALEOZOIC MESOZOIC CENOZOIC

Origin of 
eukaryotes

Plants Fungi

InvertebratesAnimals
Vertebrates

Fish Amphibians Birds Mammals
Nematods

600

Rac - Plants

RhoG

Rac2
Rac1
Rac3

Million years
ago

A

B

Figure 2. Phylogenetic tree of the rac subfamily homologs in the Eukarya taxon. (A) rac protein homologs were aligned, and the phylogenetic tree 
was rooted using the rac protein homologs found in the plants Oryza sativa and A. thaliana as out-group. rac homologs between species are labeled 
with the same color. labels (a), (b), and (c) denote different homologs of the same rac protein in the same species. label (p) indicates that the protein 
has been predicted by the HomoloGene database, but has not been validated experimentally. Bootstrap values .500 are shown. (b) Eukaryotes’ 
evolutionary timeline53,54 and schematic representation of RAC subfamily diversification based on its phylogenetic tree.

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Evolution of RAC small GTPases

125Evolutionary Bioinformatics 2016:12

similarity at the protein level between DBL proteins, some 
subgroups are more closely related to one or other DH fungi  
domains suggesting at least three gene duplications before 
vertebrates (Fig. 6B).

conclusions
The data presented in this study show that RAC proteins 
are well conserved among eukaryotes and raise the hypoth-
esis that before the emergence of plants the RAC common 
ancestor gene was duplicated, followed by speciation of one 
gene in plants and the other gene in the other eukaryotes’ 
branch. Furthermore, RHOG, the common ancestor of the 
fungi RAC proteins, and the RAC1-3 of animals might have 
diverged first by gene duplication. Later, the common ancestor 
of RAC1–3 may have undergone gene duplication followed by 
speciation, one going into the fungi kingdom and the other 

going into the animal kingdom. Finally, it may be possible 
that one duplication event followed by speciation happened 
before arthropods and one last gene duplication event hap-
pened before the emergence of chordates, following by the 
appearance of RAC2, RAC3, and RAC1. Furthermore, these 
results suggest that RAC1 is the member that shares most 
sequence similarity with the RAC common ancestor.

Regarding GEFs, the human DOCK family members 
are very similar between each other; however, DOCK1–5 
and DOCK6–11 may have evolved from two different genes 
duplicated before the emergence of the Eukarya taxon. The 
DBL family is much more divergent, and the interactions 
with RAC proteins are promiscuous. Nevertheless, the coevo-
lution analyses suggest that RAC–DOCK and RAC–DBL 
proteins have coevolved at a higher rate than the background 
coevolution rate. At the protein level, the analyses of the 
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correlation of tree distances show that within DOCK and 
DBL families, different subgroups have different correlation 
coefficients, and only some of them are significantly higher 
than the negative control, which may be related to the fact 
that different RAC and GEF proteins have different affinities.  

For instance, RHOG did not have a significantly higher cor-
relation for any of the DOCK or DBL proteins, which might 
be a consequence of the fact that RHOG has acquired more 
changes in the course of evolution than the other RAC mem-
bers, as shown by their branch lengths in the human and 
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interspecies phylogenetic trees. At the residue level, both 
DOCK and DBL families show a higher covariation of their 
GEF domains with RAC proteins compared to the control, 
which suggests that a higher rate of coevolution has occurred 

between RAC and GEF proteins. The consistency between 
the covariation analyses compared to the mixed results of the 
phylogenetic correlations implies that, since the interaction 
between RAC and GEF proteins happened at the domain 
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level, compensatory changes in the domains occurred during 
evolution, while other domains of GEF proteins changed and 
evolved independently of RACs. Therefore, the independent 
change of different domains within a protein would be a con-
founding factor that affect more protein-level coevolutionary 
approaches than residue-level ones. For instance, studies look-
ing for mutations in cancer have shown that by analyzing pro-
tein domains, further statistical power can be obtained in the 
detection of common mutations.45 Furthermore, the idea of 
restricting the coevolution phylogenetic analysis to the protein 
domain sequences has been already proposed.46

Although these results suggest coevolution between 
RAC and GEF proteins, the analyses performed and the 
sequences used have limitations and potential biases. Namely, 
the interspecies phylogenetic analyses do not include all 
identified and predicted homologs. Moreover, the interspe-
cies protein sequences were retrieved from the HomoloGene 
database, which is an automated system for gene homology 
detection in eukaryotic genomes.43 Therefore, potential false-
positive homologs could have been introduced in the interspe-
cies analyses. However, to minimise this issue, sequences of 
model organism were preferentially selected, because model 
organisms have been more carefully annotated, more high-
quality genomic information has been released and more 
experimental validated sequences are available.43 Also, more 
sophisticated coevolutionary methods, such as pMT and Con-
textMirror,47,48 could be used to evaluate more precisely and 
corroborate the coevolution of RAC and GEFs at the protein 
level suggested in this study.

Overall, this study shows that RAC–DOCK and RAC–
DBL proteins have coevolved in eukaryotes, particularly at the 
RAC–GEF-interacting domains, and that different ratios of 
coevolution may have occurred in different subgroups within 
DOCK and DBL families. These findings may help to explain 
the promiscuity of interactions between RAC and GEFs and 
provide a theoretical framework for further experimental 
validation.28 Finally, potential implications in cancers driven 
by mutations in RAC, DOCK, or DBL proteins could be 
searched in future studies.

Methods
Amino acid sequence selection. The amino acid 

sequences used for the human phylogenetic analyses were 
downloaded from the “Reviewed (Swiss-Prot) – Manually 
Annotated” section of the Protein Knowledgebase (Uniprot) 
(Last modification August 28, 2015).44 Uniprot accession 
numbers for the sequences used for the human phylogenetic 
analyses were compiled in Supplementary Tables 3, 4, and 5. 
The amino acid sequences used for the phylogenetic analysis 
among eukaryotes were downloaded from the HomoloGene 
database of the NCBI website.43 HomoloGene accession num-
bers and species were compiled in Supplementary Tables 1, 
2, and 6. The criteria for species selection were based on (A) 
evolutionary distance, (B) number of homologs, (C) number 

of validated homologs, and (D) preference was given to  
model organisms.

Phylogenetic analyses. The sequences selected were 
first aligned using the ClustalX software version 2.1 for each 
phylogenetic analysis.49 The tree analyses were performed 
using the neighbor joining clustering algorithm.50 Positions 
with gaps were excluded, and the analyses were corrected for 
multiple substitutions. A total of 1000 bootstrap runs were 
performed with 111 random number generator seed. All phy-
logenetic trees were visualized using the online tool Interac-
tive Tree Of Life.51

selection of representative proteins for coevolutionary 
analyses. Per each subgroup identified in the interspecies phy-
logenetic analyses of DOCK and DBL families, one represen-
tative protein was selected. The representative GEF proteins 
were selected based on the following criteria: (A) number of 
species having an ortholog (Supplementary Tables 1, 2, and 6),  
(B) number of RAC proteins they interact with, and (C) 
information supporting interactions with RAC proteins. The 
reported interactions were retrieved from Rossman et al and 
the STRING 10 database for protein interactions.37 Only 
physical interactions reported in databases and experimental 
data were considered.

coevolution analyses at the protein level. The Mir-
rorTree server was used to calculate the protein family tree 
similarities of RAC and GEF proteins.39 The MirrorTree 
method calculates the correlation coefficients of the tree dis-
tances between orthologous members of the protein families.38 
Default parameters and the complete MirrorTree workflow 
were used. Correlation coefficients with GAPDH protein 
family tree in eukaryotes were used as negative controls. Sta-
tistical significance of the differences of Pearson’s correlation 
coefficients between RAG–GEF values and controls was cal-
culated using Fisher’s z-scores transformation.52 The Bonfer-
roni correction for multiple comparisons was applied on the 
two-tailed P-values. The MirrorTree results were compiled in 
Supplementary Table 7.

coevolution analyses at the residue level. The covaria-
tion between the residues of RAC and GEF domains was esti-
mated using the interprotein-correlated mutations server.41 The 
mean-field DCA (EVfold-mfDCA) coevolutionary algorithm 
was used because it is independent of the phylogenetic history 
and has a higher predictive power than other methods.27 The 
top 1% of covariation scores were compared between pairs, 
since these residues are the most likely interacting partners.41 
The covariation between the interacting domains of the recep-
tor ROBO1 and its ligand SLIT2 was used as positive control, 
since it has been reported that these proteins have significantly 
coevolved in vertebrates.29 The covariation between RAC pro-
teins and GAPDH was used as negative control. Statistical 
significance was calculated using a Kruskal–Wallis rank sum 
test and a multiple comparison test after Kruskal–Wallis with 
the Bonferroni P-value correction. The statistical analyses 
were performed using R version 3.2.3. The R package pgirmess 
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and the kruskalmc function were used. The covariation results 
were compiled in Supplementary Table 8.
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