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Abstract

Protein-protein interaction networks are one of the most effective representations of cellular

behavior. In order to build these models, high-throughput techniques are required. Next-

generation interaction screening (NGIS) protocols that combine yeast two-hybrid (Y2H) with

deep sequencing are promising approaches to generate interactome networks in any organ-

ism. However, challenges remain to mining reliable information from these screens and

thus, limit its broader implementation. Here, we present a computational framework, desig-

nated Y2H-SCORES, for analyzing high-throughput Y2H screens. Y2H-SCORES considers

key aspects of NGIS experimental design and important characteristics of the resulting data

that distinguish it from RNA-seq expression datasets. Three quantitative ranking scores

were implemented to identify interacting partners, comprising: 1) significant enrichment

under selection for positive interactions, 2) degree of interaction specificity among multi-bait

comparisons, and 3) selection of in-frame interactors. Using simulation and an empirical

dataset, we provide a quantitative assessment to predict interacting partners under a wide

range of experimental scenarios, facilitating independent confirmation by one-to-one bait-

prey tests. Simulation of Y2H-NGIS enabled us to identify conditions that maximize detec-

tion of true interactors, which can be achieved with protocols such as prey library normaliza-

tion, maintenance of larger culture volumes and replication of experimental treatments.

Y2H-SCORES can be implemented in different yeast-based interaction screenings, with an

equivalent or superior performance than existing methods. Proof-of-concept was demon-

strated by discovery and validation of novel interactions between the barley nucleotide-bind-

ing leucine-rich repeat (NLR) immune receptor MLA6, and fourteen proteins, including

those that function in signaling, transcriptional regulation, and intracellular trafficking.
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Author summary

Organisms respond to their environment through networks of interacting proteins and

other biomolecules. In order to investigate these interacting proteins, many in vitro and in
vivo techniques have been used. Among these, yeast two-hybrid (Y2H) has been inte-

grated with next generation sequencing (NGS) to approach protein-protein interactions

on a genome-wide scale. The fusion of these two methods has been termed next-genera-

tion-interaction screening, abbreviated as Y2H-NGIS. However, the diverse data sets

resulting from this technology have presented unique challenges to analysis. To address

these challenges, we optimized the computational and statistical evaluation of Y2H-NGIS

to provide metrics to identify high-confidence interacting proteins under a variety of data-

set scenarios. Our proposed framework can be extended to different yeast-based interac-

tion settings, utilizing the general principles of enrichment, specificity, and in-frame prey

selection to accurately assemble interactome networks. Lastly, we showed how the pipe-

line works experimentally, by identifying and validating novel interactions between the

barley powdery mildew resistance protein, MLA6, and fourteen targets, including proteins

involved in signaling, transcriptional regulation, and intracellular trafficking. Y2H-

SCORES software is available at GitHub repository https://github.com/Wiselab2/Y2H-

SCORES/tree/master/Software.

Introduction

The reconstruction of interactome networks is one of the most efficient methods to under-

stand cellular processes at the molecular level [1]. In these network models, nodes represent

proteins and edges represent physical interactions [2]. Yeast two-hybrid (Y2H) is a powerful

method for uncovering new protein-protein interactions (PPI), discerning associations

between bait and prey proteins while correcting for biases in their cell concentrations and

affinity [3]. In a typical Y2H experiment, the bait is fused to a transcription factor (TF) DNA

binding domain and the prey is fused to the TF transcriptional activation domain. The bait

and prey hybrid proteins are introduced into the same yeast strain and if they interact physi-

cally, reconstitution of TF activity results in the expression of a reporter gene. Positive bait-

prey interactions are identified by growing the yeast on media lacking a particular amino acid

because only yeast expressing the reporter should be viable on this selective media [4]. Tradi-

tional Y2H screens involve a labor-intensive step where individual yeast colonies that grow

under selection are picked, and Sanger-sequenced to identify prey cDNA fragments. More

recent approaches, collectively termed next-generation interaction screening (NGIS), use deep

sequencing to identify candidate interactors obtained from Y2H screens and yield genome-

scale interactome data in an efficient manner [5]. NGIS facilitates quantitative measures of

bait-prey interactions using open-reading-frame (ORF) or cDNA sequence libraries [5].

Despite the methodological advantages of Y2H-NGIS, there remain overlooked informatics

and statistical challenges that accompany these complex data. Hence, there is a need for robust

and consistent statistical models that can be implemented with datasets coming from different

Y2H-NGIS settings and that can make use of all the available sequence information to recog-

nize true protein-protein interactions. 1) Most current studies focus on experimental optimi-

zation rather than analytical development, and do not offer software to statistically analyze

Y2H-NGIS datasets [6–16]. Currently available pipelines map and quantify total reads while

ignoring prey-fusion reads [17,18], or map fusion reads without quantifying their biological

significance to identify interactions [19]. Fusion reads contain both Y2H plasmid and prey
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cDNA sequence and contain details on the translational fusion of the prey sequence with the

TF activation domain in the hybrid protein. This information is useful to verify if the cDNA

fragment is in frame with the TF activation domain, and thus, the native peptide sequence is

expressed in yeast. ORF libraries do not have this issue because they are assumed to be all in

frame with the prey plasmid; however, ORF prey libraries are only available for few model

organisms [5]. 2) There is no consensus regarding what negative control(s) are more appropri-

ate to signify the background interactivity of the preys and to help to distinguish true interac-

tions [6–19]. 3) Despite its importance, most existing studies do not assess data normalization,

or implement inappropriate normalization methods for Y2H-NGIS data [6–14,16,18,19].

High-throughput sequencing datasets, where read counts quantify signal strength, e.g., RNA-

Seq, require normalization, as there are external factors, aside from experimental treatments,

that influence read counts [20]. Normalization methods, such as those used for RNA-Seq,

assume that most genes in the sample are not differentially enriched (DE). However, in

Y2H-NGIS experiments, the enrichment of each prey is determined by completely different

factors under the two growth conditions. In non-selected conditions, the prey’s relative abun-

dance in the library determines its concentration as measured by sequence read counts. Under

selection, it is the prey’s ability to activate the reporter, via interaction with the bait, or by auto-

activation that determines its abundance. Most if not all prey will therefore be DE in the

selected vs. non-selected condition. Finally, 4) with no consensus on the appropriate data anal-

ysis, nor even how to report the results, whether ratios of counts, log fold-change from DE

analysis, or a custom score function, it is nearly impossible to compare Y2H-NGIS studies [6–

19]. Consequently, a unified software to rank the candidate interactors from Y2H-NGIS data

should address a diverse range of experimental settings.

Here, we propose statistical methods to analyze Y2H-NGIS count data and rank the result-

ing prey candidates into a high-confidence list of interactors. Given prey total and fusion

count tables for a bait screen, we calculate a set of three scores to rank candidate bait-interac-

tors, designated Y2H-SCORES. We assessed its ability to rank candidate interactions using

simulation, comparison to previous Y2H-NGIS studies, and experimental validation of our

own results. Simulation of typical Y2H-NGIS data allowed us to demonstrate its robustness

under different controlled scenarios. Then, by implementation Y2H-SCORES with previous

Y2H-NGIS datasets [9,12,13,17,19], we demonstrated its high performance with multiple tech-

nologies and experimental settings. As a final proof-of-concept, we used Y2H-SCORES to

build an interaction network between the barley MLA6 nucleotide-binding leucine-rich repeat

(NLR) receptor and fourteen newly discovered proteins.

Results

The effect of normalization on Y2H-NGIS data

We optimized the protocol proposed by Pashkova and colleagues [19] to sub-culture diploid

yeast populations that carry bait and prey plasmids under two batch conditions: 1) diploid

growth, obtained in what we call the non-selected condition (SC-LW, synthetic complete

media lacking leucine and tryptophan to maintain Y2H plasmids), used as background for

library prey abundance and 2) interaction test, or the selected condition (SC-LWH, lacking

histidine to identify reporter gene expression), which theoretically only allows the growth of

diploid populations with positive bait-prey interactions (Fig 1). Previously, we developed a

robust informatics pipeline, designated NGPINT, that identifies candidate interacting partners

obtained from Y2H-NGIS with cDNA prey libraries. NGPINT maps reads to the reference

genome(s), reconstructs prey fragment sequences, and quantifies prey levels using sequence

counts [21].
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Fig 1. Y2H-NGIS workflow. Experimental workflow for batch Y2H-NGIS. After the mating between bait and prey,

diploids go through a non-selective culture to reach exponential phase. Once there, the culture is split into two flasks,

one for non-selection and another for selection. After reaching saturation in each condition, culture aliquots are taken

to be sequenced.

https://doi.org/10.1371/journal.pcbi.1008890.g001

PLOS COMPUTATIONAL BIOLOGY Statistical inference of protein-protein interactions with Y2H-SCORES

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008890 April 2, 2021 4 / 30

https://doi.org/10.1371/journal.pcbi.1008890.g001
https://doi.org/10.1371/journal.pcbi.1008890


We tested different normalization methods for their ability to reduce the inter-replicate var-

iability of Y2H-NGIS counts obtained from NGPINT, while maintaining other sources of bio-

logical variation, including the selection condition and bait identity. For this purpose, we

mated a custom cDNA prey library (constructed from barley seedlings challenged with

powdery mildew) with three MLA6 fragments and two from firefly luciferase as baits (see

Methods). These baits were mated with the prey cDNA library in individual experiments,

using three biological replicates for each of the selected and non-selected conditions. Principal

component analysis (PCA) of the Y2H-NGIS raw read counts (Table A in S1 Data) was applied

to evaluate changes in the variability of raw and normalized counts. PCA from raw counts

showed that the growth condition (non-selection or selection) was the major source of vari-

ability (Fig 2A). The effect of selection and bait identity (colors in Fig 2A) are expected sources

of variation. We also expect all non-selected samples to resemble the cDNA used to build the

prey library and the three replicates of each bait under selection to be more similar to each

other than other baits. Indeed, if there is more variation among replicates than baits, it could

prove difficult to reproducibly identify bait interactors.

We considered four normalization methods to reduce the experimental variation, particu-

larly to reduce variation across replicates. All preys are expected to be differentially enriched

(DE) in selected compared to non-selected samples. Under selection, interactors should grow

exponentially while growth of the non-interactors should be impaired. Our goal was to identify

preys whose relative abundance in the selected samples increased over the relative abundance in

the non-selected samples. Normalization methods appropriate for this goal include library size

[22], transcripts (or in this case, prey fragments) per million (TPM) [23], and remove unwanted

variation (RUVs) [24]. Many other normalization methods are designed to detect enrichment

relative to unchanging reference genes, which simply do not exist in Y2H-NGIS data. Specifi-

cally, we used median-of-ratios [25], which assumes the majority of genes are not DE, as a con-

trol method that should fail to normalize Y2H-NGIS data. Fig 2B–2E shows the PCA plots of

the total counts (Tables B-E in S1 Data) after implementation of the different normalization

methods. TPM, RUVs, and library size reduced the variability in the non-selected samples to

varying degrees but retained most of the other variation. The median-of-ratios method, in con-

trast, removed over half of the selected vs. non-selected variation. Thus, inappropriate normali-

zation can eliminate important biological information that is used to infer interactors.

Ideally, all non-selected samples should resemble the prey library. Indeed, Pearson correla-

tions of the count data between all pairs of non-selected samples exceeded 0.98 for all but

RUVs normalization (Fig 2F), indicating that non-selected prey counts are largely bait-inde-

pendent, as expected. In contrast, prey counts were much less correlated among selected sam-

ples, presumably reflecting the effect of the baits. Library size and TPM normalizations

increased the non-selected sample correlation (Wilcoxon signed-rank test p-value of 1.88 x

10−38 and 1.12 x 10−17, respectively) over the raw counts (S2 Data), but RUVs normalization

substantially decreased it (Wilcoxon signed-rank test p-value of 5.38 x 10−81). RUVs, which

seeks factors explaining variation across replicates, may have retained greater variation within

non-selected samples because we used just one factor to explain the technical variation.

Appropriate normalization should reduce inter-replicate variability. We measured the vari-

ability across replicates using the coefficient of variation (CV), computed for each prey. As

illustrated in Figs 2G and S1, we found that RUVs, library size, and TPM normalizations

reduced the CV compared to raw counts (Wilcoxon signed-rank test p-values <0.05, S3 Data).

However, there is no one single method that works the best in all cases (S3 Data). For non-

selected conditions, we found that all normalizations performed very well with CV peaks

within 0–0.5, which indicate a low variation between replicates. TPM and median-of-ratios

had the best performance with a narrower density. The median-of-ratios method can perform
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well in non-selected conditions since as compared with the selected conditions, they fulfill the

assumptions of the method, resembling the cDNA used to make the prey library [26]. Contrast

in performance was highest when normalizing selected samples. In this case, the ranking of

methods was bait specific (S1 Fig and S3 Data), though the median-of-ratios consistently failed

to reduce the variation. CV distributions for library size, TPM and RUVs peaked within 0–1,

but the CV distribution for the median-of-ratios method peaked in the range 1–1.5 (Fig 2G).

After evaluating the results from the Pearson correlation and CV analyses, we selected library

size normalization as the main method for the Y2H-NGIS dataset.

Fig 2. Effect of count normalization in Y2H-NGIS. A) PCA analysis of raw read counts and B) TPM, C) RUVs, D) Median-of-ratios and E) Library size

normalized reads for selected (left) and non-selected (right) samples for five bait screenings (color coded). F) Boxplot of the pairwise correlation coefficients for

raw and normalized read counts for all samples in non-selected and, separately, selected conditions. G) Coefficient of variation (CV) for each prey using

different normalization methods in the three MLA6 baits and two luciferase screenings. Higher CV values may indicate poor performance because of a high

variation between replicates.

https://doi.org/10.1371/journal.pcbi.1008890.g002
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Y2H-SCORES identifies true interacting partners

After optimizing normalization, we proposed a set of ranking scores based on statistical assess-

ments of the count data to predict interacting partners. Summarizing, we modeled the total

prey counts using a Negative Binomial (NB) regression and the in-frame fusion counts using

the Binomial distribution. We created a modular set of three quantitative ranking scores, called

Y2H-SCORES, to identify interacting partners, and consistent with three biological principles

that define PPIs in Y2H (Fig 3A): 1) Enrichment score: a measure of significant enrichment of

positive interactions under selection, using the non-selected samples as a negative control; 2)

Specificity score: a measure of the specificity of a bait-prey interaction, using other selected

baits as controls; and 3) In-frame score: a useful measure for datasets generated from cDNA

prey libraries, assessing the enrichment for in-frame translational prey-fusions in selected sam-

ples. To test Y2H-SCORES, we designed a Y2H-NGIS simulator, motivated by real data (S2

Text). The simulator includes true interactors (preys that are selected only in the presence of

their co-interacting bait) [13], and auto-active/non-specific interactors. Auto-active preys acti-

vate the selection promoter without an interaction with the bait, while non-specific interactors

survive selection because the product protein interacts with multiple baits (e.g., chaperones).

We began by simulating idealized conditions of 10 bait screens with three replicates, a

cDNA prey library of 20,000 genes, 1–20 true interactors per bait, a stickiness factor (percent-

age of auto-active/non-specific preys in the library) of 0.1%, and a strength of true interactors

above the 99.9th percentile. The strength of true interactors was quantified with a fitness coeffi-

cient eik, which we estimated for all prey in our real data. In this simulation, we reserved the

top 0.1% of all estimated growth fitness for the true interactors, creating a sampling space that

covers the maximum percentage of preys simulated from this group. This choice is based on

experimental validations by library size: Pashkova et al. [19] confirmed 8 out of ~15000 preys

to be true interactors in their library, supported by our experiments which showed a similar

trend, confirming between 1 and 25 in a ~36000 prey population.

We evaluated the performance of Y2H-SCORES using Receiver Operating Characteristic

(ROC) and Precision Recall (PR) curves. ROC compares the true and false positive rates using

different score value thresholds, while PR compares true and predicted positives [27]. Fig 3B–

3D demonstrates that all scores performed well in this ideal scenario, separating true from

auto-active/non-specific interactors. In this scenario all the scores achieved high performance:

the enrichment, specificity and in-frame scores had a ROC Area Under the Curve (AUC) of

0.98 for enrichment, 1 for specificity and 0.99 for in-frame. The PR AUC values were 0.47,

0.62, and 0.54, respectively. We plotted the PCA of the Y2H-SCORES under this scenario (Fig

3E) and we found that the three scores appear to provide different information about interac-

tors based on their position in the plot.

Y2H-SCORES overcomes challenging Y2H-NGIS scenarios

The ideal condition illustrated in Fig 3 was derived from extensive simulation where we

explored the effect of several parameters that vary in experimental datasets, as defined in S4

Data. The simulator uses a Galton-Watson branching process followed by a Negative Binomial

model for generating total counts, and a binomial model for fusion counts (see Methods). To

evaluate the performance of Y2H-SCORES, we varied the following parameters to simulate

several Y2H-NGIS dataset scenarios: 1) size of the prey library, to assess scalability; 2) sticki-

ness (i.e., the percentage of auto-active/non-specific preys in the library) and 3) strength of

true interactors, to vary the signal-to-noise ratio; 4) overdispersion, to assess increasing levels

of biological and experimental variation; 5) proportion of true interactors in the prey library;

to assess the role of genetic drift; 6) number of baits and 7) replicates, to assess power. Aside
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Fig 3. Principle of Y2H-SCORES and performance in an ideal scenario. A) Y2H-SCORES is comprised of the enrichment score, which

detects changes in prey proportions in selected and non-selected conditions; the specificity score, which measures differences in the prey

enrichments with different baits under selection; and the in-frame score, which identifies the enrichment of prey reading frames under

selection, assigning higher values to in-frame preys. B) to D) ROC curves of the enrichment, specificity, and in-frame scores in an ideal

scenario. Colored sections represent 95% confidence intervals for the score values 0.7, 0.5, and 0.3. E) PCA of the Y2H-SCORES calculated

under the ideal scenario.

https://doi.org/10.1371/journal.pcbi.1008890.g003
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from the true interaction strength and the stickiness, these parameters are directly associated

with the cDNA prey library and experimental conditions, which can be modified by the

researcher. A graphical summary of the results is shown in Fig 4. Briefly, the scores were able

to correctly identify true interactors even in extreme conditions, with more variation in the PR

AUC values than the reported ROC AUC presumably due to the imbalanced datasets [28].

This analysis enabled us to identify an ideal experimental setting for detecting true interactors.

The scalability of Y2H-SCORES was evaluated by testing three prey library sizes (8000,

20000 and 40000 preys). We found that increasing the library size maintained the perfor-

mance of the scores (S4 Data). The PR AUC values of the enrichment score oscillated

between 0.47 and 0.68, the specificity from 0.62 and 0.80 and the in-frame score from 0.54 to

0.76, while the ROC AUC remained constant. This result shows that even with large library

sizes Y2H-SCORES performs well and therefore, can still be used to identify protein-protein

interactions.

We then tested the effect of the stickiness of the samples and the strength of true interactors

on the Y2H-SCORES performance. The results from our simulations, shown in Fig 4A and 4B,

suggest that Y2H-SCORES performance is less influenced by changes in the stickiness than by

the strength of true interactors. Keeping the strength of true interactors above the 99.9 percen-

tile and variations of the stickiness between 0.1% and 10%, did not cause major changes in the

ROC and PR AUC values. This result indicates that Y2H-SCORES can identify auto-active/

non-specific interactors, even in when they comprise 10% of the preys in the sample. In con-

trast, the strength of true interactors had a greater effect on the performance of Y2H-SCORES.

As we decreased the strength of true interactors from the 99.9th to the 95th percentile, we

found that the PR AUC values dropped to near zero. ROC curves were more stable, showing a

gradual decrease. As expected, decreasing the signal-to-noise ratio in the system reduced the

performance of Y2H-SCORES.

To evaluate the effect of experimental variation we tested changes in the overdispersion.

We simulated two scenarios, either a high or random overdispersion in both the selected and

non-selected condition. After estimating the overdispersion parameters observed in real data,

we jointly sampled the proportion of preys and the overdispersion φkN in the non-selected

samples, and the fitness and overdispersion values φikS in the selected samples, from the joint

empirical distributions. In the overdispersed scenario, we resampled φkN and φikS values higher

than the 90th percentile of their densities (2.27< φkN< 13.42, 0.33< φikS<2). The scores’ per-

formance was maintained in scenarios with high overdispersion as measured by both PR and

ROC AUC values (Fig 4C).

The initial proportion of each prey before culture expansion depends on the composition

of the prey library, which can be controlled through experimental library normalization [29].

We assumed the post-expansion prey proportions in the non-selected samples were identical

to the unobserved prey proportions at the beginning of selection. Thus, we sampled these ini-

tial proportions from the observed non-selected proportions. We expect more inter-replicate

variability and lower power to detect true interactors when the initial true interactor propor-

tion is low because of initial sampling variation and greater genetic drift during culture growth.

To simulate the effect of a low concentration of preys in the library we used the minimum pro-

portion qik that we observed in our experimental dataset, ~1 x 10−8, as reference value and

assigned it to the true interactors in the “Low” condition (Fig 4D). Results from this analysis

showed that the PR AUC decreased for all three scores. The enrichment and specificity scores

decreased from 0.47 to 0.30, and from 0.62 to 0.17, respectively. The largest decrease was

observed for the in-frame score, going from 0.54 to 0.005. Scenarios with low proportions of

true interactors in the prey library caused a low number of total prey reads for that group in

the non-selected condition, and a reduction or even absence of fusion reads (which normally
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Fig 4. Effect of changes in the parameters that define Y2H-NGIS simulation. Examples of challenging scenarios were

simulated to determine the Y2H-SCORES classification power. A) Stickiness (percentage of auto-active/non-specific

preys in the library), B) Strength of true interactors, C) Overdispersion, D) Concentration of true interactors in the prey

library, E) Number of replicates, and F) Number of baits. Receiver Operating Characteristic (ROC) and Precision Recall

(PR) AUC values were reported for the enrichment, specificity, and in-frame scores.

https://doi.org/10.1371/journal.pcbi.1008890.g004
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represent a small fraction of the total number of reads). This trend was also observed in experi-

mental datasets, where we observed a large number of preys with no fusion reads available in

the non-selected samples.

Detection of DE preys with statistical confidence requires replication, but more replicates

increase the time and cost of the sequencing project. We evaluated the effect of having two,

three and five replicates. Increasing the number of replicates increased the performance of the

enrichment and the specificity scores, while the in-frame score was not affected (Fig 4E and S4

Data). The in-frame score maintained a good performance even in cases with two replicates,

with PR AUC around 0.53, but the enrichment and specificity scores had reduced perfor-

mance. The enrichment score had the greatest reduction in the PR AUC values going from

0.61 (five replicates) to 0.40 (two replicates), and the specificity PR AUC values went from 0.65

to 0.55. Finally, we tested the effect of the number of baits using values from two to ten (Fig

4F). The enrichment and in-frame scores showed a decrease in their PR AUC values only in

the case with two replicates with values of 0.35 and 0.44, respectively. In contrast, the perfor-

mance of the specificity score improved with more baits in the simulation, with PR AUC val-

ues increasing from 0.47 to 0.71. The information provided by additional bait screenings

increases the resolving power of the specificity score.

Y2H-SCORES maintains a high performance with diverse yeast-based

interaction screenings

We analyzed several Y2H-NGIS reference studies [9,12,13,17,19] to benchmark Y2H-SCORES

using multiple experimental scenarios. These studies varied in Y2H system, throughput, type

of prey library, and negative controls. Some methods used one bait and a prey cDNA library in

individual screens [9,19] and others tested multiple baits simultaneously [12,13,17]. Methods

that utilized comprehensive bait and prey ORF libraries are only available for some model

organisms [12,13,17], while those that use prey cDNA libraries offer more flexibility to non-

model organisms [9,19]. Regarding negative controls, some studies used baits in the non-

selected condition [12,13,17], an empty bait under selection [9] or both [19]. The requirements

for the calculation of each individual scoring system, including the type of negative controls,

the number of samples per bait (e.g., 1–10 replicates, time-series data) and the need of training

data constrain their broad applicability.

To address this challenge, we adapted Y2H-SCORES to run with different experimental

protocols and designs. The software offers full flexibility to the user by detecting different types

of input files and negative controls. If non-selected controls are available, the software will cal-

culate the enrichment score. The in-frame score will be calculated if fusion counts are available,

even in cases without non-selected controls (by assuming an in-frame read proportion of 1/3).

If more than one selected bait screening is available, the specificity score will be calculated. The

software also offers a Borda aggregation score as an ensemble of the scores [30]. Fig 5 shows a

summary of the performance of Y2H-SCORES, the Borda ensemble and the reference score

for each study, measured with ROC and PR AUC values. S5 Data contains the full scores for

each interaction and reference.

The first two references in Fig 5 used an experimental setting of one bait and a cDNA prey

library per screening. Erffelinck and colleagues [9] used a scoring system based in a signal-to-

ratio using as negative control an empty bait under selection. These experimental settings

allowed us to calculate the specificity and in-frame scores for this dataset, assuming a propor-

tion of in-frame reads of 1/3 in non-selection. After applying Y2H-SCORES we obtained a

superior performance in both ROC AUC and PR AUC values, with the specificity score as the

best classifier. Pashkova and associates [19] used a Bayesian ranking score to measure the
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specificity of the interactions, using two hub proteins as baits (a Ras-related protein and ubi-

quitin). Published data allowed the implementation of the enrichment and specificity scores.

Y2H-SCORES outperformed the reference score, with the specificity score as the best classifier.

We observed an intermediate performance of both the reference method and Y2H-SCORES

with this dataset, caused by true interactors with a wide range of score values. These false nega-

tives may be associated with the limitations of Y2H [31].

The last three reference studies in Fig 5 multiplexed baits and preys from ORF libraries in

the same screen. In such cases, all ORFs are in-frame, therefore only the enrichment and speci-

ficity scores were calculated. Yachie and associates [13] implemented the method of Barcode

Fusion Genetics to generate bait-prey recombinations with identification of the interactions

using barcodes. Y2H-SCORES surpassed the reference ranking method, with similar AUC val-

ues for enrichment and specificity. Schlecht and colleagues [12] proposed a double barcode

system to test many-by-many bait-prey combinations. Their method requires time-series mea-

surements to estimate the fitness of the yeast growth. We calculated Y2H-SCORES on the last

time point of the dataset for non-selected and selected conditions. We obtained comparable

AUC values to the reference method without the need of time-series data, using only one fifth

of the total information. We also observed the same dynamic interactions as reported by the

Fig 5. Benchmarking of Y2H-SCORES with published Y2H-NGIS datasets. Receiver Operating Characteristic (ROC) and Precision Recall (PR)

AUC values for Y2H-SCORES, the Borda ensemble and the reference scoring method from each study.

https://doi.org/10.1371/journal.pcbi.1008890.g005
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authors, for example, a specificity score of zero for the Hom3-Fpr1 interaction in the FK506

treatment. Finally, Yang and associates [17] proposed rec-YnH, a method that uses DNA

assembly by homologous recombination in yeast to screen protein-protein and protein-RNA

interactions with a score that requires training datasets. Y2H-SCORES had higher ROC AUC

and comparable PR AUC values than this supervised method, with the specificity score having

the best performance. Taken together, these evaluations demonstrate that Y2H-SCORES can

be implemented and performs well across diverse Y2H-NGIS experimental designs.

Y2H-SCORES discards auto-active preys and identifies novel interactors of

the MLA6 barley powdery mildew resistance protein

To address our long-standing interest in the molecular mechanisms of disease resistance in

plants, we used Y2H-SCORES to identify interactors of the barley NLR MLA6 [32,33]. We

screened three MLA fragments as baits by mating to a 3-frame cDNA prey library constructed

from a time-course of barley seedlings infected with the powdery mildew fungus, Blumeria
graminis f. sp. hordei (Bgh) [26,34]. These included MLA6 amino acids (aa) 1–161 (MLA61-161)

harboring the conserved coiled-coil (CC) domain, aa 1–225 (MLA61-225) with the CC domain

and the nucleotide binding site (NBS), and aa 550–959 (MLA6550-959) comprising the leucine-

rich repeat (LRR) domain. We performed three replicates of each bait under non-selected and

selected conditions. We used NGPINT [21] to map and quantify reads in the samples and

identify prey regions for cloning. After this, we calculated the three Y2H-SCORES and created

a Borda ensemble [30] to obtain a list of candidate interactors. Interestingly, after executing

Y2H-SCORES with different normalizations we found an increase in the number of highly

ranked candidates with the median-of-ratios method. When we dissected this trend, we

observed an increase in the number of candidates with high enrichment and in-frame scores

and low specificity score (Wilcoxon ranked-sum test, S6 Data and S2 Fig), theoretically indi-

cating auto-active/non-specific preys. The top-scoring preys unique to this list had low speci-

ficity scores across all normalization methods (S7 Data). We performed binary Y2H with two

of these preys, corresponding to the gene IDs HORVU2Hr1G060120 (TCP family transcrip-

tion factor 4) and HORVU2Hr1G024160 (Chaperone protein DnaJ-related), and confirmed

that they were auto-active (S3 Fig), as they yielded a positive result with all the three MLA6

fragments, empty vector, and firefly luciferase (a non-native control protein).

Using Y2H-SCORES calculated from library size normalization, we focused on preys with

high Borda ensemble scores, and therefore, high Y2H-SCORES values as shown in S8 Data.

Fifty-five candidates, including high and low ranked interactions, were tested using binary

Y2H [4] obtaining strong and specific positive interactions. Fourteen interactors were vali-

dated for the MLA6 CC+NBS domain, including three that were also identified with the

MLA6 CC (Fig 6A and S1 Text). We calculated ROC AUC values using this validation set, and

we obtained the PCA plot of the empirical scores, as shown in Fig 6B. The ROC performance

of the enrichment and specificity scores was 0.95, 0.85 for the in-frame, and 0.96 for the Borda

ensemble. PR AUC values were 0.91, 0.84, 0.56 and 0.86, respectively. These results are consis-

tent with the simulation of an ideal Y2H-NGIS scenario in Fig 3.

To view these results in a signaling context, we predicted protein-protein interactions using

evidence-based interologs (see Methods) [35–38]. As illustrated in Fig 6C and Table A in S9

Data, we found multiple predicted interactions with seven of the fourteen MLA6 targets. Dif-

ferent processes associated with the targets included signaling, transcriptional regulation, and

intracellular trafficking. In addition, when we integrated these results with previous expression

quantitative trait locus (eQTL) analysis [39], we found that several MLA6 targets and/or

secondary interactors associate significantly with the Mla1 (mildew resistance locus a1) and
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Fig 6. Experimental validation of the interaction between the MLA6 NLR receptor and barley targets. A) Binary Y2H test between MLA6 and

fourteen barley prey targets showing the diploid controls (SC-LW), stringent interaction (SC-LWH + 1 mM 3AT), and tests with empty-bait vector to

show the specificity of the interaction. Preys are ranked in order of Y2H SCORES Borda ensemble. Rows followed by an asterisk (�) designate protein
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MlLa (Laevigatum resistance locus) trans-eQTL. These trans-eQTL associations occur at dif-

ferent powdery mildew infection stages, MlLa at fungal penetration and Mla1 during hausto-

rial development (Table B in S9 Data) [39], and may provide clues as to the temporal control

of these interactors in the immune response of barley to powdery mildew.

Discussion

Analysis of Y2H-NGIS data

Analysis of Y2H-NGIS data is challenging due to the complexity of the raw datasets (composed

of total and fusion prey reads under both selective and non-selective conditions) and the

often-observed variability across replicates. This variability may be due to different factors in

the experiments, including stochastic mating, genetic drift, and/or cell viability and composi-

tion of the prey library aliquots. In this report, we outline Y2H-SCORES, a software to rank

candidate prey/bait interactions based on Y2H-NGIS count data. Using a Negative Binomial

regression we modeled total counts, and the in-frame fusion counts were analyzed using the

Binomial distribution. From these models we designed Y2H-SCORES to identify interacting

partners based on their biological properties: 1) Enrichment score: measures the enrichment

under selection for positive interactions, as compared with non-selected conditions; 2) Speci-

ficity score: assigns higher values to unique bait-prey interactions, as compared to prey selected

in multiple bait screens; and 3) In-frame score: measures the enrichment for in-frame proteins

in selected samples. We validated the method and used simulation to evaluate the impact of

several experimental factors on the power to detect true interactions and the accuracy of the

rankings. We found that normalization methods and negative controls have a profound

impact on the amount of information that can be used to identify interactors.

Normalization significantly modified the variation among replicates. Utilizing methods

whose assumptions are satisfied by the Y2H-NGIS dataset leads to a more successful interpre-

tation of the observed variation to infer protein interactors. Library size, TPM and RUVs are

appropriate normalization methods for Y2H-NGIS data, but their ability to reduce variance

within replicates varied, therefore, we recommend that users evaluate them individually and

decide which one works better for their experiment. Median-of-ratios normalization, com-

monly used for RNA-seq data, is not appropriate for Y2H-NGIS data since its assumptions are

not fulfilled. Applying this method promotes identification of non-interactors and auto-active/

non-specific preys in the Y2H-SCORES top-ranked list. When comparing this method to the

other three normalizations, we found an increased number of candidate interactors with high

enrichment and in-frame scores and low specificity score, which is consistent with the behav-

ior of auto-active/non-specific preys. In addition, top-scoring candidates unique to the list

obtained from median-of-ratios normalization had low specificity scores across all normaliza-

tion methods (S7 Data), and two of them were confirmed as auto-active (S3 Fig). Performing

appropriate normalizations removed these auto-active preys from the top-ranked list. Overall,

median-or-ratios normalization produced lists with higher enrichment and in-frame scores,

but lower specificity scores than the other methods (Wilcoxon rank-sum test, S6 Data).

Additionally, we demonstrated how different negative controls that proposed for

Y2H-NGIS studies can be used to score interactors. First, we used non-selected controls as a

prey enrichment baseline, allowing the implementation of the enrichment and in-frame scores.

was also identified with MLA61-161 as shown in S4 Fig. Rows with two HORVU I.D.s indicate duplicate copies in the genome. B) Y2H-SCORES

performance and PCA of scores calculated from the MLA6 datasets. C) Prediction of interologs for the validated Y2H-SCORES interactions with

MLA6. Significant trans-eQTL associations (q-value<0.001) [39] with the Mla1 (locus coordinate 1H.05) and MlLa (locus coordinate 2H.67) are

color coded. Biological processes associated with interologs are depicted in boxes next to each group.

https://doi.org/10.1371/journal.pcbi.1008890.g006
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Second, we showed the advantage of using screenings under selection for multiple baits as a

second type of negative control that provides information for the specificity score. The baits

used for this purpose may contain an empty bait, a non-native bait, or a set of baits of interest.

If a combination of these baits is used in the experiment, auto-active preys should have lower

specificity scores relative to non-specific preys, providing some separation. Our PCA analyses

of Y2H-SCORES calculated from simulation and empirical data (Figs 3E and 6B) suggest inde-

pendent information coming from each of the three scores, hence we recommend using non-

selected and multiple selected bait controls to allow the implementation of all three scores and

obtain a high-confidence list of interactors. The modularity of the Y2H-SCORES software

allows for individual score calculations, which will depend on the type of control used.

Development and testing of Y2H-SCORES also yielded suggestions for the design of

Y2H-NGIS experiments. Calculating the enrichment and the in-frame scores requires selected

and non-selected samples. As we demonstrated (Fig 2F), composition of the non-selected sam-

ple is almost identical regardless of the bait (Pearson correlation > 0.98). This information can

be utilized to reduce the number of sequenced samples, e.g., using a few random baits as non-

selected controls for multiple baits in the same mating design. If non-selected controls are not

available, the Y2H-SCORES software calculates the in-frame score assuming a proportion of

in-frame reads in this condition p̂kN ¼ 1=3. This assumption is justified by the random fusion

of prey-frames with the prey vector, which was confirmed with our experimental dataset (S6D

Fig). In contrast, the specificity score requires at least two different bait screenings, with better

results as the number and type is increased. This strategy exploits the count information of

multiple selected baits to identify auto-active/non-specific preys, giving priority to specific

candidate interactors. However, researchers are often interested in a particular biological pro-

cess and might screen several baits involved in a specific signaling pathway. Hence, preys that

interact with multiple baits but exhibit low specificity may be candidates for downstream anal-

ysis. In that case, we also recommend using empty and/or non-native controls to discard auto-

active preys. Thus, depending on experimental goals, the specificity score can be leveraged to

find novel co-interacting partners of multiple proteins of interest.

Experimental setting and optimization of Y2H-SCORES

Simulation of different Y2H-NGIS scenarios enabled us to test the robustness of

Y2H-SCORES and identify the most challenging dataset types (Fig 4). The three scores were

affected differently depending on the simulation scenario. Scenarios with low strength and low

concentration of true interactors in the prey library imposed the most challenging conditions

for these scores, reducing the ROC and PR AUC values. The enrichment score was more

affected by the strength of true interactors while the in-frame score was more affected by the

concentration of true interactors in the prey library, due to the inherent lower number of

fusion reads. This analysis led us to explore aspects of experimental design that could be

adjusted to increase the accuracy and sensitivity of interactor detection via Y2H-NGIS. These

include the experimental prey library normalization, the number of replicates and baits in the

experiment, sequencing depth, and scaling of the experiment setting.

First, experimental library normalization can optimize the proportion of each prey in the

library, in the non-selected samples and at the start of selection. In a typical cDNA library, the

relative abundance of species derived from different genes can span many orders of magni-

tude. Normalizing the prey library to reduce high-abundance cDNAs reduces the stochasticity

and noise in prey counts. After normalizing the prey library, experimentalists should also

ensure the number of yeast recipient cells are sufficient to represent such library in the screens,

for which they can use procedures as described by Krishnamani et al. [40]. Our simulations
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found that low abundance interactor preys in the library (200 times lower than the expected

prey abundance) can be detected in Y2H-NGIS. However, as the initial concentration of a true

interactor decreases, a stronger affinity for the bait (relative to the interaction strength of auto-

active/non-specific preys) is required for reliable detection. Thus, normalizing the prey library

can reveal true interactors that have a weaker affinity for the bait and/or are present at rela-

tively low levels in the initial library.

A second parameter, the number of replicates in Y2H-NGIS, represents a cost-power trade

off as in most “omics” experiments. For small numbers of replicates, as tested in the simula-

tions, we found at least three replicates of Y2H-NGIS were needed to maintain the perfor-

mance of the three scores. As expected, we observed better results as the number of replicates

increased, especially for the enrichment score. We did not test replicate numbers greater than

5 since this does not represent typical experimental practices, and if one had to choose,

increasing the number of baits would yield more biological information, since it would

increase the performance of the specificity score. We anticipate that increasing the number of

replicates would decrease the false discovery rate as it is reported for techniques such as RNA-

Seq [41]. Controlling for false discovery rate also informed our selection of DESeq2 as the tool

for calculating differential enrichment due to the documented outperformance in low replicate

numbers [20,41].

It has been reported that reducing overdispersion in counts can improve sensitivity and

accuracy of Y2H-NGIS [19]. We did not observe a decrease in the performance of the

Y2H-SCORES as we increased the overdispersion, which may be explained by the strategies

that we took in our experiments to control it. As a result, the overdispersions estimated from

our data may already be lower than what we could have observed with a different experimental

setting. The main recommended strategies to control overdispersion among replicate samples

include maintaining a large-scale mating (in our experiment, 1.8 x 108 bait and 5 x 107 prey

cells, resulting in ~2 x 109 diploid cells) and subsequent high culture volumes of non-selected

and selected samples (typically 800 ml per sample in 2-liter fluted Erlenmeyer flasks for ca.

36,000 preys in the library). Increasing the volume reduces the stochasticity of the prey popula-

tion before mating and during culture expansion. Stochasticity is most notable in selected

growth, where genetic drift dominates as the viable prey population shrinks. Population bottle-

necks must be avoided throughout the experiment, which implies increasing the aliquot size in

every culture step, including the final sampling for sequencing, as reported by Pashkova and

associates [19]. We also recommend adjusting the sequencing depth to match the prey library

size and specifically increasing depth for the more complex, non-selected samples. Having a

high depth in non-selected samples also increases the number of fusion reads, the major chal-

lenge for the successful implementation of the in-frame score in our simulations.

Y2H-SCORES is broadly applicable to yeast-based interaction methods

Y2H-SCORES can be applied to other yeast-based interaction studies which use both cDNA-

[9,19] and ORF prey libraries [12,13,17]. ORF prey library technologies include testing RNA-

protein interactions through yeast three-hybrid [17], barcode fusion genetics Y2H [13] and

evaluation of dynamic interactions through parallel Y2H [12]. All share the same true interac-

tor properties—they should be enriched in selected samples, be specific to a bait screen and be

selected in-frame. We found that the type and composition of the prey library determine the

success in the detection of true interactors and reduction in false negatives. In addition, the

analysis requires control for false positives with appropriate statistics. Currently, most of these

techniques propose a solid media selection of interactors, nonetheless the batch culture experi-

mental setting proposed by Pashkova and colleagues [19] can also be applied to these contexts,
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as demonstrated by Yang et al. [17], increasing the reproducibility and facilitating the experi-

mental workflow. Once output counts are obtained, it is possible to run Y2H-SCORES to

predict true interactors, and we demonstrate comparable or superior performance to the refer-

ence methods.

New interactors of the barley MLA6 NLR revealed by Y2H-SCORES

Research into the molecular interactions among hosts and pathogens has benefited from the

plethora of omics datasets that can be used for the prediction of gene and protein networks

[42,43]. Y2H-NGIS, as part of these complementary approaches, is an excellent tool to mine

interactions of proteins involved in immune responses. We used Y2H-SCORES to identify

and validate fourteen novel interactions between the archetypical MLA resistance protein and

barley targets. Previous eQTL analysis performed by our group, combined with an interologs

search, revealed significant associations of the targets and their primary interactors with the

Mla1 and MlLa trans-eQTL [39]. These trans-eQTL associations (Fig 6C) were observed at dif-

ferent powdery mildew infection stages, and thus enable predictive hypotheses regarding the

developmental control of these newly discovered MLA6 interactors during infection by pow-

dery mildew.

The MLA family of CC-NLR plant resistance proteins exhibits dynamic cellular localization

and evidence exists for both nuclear and cytoplasmic functions during activation of immune

responses [44–46]. We identified several new interactors with predicted nuclear localization

including a basic helix-loop-helix (bHLH) DNA-binding superfamily protein (HOR-

VU1Hr1G071330), a Homeobox-leucine zipper protein family (HORVU4Hr1G078410), and

an OBERON-like protein (HORVU5Hr1G027950). Arabidopsis OBERON1 is a highly-con-

nected hub in an Arabidopsis immune co-expression regulatory network and is targeted by

pathogen effectors, suggesting its importance during plant immune responses [42,47]. MLA10

is known to associate with WRKY and MYB transcription factors to regulate defense-related

gene expression [46,48], and MLA6 likely interacts with these additional transcriptional regu-

lators to activate immune responses.

In addition to nuclear-localized proteins, we identified new MLA6-interacting proteins that

are implicated in cellular transport, trafficking and localization. When MLA10-YFP is tran-

siently expressed in leaf epidermal cells, some of the fluorescence signal in the cytoplasm

reminiscent of being associated with cortical microtubules and punctate structures similar

to Golgi [46]. The CC-NLR protein ZAR1 dynamically localizes to the plasma membrane dur-

ing activation of cell death and immunity [49]. Currently it is unknown how these transient

cellular re-localizations occur and if additional proteins are involved. We identified HOR-

VU7Hr1G113890, which contains the plant-specific POLAR-like domain. The Arabidopsis

ortholog POLAR (AT4G31805) functions as a scaffold that sequesters development-related

kinases in the cytosol and transiently localizes them to the cell periphery during stomatal cell

differentiation [50], and a similar mechanism could regulate MLA localization within the cell.

Additional MLA6 interactors include a putative golgin (HORVU1Hr1G086390) that likely

functions as a tether for vesicles and interacts with small GTPase proteins to regulate

intra-organelle transport [51,52] and a dynamin-related protein 3A GTPase (HOR-

VU3Hr1G094260) that could be involved in membrane fission/fusion and cell death [53–55].

Interestingly, the 1E family of dynamin-related proteins in Arabidopsis and rice also have

roles in regulating programmed cell death in response to infection by powdery mildew and

lesion-mimic mutations, respectively [56,57]. We also identified a NDC80 homolog (HOR-

VU5Hr1G114950) involved in microtubule binding, a microtubule-associated kinesin

motor protein [58] (HORVU1Hr1G047110), and a WPP domain-associated protein
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(HORVU3Hr1G032920). Several of the new MLA interactors that we confirmed in yeast are

putatively associated with microtubules and the Golgi apparatus, pointing to a role in MLA

trafficking within the cell.

Additional MLA-interacting proteins are potentially involved in signal transduction

and activation of immunity. We identified an AAA-ATPase HORVU0Hr1G021880/HOR-

VU7Hr1G091480 whose Arabidopsis ortholog APP1 (AT5G53540) regulates reactive oxygen

species (ROS) production in the root to control cell division and differentiation [59]. HOR-

VU0Hr1G022500 contains a Ubiquitin system component CUE domain, a ubiquitin-binding

domain that is present in the Toll-interacting protein TOLLIP that functions to attenuate

interleukin-1 receptor and Toll-like receptor signaling during mammalian innate immune

responses, likely via recognition of ubiquitinylated substrates [60–62]. MLA is ubiquitinylated

and subsequently degraded by the 26S proteasome [63], and HORVU0Hr1G022500 could be

involved in facilitating this process. Taken together, we have uncovered many new interactors

of the barley MLA resistance protein, and the functional diversity of these interactors points to

novel mechanisms of MLA-induced immunity.

MLA or MLA orthologs are conserved NLR proteins that confer recognition specificity to

several fungal pathogens, including wheat and rye Ug99 stem rust [64–66], wheat stripe rust (J.

Bettgenhaeuser and M. Moscou, Pers Comm), wheat powdery mildew [67], and barley pow-

dery mildew in transgenic Arabidopsis [68]. In this regard, it is worth noting that these four-

teen interactors were identified with the most phylogenetically conserved part of the MLA

protein [66,69], the CC and NBS domains and thus, have the potential to function in related

immune complexes and/or processes. It will be necessary to test this hypothesis, however, to

verify that these proteins interact with orthologous NLR in planta and the functional conse-

quences of these interactions on localization and activity.

Methods

Normalization

We implemented library size [22], transcripts per million (TPM) [23], removing unwanted

variation (RUVs) with replicate control samples [24] and the median-of-ratios [25] normaliza-

tion methods. RUVs was applied to selected and non-selected samples separately, using k = 1

factor and grouping the three replicates for each bait in the selected condition, and all repli-

cates for all baits in the non-selected condition. Median-of-ratios was applied for all baits and

conditions, grouping the replicates for each bait-condition combination. The coefficient of

variation (CV) for each prey was calculated analyzing each bait-condition combination sepa-

rately and grouping the three replicates for each prey. Pairwise differences between the distri-

butions of the CV were detected with a Wilcoxon signed-rank test on the prey CVs computed

after application of each normalization method for each bait. Pearson correlation was calcu-

lated for each method separately and within replicates for each bait-condition combination.

Correlation differences between each normalization method were assessed using a Wilcoxon

signed-rank test.

Differential enrichment analysis of prey counts

We modeled the optionally normalized prey count data with Negative Binomial (NB) regres-

sion from DESeq2 [70]. This distribution allows for the effects of selection on the mean

counts, while accounting for overdispersion across replicates, a consequence of biological and

experimental variability. In addition, DESeq2 offers flexibility for managing low sample over-

dispersion through its estimateDispersionsGeneEst function, which is implemented in the

Y2H-SCORES software. We calculated the significance and magnitude of the enrichment for
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each prey interacting with each bait using the DESeq2 model [70]. Two different negative con-

trols were used to identify interactors: the non-selected condition for enrichment and the

other selected baits for specificity.

Modeling fusion reads

Let Yikc be the number of in-frame reads out of a total Fikc fusion reads for prey k mating with

bait i in condition c = N, S (N = non-selected, S = selected). We modeled Yikc* Bin(Fikc, πikc),
where πikc is the proportion of in-frame reads. To test in-frame enrichment under selection, we

pose the hypothesis: Ho: πikN = πikS vs. Ha: πikN< πikS, testing for an increase in the in-frame
read proportion under selection. We evaluated this hypothesis using the Z-score statistic ρik:

rik ¼
p̂ ikS � p̂ikNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ik 1 � p̂ikð Þ 1

fikS
þ 1

fikN

� �r � N 0; 1ð Þ with p̂ ik ¼
fikS p̂ikS þ fikN p̂ikN

fikS þ fikN
;

where p̂ ikc is the observed in-frame read proportion and fikc is the observed number of fusion

reads for prey k mated with bait i in condition c.

Y2H-SCORES

We implemented and validated a ranking score system, designated Y2H-SCORES, for identi-

fying interacting partners from Y2H-NGIS. It is comprised of three elements, each in the

range [0,1], with values close to 1 indicating high support for a true interaction. Throughout,

np is the number of prey and nb is the number of baits.

Enrichment score. This score quantifies the level of enrichment of a prey k under selec-

tion with bait i relative to non-selection. Let pik be the p-value and fik the log2 fold-change in

the normalized counts of prey k interacting with bait i in selected over non-selected condition

as given by DESeq2. The score consists of a system of ranks of log2 fold-change within ranks

of p-values to prioritize interactors. We first define the rank for pik: Consider Gα = {(i, k): 1� i
� nb, 1� k� np, pik� α}, the set of putatively interacting prey/bait combinations with p-val-

ues pik� α. Bait/prey combinations with p-values larger than α are assigned an enrichment

score of zero. The p-value enrichment score for the remaining bait/prey combinations is:

E pikð Þ ¼
RaðaÞ � RpikðpikÞ

RaðaÞ
;

where Rα(p) is the rank of p-value p among the pik with indices in the set Gα. To further resolve

prey/bait interactions, we score the effect size by partitioning Gα into b ¼ a

w subsets {Gα1, Gα2,

. . ., Gαb}, where Gαl = {(i, k): 1� i� nb, 1� k� np, (l − 1)w� pik� lw} for 1� l� b, contains

a subset of the np � nb prey/bait combinations with similar p-values. The rank of the log2 fold-

changes is calculated within the containing Gαl subsets to obtain the fold-change enrichment

score as

E fikð Þ ¼
maxðRlðf ÞÞ � RlðfikÞ

maxðRlðf ÞÞ
;

Where Rl(f) is the rank of log2 fold-change fik among the fold-changes with indices in set Gαl
and max(Rl(f)) is the maximum rank of fold-changes with indices in Gαl. Finally, we combined

these two scores, ranking first by p-value and second by log2 fold-change, to obtain the
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enrichment score for (i, k) bait/prey combination as

E ikð Þ ¼ E pikð Þ þ
maxðEðpGalÞÞ � minðEðpGalÞÞ

NðGalÞ
E fikð Þ;

when the (i, k) combination is contained in Gαl. Here, EðpGalÞ is the set of p-value enrichment

scores with indices in Gαl and N(Gαl) is the size of Gαl. Finally, to rescale E(ik) between [0,1] we

divided the score by the maximum value as: Eik ¼
EðikÞ

maxi;kðEðikÞÞ
.

Specificity score. True interactors should interact with relatively few specific partners. To

develop the specificity score we penalized preys that were enriched under selection in multiple

bait screenings. Define pijk as the p-value and fijk as the log2 fold-change obtained from

DESeq2, of prey k mated with bait i over prey k mated with bait j 6¼ i, both in selected condi-

tions. We define the p-value specificity score S(pijk), just as E(pik) was defined before. Let

Gsα = {(i, j, k): 1� i� nb, j< i, 1� k� np, pijk� α}. Then:

S pijk
� �

¼
RsaðaÞ � RsaðpijkÞ

RsaðaÞ

where Rsα(p) returns the rank of p among the p-values with indices in set Gsα. If fijk< 0 or pijk
> α then we set S(pijk) = 0. We average the p-value specificity scores across the nb − 1 number

of bait comparisons to obtain the specificity score based in p-value of bait/prey combination

(i, k),

S pikð Þ ¼
1

nb � 1

X

j6¼i

SðpijkÞ

We defined S(fijk), just as we did before for E(fik), partitioning Gsα into b ¼ a

w subsets {Gsα1,

Gsα2, . . ., Gsαb}, where Gsαl = {(i, k): 1� i� nb, j< i, 1� k� np, (l − 1)w� pijk� lw} and S
(pijk) = 0 implying S(fijk) = 0. We average over the nb—1 number of scores S(fijk) for (i, k) to

obtain S(fik):

S fijk
� �

¼
maxðRslðf ÞÞ � Rslðf Þ

maxðRslðf ÞÞ
S fikð Þ ¼

P
j6¼iSfijk

nb � 1

when pijk is in Gsαl and Rsl(f) the rank of the fold-change f among those indexed in the lth sub-

set Gsαl. The combined specificity score is given by:

S ikð Þ ¼ S pikð Þ þ
maxðSðpGsalÞÞ � minðSðpGsalÞÞ

NðGsalÞ
S fikð Þ;

with a rescaling to [0,1], as: Sik ¼
SðikÞ

maxi;kðSðikÞÞ

In-frame score. We expect that true interactors will tend to appear in-frame under selec-

tive conditions. We convert the in-frame test of proportions statistic ρik into the in-frame
score. Let G = {(i, k): 1� i� nb, 1� k� np} be the complete set of prey/bait combinations.

Then, the in-frame score is:

IFik ¼
RGðrikÞ

maxðRGðrikÞÞ

where RG(ρik) represents the rank of the ρik test statistic for prey k interacting with bait i
among all prey/bait interactions. For prey with no fusion reads in either non-selected or

selected conditions, IFik was set to zero.
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Simulation of the Y2H-NGIS dataset

To test the performance of Y2H-SCORES under different conditions we developed a

Y2H-NGIS simulator, using empirical data to motivate the simulation model and parameter

values. S5 Fig shows the experimental workflow we wish to simulate. We simulated both total

and fusion read counts under selected and non-selected conditions.

Model. We used a Galton-Watson (GW) branching process to model yeast growth in

each condition c 2 {S, N}. In this presentation of the model, we drop the index c from the nota-

tion for simplicity. The rth replicate culture in the presence of bait i starts with Mir(0) = M0 =

3.84 × 109 total yeast cells, which are grown for Tir generations, until the exponential growth

phase ends. The population size Mir(Tir) at the end of the experiment will be about 7.5 × 1010.

Let Xikr(t) be the number of yeast containing prey k at generation t. We assume Xikr(t) fol-

lows a simple Galton-Watson branching process,

XikrðtÞ ¼ Xikrðt � 1Þ þ dktr;

where δktr* Bin(Xikr(t − 1), eik) and eik is the "fitness" of prey k in the given condition with

bait i. We assume each prey is experiencing differential growth rates eik because of selection,

but the model also applies to non-selection conditions, where we assume all yeast grow at the

same rate eik = eN. The initial number of yeast cells from prey k is Xikr(0) = Mikr, with Mikr*

Bin(M0, qik), and given the true proportion qik of prey k in the prey library.

At the end of the experiment (selection or non-selection), at generation Tir, we do not

observe Xikr(Tir) directly. Instead, we observe read counts Zikr(Tir) * NB(LirXikr(Tir), ϕik),
from a Negative Binomial distribution with mean and variance:

E½ZikrðTirÞ j XikrðTirÞ� ¼ LirXikrðTirÞ

Var½ZikrðTirÞ j XikrðTirÞ� ¼ LirXikrðTirÞ þ �ikL2
irX

2
ikrðTirÞ;

where Lir �
Vir

MirðTirÞ
is a scaling factor (also called “size factor”) accounting for sequencing depth

Vir and the population size Mir(Tir) at generation Tir. The overdispersion parameter ϕik� 0

accounts for extra variation not already explained by the randomness in the initial prey count

Mikr and the branching process. We treat diploid enrichment and the second round of selec-

tion as deterministic in the model (S5 Fig), but they may cause overdispersion relative to our

stochastic growth model. Possible overdispersion is accommodated by using an NB observa-

tion model. For full details about the modelling and parameter estimation please refer to the

S2 Text file.

Design of simulation scenarios and performance of scores

We designed different simulation scenarios to test the performance of the scores under differ-

ent conditions. We took samples with 8000, 20000, and 40000 preys and 2 to 10 bait screen-

ings. We used the following parameters to evaluate the performance scores as reported in S4

Data: 1) the stickiness of the samples, which we define as the percentage of auto-active/non-

specific preys in the library; 2) the strength of the true interactors, defined as the minimum

percentile of the observed fitness parameter êik calculated from real data and used to simulate

the true interactor group; 3) overdispersion, given by the parameters φkN, φikS, and sampled

randomly or from a subset with high values (over the 90th percentile observed in real data); 4)

the proportion of true interactors in the prey library, given by qik; 5) the number of replicates;

and 6) the number of baits. S6 Fig shows sampling distributions of some of these parameters

as estimated from real data. Receiver Operating Characteristic (ROC) and Precision Recall
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(PR) curves were constructed, and their respective Area Under the Curve (AUC) values calcu-

lated for comparison between simulations.

Benchmarking of Y2H-SCORES with multiple Y2H-NGIS datasets

Count datasets were downloaded from the supplemental files of the reference publications

[12,13,17,19]. Raw reads were provided by the Goossen’s lab [9] to facilitate the analysis of

their dataset, as reported by NGPINT [21], with subsequent analysis using Y2H-SCORES.

Datasets that were reported as raw counts were normalized using library size method

[9,12,17]. If counts were already normalized, we used them as reported by the reference publi-

cation [13,19]. If the dataset did not have biological replicates, we generated pseudo-replicates

by duplicating the original counts. We generated several R scripts to convert the counts into

tables with the required input format by Y2H-SCORES, which can be found at https://github.

com/Wiselab2/Y2H-SCORES/Publication/Benchmarking.

Y2H-SCORES was implemented using the default settings (—spec_p_val = 1,—spec_fold_

change = 0,—enrich_p_val = 1,—enrich_fold_change = 0). The total scores table reported in

the output of the program was subsequently merged with the reference scores. Validation sets

were downloaded from the reference publications when available and combined with Bio-

GRID 4.1.190 [36] to derive physical interactions for the baits of interest. ROC and PR AUC

values were calculated and reported in Fig 5 for comparison. Fully merged score tables with

validation sets are reported in S5 Data.

Experimental procedures

We generated experimental data to estimate parameters for the simulation, and to test the effi-

ciency of Y2H-SCORES. Using an established Gateway-compatible CEN/ARS GAL4 system

[4,71], we created a normalized, three-frame cDNA expression library of 1.1 x 107 primary

clones from pooled RNA isolated from a time-course experiment of barley, Hordeum vulgare
L. (Hv) infected with the powdery mildew fungus, B. graminis f. sp. hordei [26,34]. Baits were

mated with a prey strain expressing the cDNA library and grown on selective media to identify

protein-protein interactions. To initiate screening, mating of bait and prey cDNA library was

performed on solid YPAD media. Diploids were enriched in SC-Leu-Trp (SC-LW) liquid

media and sub-cultured under two conditions: 1) non-selected diploid growth (SC-LW) and

2) selected for reporter activation in SC-Leu-Trp-His (SC-LWH). Diploids expressing a posi-

tive PPI activate the HIS3 reporter construct and multiply in SC-LWH media whereas diploids

expressing two non-interacting proteins are unable to grow under this selection. After sub-cul-

turing the samples and reaching saturation (OD600 = 2.5–3), cells were collected, plasmids

were isolated, and prey cDNA was amplified and sequenced using the Illumina HiSeq 2500

platform. We performed three independent biological replicates, collecting 5–10 million reads

per sample. See S3 Text for full details about the experimental protocol.

Sequence data from three MLA6 fragments and two from luciferase were processed using

the NGPINT pipeline [21]. Genes were annotated according to barley assembly IBSC_V2 as

reported in Ensembl Plants by the International Barley Sequencing Consortium (IBSC)

[72,73]. Output counts (S1 and S10 Data) were taken to compute the Y2H-SCORES. We

applied different normalization methods to the total count tables and calculated Y2H-SCORES

and their ensemble using Borda counts to obtain a ranked list of interactors. We compared the

score values of the top 5% of the ranked interactors with each normalization method, using a

Wilcoxon ranked-sum test (S6 Data). Quantiles of the specificity score for the top 100 interac-

tions ranked using median-of-ratios normalization, and unique or non-unique across other

normalizations, were calculated to show the lower values of the non-unique list (S7 Data).
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Using the Y2H-SCORES calculated from library size normalization and the Borda ensemble,

we predicted a top list of interactors to be validated (S8 Data). The validation consisted in iden-

tifying candidate true interactors based on the list, determining the interacting prey fragments

using the Integrative Genomics Viewer alignments obtained from the NGPINT pipeline and

the in-frame prey transcripts with the highest in-frame score. After the determination of the

exact fragment, primers were designed for Gateway cloning, with subsequent recombination

into the prey vector. The Mla6 bait sequences were fused with the GAL4 transcription factor

binding domain (GAL4-BD), while each the prey sequence was fused with the GAL4 DNA

activation domain (GAL4-AD). After cloning the candidate prey into yeast, we concluded the

validation with a binary Y2H test in a series of media and controls: 1) Diploid selection

(SC-LW), interaction selection (SC-LWH) and stringent selection (SC-LWH+ 1mM 3AT) as

shown in Figs 6A, S3 and S4.

Determination of interologs

Predicted protein-protein interactors of the validated interactors of MLA6 were inferred using

interologs [35,38]. Orthologs of the MLA6 interactors with Arabidopsis thaliana, Zea mays
and Oryza sativa were obtained using the Plant Compara tables from Ensembl Plants [72].

Experimentally validated interactions for these plants were mined from BioGRID version

4.1.190 [36], the Protein-Protein Interaction database for Maize (PPIM) [74], the Predicted

Rice Interactome Network (PRIN) database [37], and literature review [18,42,43,75]. Barley

interologs were inferred by assigning the mined interactions from the corresponding ortho-

logs. Trans-eQTL associations [39] with the Mla1 (mildew resistance locus a1) and MlLa (Lae-
vigatum resistance locus) were mined from each of the MLA6 validated interactors and their

interologs, using a q-value of<0.001. Visualization of the network was done using Cytoscape

[76].

Supporting information

S1 Fig. Coefficient of variation (CV) for each prey using different normalization methods.

Each method corresponds to one color. Higher CV values may indicate poor performance

because of a high variation between replicates. Baits: MLA61-161, MLA61-225, MLA6550-956,

Luciferase 1 and Luciferase 2.

(TIF)

S2 Fig. Top candidate interactors inferred with Y2H-SCORES and different normalization

methods. Only top 5% Borda score values are shown.

(TIF)

S3 Fig. Binary Y2H for the candidate preys HORVU2Hr1G060120 (TCP family transcrip-

tion factor 4) and HORVU2Hr1G024160 (Chaperone protein DnaJ-related). SC-LW media

was used as control for diploid growth, and the interaction was tested using stringent selection

with 1 mM 3-amino-1,2,4-triazole (3AT) in SC-LWH media. Positive interaction tests with

three MLA6 fragments, luciferase and Empty bait confirm these preys are autoactive.

(TIF)

S4 Fig. Binary Y2H validation for the candidate interactor preys of the MLA61-161 bait.

SC-LW media was used as control for diploid growth, and the interaction was tested using

stringent selection with 1mM 3-amino-1,2,4-triazole (3AT) in SC-LWH media.

(TIF)
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S5 Fig. Experimental workflow for Y2H-NGIS simulation. After the mating between bait

and prey, diploids go through a non-selective culture to reach exponential phase. Once there

(t = 0), the culture is split into two flasks, one for non-selection and another for selection. The

objective of the second subculture is to grow yeast exponentially until it reaches saturation, a

process that is repeated twice under selective conditions. After TN generations in the non-

selected condition and TiSr generations in the selected condition, culture aliquots are taken to

be sequenced.

(TIF)

S6 Fig. Distributions of the parameters used for Y2H-NGIS simulation. A) The prey pro-

portions and the overdispersion in non-selected samples. B) Fitness coefficient and overdisper-

sion in selected samples. C) The proportion of fusion reads in the samples. D) the proportion

of in-frame reads in the samples.

(TIF)

S1 Data. Y2H-NGIS counts for different normalization methods. Table A. Raw counts,

Table B. TPM counts, Table C. RUV counts, Table D. Lib size counts, Table E. Median-of-

ratios counts.

(XLSB)

S2 Data. Wilcoxon signed-rank test for the Pearson correlation of samples grouped by con-

dition, for different normalization methods.

(XLSX)

S3 Data. Wilcoxon signed-rank test for CV densities of different normalization methods.

(XLSX)

S4 Data. Y2H-NGIS simulation scenarios and performance of Y2H-SCORES.

(XLSX)

S5 Data. Benchmarking of Y2H-SCORES with different Y2H-NGIS datasets. Table A. Erf-

felinck et al 2018, Table B. Pashkova et al 2016, Table C. Yachie et al 2016, Table D. Schlecht

et al 2017, Table E. Yang et al 2018.

(XLSX)

S6 Data. Wilcoxon ranked-sum test for the top 5% ranked interactions using the Borda

ensemble of the Y2H-SCORES under different normalization methods.

(XLSX)

S7 Data. Quantiles of the specificity score for the top 100 interactions ranked using

median-of-ratios normalization and unique or non-unique across other normalizations.

(XLSX)

S8 Data. Y2H-SCORES for the MLA6 baits.

(XLSX)

S9 Data. MLA6 predicted network. Table A. MLA6 network, Table B. Nodes and eQTL.

(XLSX)

S10 Data. Fusion counts for the MLA6 baits. Table A. MLA61-161, Table B. MLA61-225,

Table C. MLA6550-959.

(XLSB)

S1 Text. MLA61-225 validated interactor sequences.

(PDF)
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S2 Text. Y2H-NGIS simulation.

(PDF)

S3 Text. Y2H-NGIS experimental protocol.

(PDF)
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