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Abstract

With the growth of the economy, the number of automobiles on the road is fast growing,

resulting in substantial environmental pollution from exhaust gas emissions. In the automo-

bile factory, some improvements have been achieved by constructing devices to degrade

automobile exhaust. However, although most of the vehicle exhaust emissions have met

the national standards, the exhaust gas is superimposed at the same time period due to the

increasing traffic volume, making the exhaust emissions seriously reduce the air quality.

Therefore, the scholars in the road field began to study new road materials to degrade vehi-

cle exhaust, which has gradually become one of the effective ways to reduce automobile

exhaust. Photocatalyst materials have been widely concerned because of their ability to oxi-

dize harmful gases by solar photocatalysis. Yet, the effect has been not satisfactory

because of the small light response range of photocatalyst material, which restricts the cata-

lytic effect. In this study, this paper attempts to use Fe3+ to modify the TiO2, which is one of

the main photocatalytic materials, to expand the range of light reaction band and to improve

the degradation effect of automobile exhaust. The degradation effects of ordinary TiO2 and

modified TiO2 on automobile exhaust were compared by test system in the laboratory. The

results show that the modified TiO2 can effectively improve the performance of vehicle

exhaust degradation. Moreover, the molecular dynamics method was used to establish the

channel model of TiO2, and the dynamic process of automobile exhaust diffusion and

absorption was simulated. The diffusion law and adsorption process of different types of

automobile exhaust gas such as NO, CO, and CO2 in the TiO2 channel were analyzed from

the molecular scale through the radial concentration distribution and adsorption energy.

1. Introduction

With the improvement of the economic level and the rapid development of automobile

manufacturing industry, the number of automobiles has increased rapidly, resulting in sub-

stantial environmental pollution from automobile emissions [1]. Also, the automobile exhaust

is the one of the main cause of weather disaster smog. Smog is mainly composed of carbon
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monoxide, sulphur and nitrogen oxides, which can be produced by incomplete burned fuel

with the car moving [2]. Hong, Y. found that automobile exhaust contributed significantly to

air pollution and haze, accounting for about 38% [3]. Similarly, Wang, F.C., using Fault Tree

Analysis (FTA), indicated that the vehicle exhaust emissions had the great impacts on urban

smog, with the contribution ratio reaching 38.4% [4]. Air pollution could cause some harm to

respiratory and immune functions of the human body, reducing lung function and increasing

the incidence rate of chronic bronchitis and asthma. Automobile exhaust mainly contains car-

bon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NO, NO2) and particulate pollut-

ants. In many air quality monitoring centers in big cities, automobile exhaust has become the

primary air pollutant.

How to lessen the environmental pollution caused by automotive emissions has become a

hot topic among scholars. In addition to build vehicle devices, improving road materials to

reduce the impact of exhaust on the environment has become a new direction. At present,

nano photocatalytic materials have been used as new materials for air purification due to their

good photocatalytic activity, chemical stability and recyclability. The main photocatalyst mate-

rials are semiconductor oxides (ZnO, TiO2, SnO2, ZrO2) and semiconductor sulfides (CdS,

PdS). Among them, TiO2 is widely used because it has many advantages, such as fast degrada-

tion rate, mild reaction conditions, low price, non-toxic [5,6]. However, the bandgap of TiO2

is about 3.2eV and an corresponding excitation wavelength is 387nm, and it belongs to the

ultraviolet region, which only make up less than 5% of the solar spectrum. Therefore, it is nec-

essary to modify it to expand the range of light reaction band and to improve the catalytic

effect.

There are many ways to modify the TiO2, such as metal ion doping, noble metal deposition,

composite with other semiconductors, modification in its thin film by post treatment, etc.

Among them, the noble metal deposition method is to deposit Ru, Pt, Au on the surface of

TiO2. This modified way can obviously improve the degradation rate of some organic com-

pounds, but the cost is relatively high. The semiconductor composite method is to grind and

dissolve the semiconductor with a narrow bandgap and high conduction band position and

disperse it in a continuous matrix with wide bandgap photocatalyst materials. Through recom-

bination, the separation and expansion of charge can be promoted. However, it is necessary to

adjust the ratio of the two materials in order to obtain the optimal bandgap, which increases

the difficulty of the method and is not conducive to its popularization and application. The

properties of titanium dioxide films, such as optical and electrical properties, can be tailored

by post treatment in various thermal atmospheric conditions, primarily including thermal

annealing in air and vacuum, to improve the catalytic efficiency, and the treated film is widely

applied as optical window in Cd-based and electron transport layer in perovskite solar cells

[7–10]. Although its modification effect is superior, its procession is complicated and require-

ments on equipment is complex. The method of doping metal ions can cause lattice distortion,

form defects, affect the motion of electron-hole pairs, change the band structure of TiO2, and

finally change the photocatalytic activity of TiO2. In previous studies, this method is widely

used because of its simplicity and economy.

El-Bahy, Z.M., et al compared the effect of TiO2 doped with lanthanide ion (La3+, Nd3+,

Sm3+, Eu3+, Gd3+, and Yb3+) on photodegradation and pointed out that lanthanide ions can

improve the photocatalytic effect of TiO2, especially Gd3+ [11]. Doping TiO2 with Fe3+, Mo5+,

Ru3+, Os3+, Re5+, V4+and Rh3+ also improved the photocatalytic effect, in contrast, Co3+ and

Al3+ had opposite effect, which decreased the photoactivity [12]. Further, Wang, X.C., et al.

studied the promoting effect of multi-transition metals (Mo, Ce, Cu, Fe, W, Zr, P) doped with

TiO2, indicating the catalytic effects of transition metals doped with TiO2 following the order

of Mo> Fe�Zr > Cu > W> P > Ce [13]. Choi, W. et al. [14] studied the photocatalytic
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properties of TiO2 doped with 21 transition metals. The results showed that compared with

other transition metal ions, Fe3+ and Cu ions doping broaden the range of light responded in a

certain range, and make the TiO2 powder have better catalytic activity. The TiO2 doped with

iron ions largely determines its optical properties [15]. TiO2 doped with Fe3+ ions showed bet-

ter light absorption in the UV and visible regions due to the reduction in band gap energy

compared to pure TiO2 [16]. The presence of Fe3+ doping in TiO2 crystal lattice causes the

shifted absorption edge towards longer wavelengths where the maximum of solar energy light

is located to enhanced response to the visible-light region [10]. In order to study the purifica-

tion effect of photocatalytic material TiO2 on automobile exhaust gas, Kuang, D.L. [17] et al.

mixed different amounts of Fe3+into TiO2 and calcined at 500˚C, and then X-ray diffraction

measurement and infrared spectrum analysis were carried out. The results showed that the

purification efficiency of modified TiO2 was higher than that of undoped TiO2. For example,

the purification rate of CO and hydrocarbon increased by 0.6% and 2.3% respectively. This is

because Fe3+ can capture electrons and holes at the same time, which reduces the recombina-

tion probability of electron-hole pairs.

In addition to experiments, molecular dynamics (MD) simulation is also introduced in the

study of photocatalytic materials absorbing automobile exhaust, because it is the computer

simulation of a real molecular system, which can obtain the data that is difficult or impossible

to obtain in experiments. Based on mechanical theory and computing technology, MD simula-

tion can simulate and predict the composition, structure, inherent properties and performance

of materials. Many scholars have used MD to simulate the physical and chemical properties of

TiO2 and obtain the process information. Predota, M. et al. [18,19] studied the adsorption of

water molecules on rutile TiO2 (110) surface by the MD method. Koparde, V. N. and Cum-

mings, P. T. [20] also used the MD simulation to study the adsorption of water molecules on

rutile and anatase titanium dioxide nanoparticles. Lin, H. F. et al. [21] studied the adsorption

of CO on TiO2 particles with different crystal forms (rutile and anatase). The simulation result

showed that at different temperatures, CO showed stronger adsorption on anatase.

2. Preparation of modified TiO2 powder

10g Fe2O3(99.5% purity) powder and 990g TiO2(99.8% purity) powder (the mass ratio is 1:99)

were weighed on a precision electronic balance, and the mixed powder was poured into the

agate pot of the ball mill. At the same time, some ball-milled balls with a diameter of 1cm were

added as the ball milling medium. The mass ratio of the ball-milled beads and the target pow-

der was about 1:1. The rotational speed was set at 300r/min, and the ball milling lasted for

about 20h. And then the mixed powder was taken out from the ball mill and put into muffle

furnace. Since the nano-TiO2 is amorphous without photocatalytic activity, it needs to be heat

treated to obtain polycrystalline TiO2 in order to improve its catalytic activity [22]. From the

research of Abdullah, SA, et al. about nano-TiO2 after annealing at different temperatures, it

indicates that there were more crystalline phase (mainly including anatase phase and rutile

phase) and the proportion of crystalline phases was optimal at 500˚C, which can lead to the

increase in catalytic activity [23]. In addition to temperature, calcination time is also impor-

tant. If the time is too long, the structure of titanium dioxide gradually changes from anatase

to rutile phase with low photocatalytic activity and the particle size increases. However, if the

time is too short, less crystallization phase is not conducive to catalysis. Therefore, according

to previous studies and preliminary tests, the heat-treated methods of nano-TiO2 is as follow.

The temperature was turned to 500˚C at the speed of 8˚C/min, lasting the temperature for 4h.

After that, the target powder was cooled to room temperature and taken out for use (as shown

in Fig 1) [22].
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The ball milling method for preparing modified TiO2 can make iron oxide and titanium

dioxide interact to achieve the purpose of ion doping. In the process of ball milling, there is a

strong collision between TiO2 powders, and plastic deformation occurs, resulting in large

stress and strain, which makes the lattice of TiO2 seriously distorted. At the same time, a lot of

heat is released during the ball milling process, and the strong mechanical force can make Fe3+

separated from Fe2O3 and diffuse into the distorted lattice of TiO2. In addition, ball milling

can reduce the particle size of TiO2, to obtain iron modified nano TiO2 powder with a large

specific surface area. The method has the advantages of low threshold, simple process and

large-scale continuous production.

3.Test study

The test process was as follows: firstly, the room temperature was adjusted to the initial test

temperature through air conditioning, then the fan was turned on to prevent gas stratification,

and the cover plate was closed. The sealing ring between the cover plate and the tail gas reac-

tion chamber was used to ensure the tightness of the equipment. Secondly, the switch of

exhaust gas supply source was turned on to introduce a certain amount of automobile exhaust

into the reaction chamber about 10 min. When the vehicle exhaust reached the initial concen-

tration, the switch of exhaust gas was turned off and then the incandescent light was turned up

to start the degradation test. The test device is shown in Fig 2. The exhaust gas concentration

in the test process was read and recorded by the automobile exhaust gas analyzer every 10 min-

utes. The test lasted for 60 minutes, so as to analyze the variation law of automobile exhaust

gas concentration with time.

4. Test method and molecular dynamics simulation method of

absorbing automobile exhaust gas

In this study, the commercial software Materials Studio was used to establish the TiO2 pore

model to simulate the adsorption of automobile exhaust (CO, NO2 and NO). There are three

crystal structures of TiO2 in nature: brookite, anatase and rutile [24]. Among them, the ther-

mal stability of TiO2 with brookite structure and anatase structure is not good, so rutile type

TiO2 is mainly used in industry. In the XRD spectra made by other scholars of Fe3+ modified

Fig 1. Ball mill and modified TiO2 powder.

https://doi.org/10.1371/journal.pone.0263040.g001
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nano titanium dioxide, the structure of unmodified titanium dioxide is amorphous, and grad-

ually changes to a crystalline structure (anatase and rutile) with the doping of iron ions [16].

Table 1 and Fig 3 show Lattice constants and Cell model of TiO2.

In crystallography, Miller indexes are commonly used to determine the cutting index of a

single cell by determining three edges as the coordinate system. Taking the lattice side length

as the unit, the intercept of a plane on the three axes of the cell rectangular coordinate system

is measured, which is expressed as Miller index (h k l). The cutting index of the cell determines

the bare atoms on the surface, which directly affects the surface properties of the crystal.

In nature, the main Miller indexes of TiO2 are (1 0 0) (0 1 0) (0 0 1). From previous studies,

the crystal face index (1 0 0) of TiO2 is most extensive. Therefore, this paper used the crystal

face index to cut TiO2. When cutting, the thickness was set to 10 Å and the model was trans-

formed from 2D to 3D by adding a vacuum layer. Then, the supercell tool in the build module

of materials studio was used to establish the TiO2 supercell model (Fig 4) with a ×b ×C = 5 ×7

×1 repetitions, so as to expand the original cell of TiO2. Finally, the size of the supercell was

about 55 Å× 53 Å× 10 Å to realize the contact with automobile exhaust in a larger area and to

obtain more reasonable simulation results. According to the composition and mass ratio of

each component in automobile exhaust, at the same time, considering the feasibility of

Fig 2. The test device of automobile exhaust.

https://doi.org/10.1371/journal.pone.0263040.g002

Table 1. Lattice constants of TiO2.

Name Lattice constants

Crossing angle (˚) Volume Edge length (Å)

α β γ Cell Volume a b c

TiO2_anatase 90 90 90 135.259 3.776 3.776 9.486

TiO2_rutile 90 90 90 62.4492 4.594 4.594 2.959

https://doi.org/10.1371/journal.pone.0263040.t001
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Fig 3. Cell model of TiO2.

https://doi.org/10.1371/journal.pone.0263040.g003
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molecular dynamics simulation, the number ratio of main components of automobile exhaust

was determined as CO: NO: NO2: SO2: C20H12 = 90:4:8:2:2.

TiO2 powder usually has some microporous structure, which is conducive to adsorption of

automobile exhaust. Based on this, through the build layer tool in Materials Studio software,

this paper built the pore model unit of TiO2 absorbing automobile exhaust gas by superposi-

tion in the order of TiO2, automobile exhaust and TiO2, as shown in Fig 5. Compared with

unmodified TiO2, Fe3+ ion modified TiO2 is different in that the trivalent Fe replaces the tetra-

valent Ti atom, which leads to the imbalance of charge and shows strong external activity.

The setting of several important parameters in the simulation process: inorganic TiO2 and

organic gases were both included in the model, so, compass force field which can not only cal-

culate metal inorganic compounds but also analyze organic compounds was adopted in this

study. In the model, because the number of particles remained unchanged and the pore vol-

ume remained constant, the constant volume and temperature (NVT) ensemble was selected

to simulate the absorption of vehicle exhaust gas by TiO2 at a certain temperature. After the

size of a single box was determined, a reasonable cut-off radius which refers to the effective

interaction distance between atoms should be set in the simulation process. Generally, the cut-

off radius should not be greater than half of the box size to avoid repeated calculation [25,26].

So, in this paper, the cut-off radius was set as 15.5 Å, which can avoid repeated calculation and

achieve good simulation accuracy.

In order to get the equilibrium of the dynamic simulation quickly, the energy optimization

of the channel model was carried out and the model was preliminarily optimized. At the same

time, before MD simulation, the upper and lower TiO2 molecular layers were fixed, and the

pore model was fully relaxed to simulate the adsorption of TiO2 on automobile exhaust, which

made the simulation closer to the real situation. The NVT ensemble and compass II force field

were used to calculate the MD equilibrium of 100 PS at a standard atmospheric pressure at

Fig 4. The supercell model of TiO2.

https://doi.org/10.1371/journal.pone.0263040.g004
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298K and 333K respectively, and the simulation results at ambient temperature and high tem-

perature were obtained respectively.

After molecular dynamics calculation, the equilibrium adsorption model of automobile

exhaust gas by titanium dioxide was obtained. Fig 6 shows the comparison of adsorption

effects of unmodified TiO2 and Fe3+ ion modified TiO2 on automobile exhaust gas from the

perspective of visualization after MD equilibrium. It can be seen that most of the automobile

exhaust molecules orderly approach to the surface of TiO2. The CO molecule changed from a

disordered state to "standing" on the surface of TiO2, and the C atom end was close to TiO2,

and the O atom end was far away from TiO2. The main reason is that there are 10 valence elec-

trons in the CO molecule, which form three chemical bonds: one σ bond and two π bond. One

of the two π bonds is a coordination bond, and the bonding electrons are completely provided

by O atoms. C atoms in CO molecules have a slightly negative charge, which makes the arc

electron pairs on C atoms easily enter the empty orbits of other atoms and form coordination

bonds.

Therefore, in the reaction, CO is an electron pair donor and can form complexes with some

atoms with empty orbitals. However, for NO and NO2, O atoms are closer to the surface of

Fig 5. The pore model of TiO2 absorbing automobile exhaust.

https://doi.org/10.1371/journal.pone.0263040.g005
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TiO2, and N atoms are slightly separated. There is no obvious regularity in the distribution of

SO2 in the pore.

5. Results and discussion

5.1. Analysis of test result

In order to effectively analyze the degradation effect of powder on automobile exhaust, the

degradation efficiency was used as the evaluation index. and the degradation ratio of exhaust

gas was evaluated in different periods. The calculation formula is shown in Eq (1) [27], and the

calculation results are shown in Table 2.

D ¼
Cbefore � Cafter

Cbefore
� 100% ð1Þ

Where D is the degradation ratio of gas in the target stage, Cbefore is the initial concentration,

Cafter is the end concentration.

Fig 6. Adsorption on exhaust molecules of unmodified and modified TiO2 on automobile exhaust before and after MD equilibrium in TiO2 channel. (a)

Unmodified TiO2 before MD (b) Unmodified TiO2 before MD (c) Modified TiO2 after MD.

https://doi.org/10.1371/journal.pone.0263040.g006

Table 2. Concentration variation and degradation ratio of vehicle exhaust gas.

Types of gas Test time (min) Variation The degradation efficiency (%)

0 10 20 30 40 50 60

NO (ppm) Blank group 57 56 58 59 57 56 56 -1 1.75%

TiO2 54 53 40 38 36 33 32 -22 40.74%

Modified TiO2 52 46 35 29 22 10 4 -48 92.31%

NO2 (ppm) Blank group 41 42 42 41 42 41 40 -1 2.44%

TiO2 46 48 53 54 50 46 41 -5 10.87%

Modified TiO2 43 46 51 53 48 41 38 -5 11.63%

CxHy Blank group 275 274 277 274 272 272 274 -1 0.36%

TiO2 282 282 276 268 260 258 254 -28 9.93%

Modified TiO2 278 278 262 258 254 252 250 -28 10.07%

CO (%) Blank group 4.69 4.75 4.72 4.66 4.67 4.69 4.67 -0.02 0.43%

TiO2 4.56 4.52 4.44 4.38 4.24 4.22 4.2 -0.36 7.89%

Modified TiO2 4.72 4.55 4.38 4.28 4.12 4.06 3.87 -0.85 18.01%

CO2 (%) Blank group 4.56 4.54 4.57 4.58 4.6 4.57 4.55 -0.01 0.22%

TiO2 4.42 4.41 4.65 4.73 4.52 4.43 4.2 -0.22 4.98%

Modified TiO2 4.72 4.69 4.77 4.82 4.74 4.34 4.26 -0.46 9.75%

https://doi.org/10.1371/journal.pone.0263040.t002
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It can be seen from Table 2 and Fig 7 that, compared with the blank group, ordinary TiO2

powder has some degradation effect on CO, NO, NO2 and CxHy in automobile exhaust. After

60 min, the degradation efficiency of these gas reached 7.89%, 40.74%, 10.87% and 9.93%,

respectively. It can be seen that TiO2 powder had good degradation effect on NO. At the same

time, a part of NO2, CxHy and CO was also degraded. After TiO2 modified by Fe3+ions, the

degradation effect of NO was significantly improved (increase by 51.57%). Due to its extrinsic

bandgap with low energy, Fe3+ incorporated into the crystal structure of TiO2 promotes

Fig 7. Variation curve of concentration of automobile exhaust. (a) Concentration variation of NO during

degradation process. (b) Concentration variation of NO2 during degradation process. (c) Concentration variation of

CxHy during degradation process. (d) Concentration variation of CO during degradation process. (e) Concentration

variation of CO2 during degradation process.

https://doi.org/10.1371/journal.pone.0263040.g007
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electron-hole separation, and deposits active sites on the surface of TiO2, thus improving the

adsorption of small molecular weight of NO with fast diffusion velocity [28]. Also, there is

some positive effect about the degradation of CO (increase by 10.11%). Yet, there is no signifi-

cant improvement in the degradation of other gases, such as NO2, CxHy. During the process of

automobile exhaust degradation, the concentration of NO2 and CO2 increases first and then

decreased. The main reason is that, in the first half, the modified TiO2 powder oxidizes harm-

ful gas NO and CO into NO2 and non-toxic CO2, and the amount of NO2 andCO2 generated

by oxidation may be more than that of purified NO2 and CO2, so the concentration is going

up slightly [29–31]. In the latter half, the NO2 and CO2 are photocatalyzed into organic matter

or salts, thus reducing the concentration.

5.2. Simulation analysis of automobile exhaust diffusion in the pore of

TiO2

Diffusion analysis is a statistical analysis of the migration of materials in space caused by the

thermal movement of a large number of molecules and atoms. The molecular diffusion coeffi-

cient is often used to characterize the diffusion velocity. The molecular diffusion coefficient

which is often used to characterize the diffusion rate is the proportional constant of the con-

centration difference between two points and the distance, when a component molecule is

transferred from a high concentration place to a low concentration place. For a long time, one-

sixth of the slope of the MSD curve is the diffusion coefficient of the system. Therefore, in MS

software, the MSD is used to analyze the diffusion velocity of the system, and the calculation

formula is Eq (2) [32–35].

MSD ¼< jrðtÞ� rð0Þj2 > ð2Þ

Where r(t) is the displacement of particles at time t (m); r(0) is the displacement of particles at

the initial time (m); <> is the average of all atoms in the system.

The diffusion velocity of different types of automobile exhaust molecules in the modified

and unmodified TiO2 channels are shown in Figs 8 and 9, respectively. It can be seen from the

figure that the diffusion velocity of CO molecules with the smallest molecular weight was the

Fig 8. Diffusion velocity of automobile exhaust gas in modified TiO2 channel at ambient temperature (298K).

https://doi.org/10.1371/journal.pone.0263040.g008
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fastest. The second was NO and NO2, and the diffusion rates of these two gases were very

close. The third was C12H12, which had the largest molecular weight because the heavy mole-

cule slowed down the diffusion velocity due to its large volume and weight. The molecule of

the gas with the slowest diffusion speed was SO2, and this law was consistent in the modified

and unmodified TiO2 channels. It shows that the adsorption powder of TiO2 for SO2 mole-

cules was weaker than other exhaust molecules. From the energy point of view, the diffusion

process is caused by energy gradient, and it is also the process of system transition from the

unsteady state (high energy) to steady-state (low energy). It also reflects the change of various

forces when the system tends to be stable.

At the same time, the diffusion velocity of CO, NO, NO2 and C12H12 molecules in the mod-

ified TiO2 channel was faster than that in the unmodified TiO2 channel, while the adsorption

of SO2 molecules had almost no change. The results show that the modification of TiO2

improved its attraction to most automobile exhaust molecules and promoted the directional

diffusion of these molecules to the surface of TiO2. This is due to the incorporation with Fe3+,

there are more active sites on the surface of titanium dioxide, which accelerates the adsorption

of exhaust gas molecules, thus promoting the diffusion of exhaust gas molecules on the crystal

surface [36].

5.3. Radial concentration analysis of automobile exhaust on TiO2 surface

The concentration distribution of the molecule on the crystal surface is an important index of

the adsorption of the molecule by the crystal. The closer the adsorption distance and the higher

the concentration, the better the adsorption effect between the molecule and crystal [37]. In

MD simulation, the radial distribution function (g(r)), which can be explained as the ratio of

local density to average density bulk density of the system, is often used to characterize the

cross-sectional concentration distribution of particles.

In this study, the geometric center of the TiO2 layer was used as the reference point to cal-

culate the distance between automobile exhaust molecules and TiO2. The shorter the distance

and the higher the concentration, the better the absorption effect of automobile exhaust, and

the less easy to release. The calculation formula of the radial distribution function is Eq (3)

Fig 9. Diffusion velocity of automobile exhaust gas in unmodified TiO2 channel at ambient temperature (298K).

https://doi.org/10.1371/journal.pone.0263040.g009
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[38].

gðrÞ ¼
1

r4pr2dr

XT

t¼1

XN

j¼1

DNðr ! r þ drÞ

N � T
ð3Þ

where N is the total number of molecules (number); T is the total calculation time (steps); δr is

the designed difference in the distance; and4N is the number of molecules within the interval

of r!r+δr.
Fig 10 shows the radial distribution concentration of automobile exhaust on the surface of

TiO2 powder under three conditions (unmodified TiO2, TiO2 modified by Fe3+ on the surface

of 50% Ti atom and TiO2 modified by Fe3+ on surface of 100% Ti atom). It can be seen that

after modification, the radial concentration of automobile exhaust absorption at the same posi-

tion in the TiO2 channel has been significantly increased, and the order of concentration is

100% Fe3 + modified TiO2 > 50% Fe3 + modified TiO2 > unmodified TiO2. Especially, the dif-

ference was more obvious in the near end of TiO2. This may be attributed to the fact that the

titanium dioxide fully modified by iron ions with low bandgap promotes the separation of

electron/hole and further improves the catalytic efficiency [39]. This phenomenon shows that

Fe3 + can effectively improve the adsorption of TiO2 powder to automobile exhaust, and the

more complete the modification, the better the effect.

5.4. Calculation and analysis of adsorption energy of automobile exhaust

on TiO2 surface

In the previous section, the improvement effect of modified TiO2 on automobile exhaust gas

adsorption was analyzed from the perspective of radial relative concentration, and the

Fig 10. Radial relative concentration of automobile exhaust on different types of TiO2 surface.

https://doi.org/10.1371/journal.pone.0263040.g010
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adsorption strength was determined from the perspective of distance and concentration. This

section will quantitatively analyze the absorption effect of modified TiO2 on automobile

exhaust from the perspective of energy.

When the automobile exhaust gas is adsorbed in the TiO2 channel, the two independent

systems of vehicle exhaust and TiO2 gradually become a whole system, and refer to other sys-

tems, the reduction of system energy is considered as the adhesion work [40]. In other words,

the adhesion work is the difference between the total energy of a whole-body (formed by

adsorption of automobile exhaust and TiO2) and the sum of the surface energy of vehicle

exhaust and TiO2 respectively before adsorption. The larger the adhesion work value between

automobile exhaust and TiO2, the more difficult the automobile exhaust to separate from the

surface of TiO2, which means that the adsorption is more difficult to be destroyed [41,42]. The

calculation method is shown in Eq (4).

Wadhension ¼
DE
A
� K ¼

Etotal � ðETiO2
þ EgasÞ

A
� K ð4Þ

where Wadhension represents the work of adhesion at the interface (mJ m-2). Etotal represents the

interfacial potential energy of TiO2 and automobile exhaust after molecular dynamic adsorp-

tion equilibrium (kcal mol-1). Egas is the potential values of the automobile exhaust after MD

simulation (kcal mol-1). ETiO2 are the potential values of the TiO2 after MD simulation (kcal

mol-1). A represents the Connolly area of the interface (Å2).4E represents the Variation value

of automobile exhaust gas during the adsorption process (kcal mol-1).K = 695 [43] is the con-

version coefficient for units.

After the MD equilibrium calculation of the two-phase interface model of automobile

exhaust (gas) and TiO2 (solid), the model of TiO2 adsorption on automobile exhaust was built.

And it is shown in Fig 11(a). The interface model was divided into two parts: TiO2 model and

automobile exhaust model. The energy function of force module in Materials Studio software

was used to calculate the energy of interface model (a), the disassembled TiO2 model (b) and

automobile exhaust model (c) respectively, so as to calculate the adhesion work between TiO2

and automobile exhaust gas using the above formula. The calculation results are shown in

Table 3. The results present that the adhesion work between the automobile exhaust and TiO2

was obviously improved. The 50% Fe3+ and 100% Fe3+modified TiO2 increased about 40%

and 73%, respectively. The incorporation of Fe3+ into the structure of TiO2, causing the

Fig 11. Disassembled model after MD equilibrium. (a) Automobile exhaust in TiO2 channel (b) TiO2 (c) Automobile exhaust.

https://doi.org/10.1371/journal.pone.0263040.g011
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reduction of the bandgap, the prevention of recombination of electron/hole and extension of

the life of charge separation, increases the number of active points and absorbs more exhaust

molecules, which results in the increase of adhesion work [36]. Therefore, Fe3+ modification is

beneficial to enhance the adsorption capacity of TiO2 on automobile exhaust, thus improving

the degradation effect.

6. Conclusions

In this study, Fe3+ was used to modify the photocatalyst material TiO2. Through the absorption

test of automobile exhaust and the diffusion and absorption of automobile exhaust gas in the

TiO2 channel simulated by molecular dynamics method, it is proved that the modification can

effectively improve the degradation effect of TiO2 on automobile exhaust. The conclusions are

as follows:

1. Test results show that the modification of TiO2 can obviously improve the degradation

effect of NO in automobile exhaust, but it is not obvious to improve the degradation effect

of other exhaust gases such as CO and NO2.

2. MD simulation shows that the diffusion velocity of most automobile exhaust molecules in

the modified TiO2 channels is faster than that in the unmodified TiO2 channels, which indi-

cates that the modification of TiO2 improves the attraction of most automobile exhaust

molecules and promotes the directional diffusion of automobile exhaust molecules to the

surface of TiO2.

3. Through MD simulation and analysis of the radial concentration and the adsorption energy

of exhaust molecules in the TiO2 channel, it is concluded that Fe3 + modification of TiO2

powder is beneficial to improve the adsorption of automobile exhaust molecules, and the

more the modification, the better the effect.
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