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Abstract Childhood chronic kidney disease commonly
progresses toward end-stage renal failure, largely independent
of the underlying disorder, once a critical impairment of renal
function has occurred. Hypertension and proteinuria are the
most important independent risk factors for renal disease
progression. Therefore, current therapeutic strategies to
prevent progression aim at controlling blood pressure and
reducing urinary protein excretion. Renin-angiotensin-system
(RAS) antagonists preserve kidney function not only by
lowering blood pressure but also by their antiproteinuric,
antifibrotic, and anti-inflammatory properties. Intensified
blood pressure control, probably aiming for a target blood
pressure below the 75th percentile, may exert additional
renoprotective effects. Other factors contributing in a multi-
factorial manner to renal disease progression include dyslipi-
demia, anemia, and disorders of mineral metabolism.
Measures to preserve renal function should therefore also
comprise the maintenance of hemoglobin, serum lipid, and
calcium-phosphorus ion product levels in the normal range.
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stage renal failure is common in CKD patients, and once

E. Wiihl () - F. Schaefer

Division of Pediatric Nephrology, University Hospital Heidelberg
for Pediatric and Adolescent Medicine,

Im Neuenheimer Feld 151,

69120 Heidelberg, Germany

e-mail: elke.wuehl@med.uni-heidelberg.de

significant impairment of renal function has occurred, it
tends to progress irrespectively of the underlying kidney
disorder. However, information on the natural course of
CKD progression in children is still limited. The prospec-
tive, population-based ItalKid registry, including almost
1,200 CKD children with various renal diseases over a
10-year period, reported a prevalence of 23% of patients
suffering from severe kidney disease with chronic renal
insufficiency (CRI). The incidence of renal replacement
therapy was 7.3 per year per 100 patients with CRI, and the
risk of developing end-stage renal disease (ESRD) by age
20 was 68% [1]. The decline of renal function was not
linear but rather characterized by a sharp decline during
puberty and at early postpubertal age. This finding supports
the general clinical impression that in many children with
renal hypodysplasia, kidney function deteriorates more
rapidly around the time of puberty. This notion received
further support by a recently published retrospective
analysis of 176 children with renal hypodysplasia [2]. The
authors postulated that the natural course of chronic renal
failure in these patients can be divided into three time
periods: an initial period, usually lasting the first 3 years of
life characterized by an improving renal function, a
subsequent period of stable renal function attained by
50% of patients for a mean of 8 years, and a phase with
renal function gradually deteriorating toward ESRD. The
latter period started just after infancy in 48% and around
puberty in 23%. In 30% of patients, renal function
remained stable even beyond puberty.

Factors affecting renal disease progression

There is clear evidence from clinical studies that hyperten-
sion and proteinuria are key players in the pathophysiology
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of CKD progression in humans [3—5]. The renin-angioten-
sin system (RAS) is intrinsically involved in the process,
and other potential contributors include genetic back-
ground, renal anemia, altered mineral homeostasis, dyslipi-
demia, chronic inflammation, and oxidative stress as well
as general cardiovascular risk factors such as diabetes,
smoking, and obesity. As a consequence of the mechanistic
insights in renal disease progression obtained by experimental
work, several principal renoprotective strategies have
emerged in recent years (Fig. 1). These are based mainly on
clinical evidence established in adult patients, but growing
evidence supports their efficacy also in children. Efficient
control of blood pressure and minimization of proteinuria
appear as the two most important measures to preserve
residual kidney function. Other issues, such as prevention
and treatment of renal anemia, uremic dyslipidemia, and
disorders of mineral metabolism, have an experimental basis,
although their clinical importance is less clear to date. In the
following, we review current treatment strategies to slow
renal disease progression in childhood CKD.

Hypertension

Hypertension is an independent risk factor of renal failure
progression in adults [3-5]. Whereas the degree of
hypertension correlates with the severity of the underlying
renal disease, interventional studies have provided evidence
that high blood pressure actively contributes to renal failure
progression in human CKD. In pediatric nephropathies,
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renal hypertension is common, although typically less
severe than in adult kidney disorders. Hypertension
prevalence estimates in children with CKD range from
20% to 80% depending on the degree of renal dysfunction
and underlying renal disease [6, 7]. However, even children
with CKD stage 2 or renal hypodysplasia may present with
significantly elevated blood pressure [8]. The European
Study Group for Nutritional Treatment of Chronic Renal
Failure in Childhood demonstrated that in CKD children, a
systolic blood pressure greater than 120 mmHg was
associated with a significantly faster glomerular filtration
rate (GFR) decline [9].

Numerous studies in adults have provided proof to the
concept that consequent antihypertensive therapy slows
down the rate of renal-failure progression [10]. A close
linear relationship between the blood pressure level
achieved by antihypertensive treatment and the rate of
renal failure progression in adult CKD patients has been
noted, which appears to persist well into the normal range
of blood pressure [11, 12].

The firm evidence of a favorable effect of intensified
blood pressure control in patients with CKD has resulted in
generally lower target blood pressure recommendations in
this patient group. In the most recent guidelines by the Joint
National Committee in the US (JNC7) [13] and the
Guidelines of the European Hypertension Society [14],
120/80 mmHg has been defined as the upper limit of the
‘optimal’ blood pressure range, particularly when protein-
uria is present, and any blood pressure > 130/80 in CKD
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patients should be actively lowered by therapeutic inter-
vention [15]. These blood pressure targets are equivalent to
the 50th to 75th distribution percentile in the general young
adult population. It is as yet unknown whether these blood
pressure targets hold true for the pediatric population and
whether glomerular damage in children correlates with
absolute or age-specific relative blood pressure. The
Kidney Disease Outcomes Quality Initiative (K/DOQI)
guidelines on blood pressure control in CKD children [15]
adopted the recommendations of the task force that target
blood pressure should be <90th percentile for normal values
[16] adjusted for age, gender, and height percentile. Assuming
that equivalent blood pressure percentiles should be targeted
in children as in adults, the adult recommendations would, for
instance, correspond to an acceptable upper blood pressure
level of 106/66 mmHg (75th percentile) in an 8-year old child
with CKD. The final results of the Effect of Strict Blood
Pressure Control and ACE Inhibition on Progression of
Chronic Renal Failure in Pediatric Patients (ESCAPE) trial,
to become available in mid-2008, will provide pediatric
evidence as to whether intensified blood pressure control
(targeting to below the 50th percentile of 24-h mean arterial
pressure) will confer a renoprotective advantage over a more
conventional target (50th to 95th percentile) [17]. The
integrity of the normal diurnal blood pressure pattern may
play a significant role in renal failure progression in addition
to and independent of the absolute blood pressure level.
Nondipping, a well known independent cardiovascular risk
factor and common characteristic of renoparenchymal
hypertension, is associated with more rapid progression of
renal failure in adult CKD patients [18, 19], and nondipping
is believed to reflect sympathetic hyperactivation in CKD.

Proteinuria

Population-based studies in healthy individuals have dem-
onstrated that proteinuria is a powerful independent risk
factor for ESRD and overall mortality [20—22]. Proteinuria
is certainly predictive of the renal prognosis in adults with
diabetic and nondiabetic kidney disorders [23-25]. Urinary
protein excretion was the only baseline variable correlated
with GFR decline and progression to ESRD in the Ramipril
Efficacy in Nephropathy (REIN) trial [26]. However, the
spectrum of underlying renal disorders in children differs
markedly from adults. In the pediatric CKD population,
congenital renal hypodysplasia with or without urinary tract
abnormalities is the leading underlying renal disorder,
affecting more than 60% of children. The European Study
Group for Nutritional Treatment of Chronic Renal Failure
in Childhood first demonstrated in 200 children with CKD
stage 3—4 that proteinuria and hypertension are major
independent determinants of GFR decline in pediatric
nephropathies [9]. The ItalKid Project confirmed that

proteinuria predicts renal disease progression in children
with renal hypodysplasia [27]. In addition, there is evidence
from the ESCAPE trial that residual urinary protein
excretion during angiotensin-converting enzyme (ACE)
inhibition is quantitatively associated with renal failure
progression [28]. Even in children with normal kidney
function, persistent proteinuria in the nephrotic range is
a risk factor for progressive renal injury, and early detec-
tion and treatment of proteinuria is essential [29]. In non-
proteinuric children with CRI of nonglomerular origin, the
level of protein excretion does not appear to play a major
role in CKD progression, which seems to be best predicted
by rapid somatic growth, age, and blood pressure [30].

In line with evidence from animal models, multiple
clinical studies have confirmed that proteinuria is not only a
marker but also an important mechanism of CKD progres-
sion. Reduction of proteinuria is associated with a slowing
of GFR loss in the long term [25, 31-33]. In the
Modification of Diet in Renal Disease (MDRD) trial, for
each 1 g/d reduction in proteinuria observed within
4 months of antiproteinuric treatment (i.e. blood pressure
reduction and dietary interventions), the subsequent GFR
decline was slowed by about 1 ml/min per 1.73 m? per year
[25]. In the REIN study, reduction of proteinuria at
3 months of ACE inhibitor therapy by 1 g/d resulted in
slowing down GFR decline by 2 ml/min per year [34]. This
degree of proteinuria reduction appears to be associated
with the maximal renoprotective effect [35, 36]. Hence, the
goal of any antiproteinuric treatment is to reduce protein-
uria as much as possible, ideally to <300 mg/m*/day.

Dyslipidemia

Epidemiological studies suggest that dyslipidemia is an
independent risk factor not only for cardiovascular disease
but also for progressive chronic renal failure [37]. The
dyslipidemic pattern differs between the major renal disease
entities [38], and the degree of dyslipidemia parallels the
degree of renal function impairment. In animal models,
hypercholesterolemia clearly accelerates the rate of pro-
gression of kidney disease [39]. A high-fat diet causes
macrophage infiltration and foam-cell formation in rats,
leading to glomerulosclerosis [40]. Dyslipidemia may
damage glomerular capillary endothelial and mesangial
cells as well as podocytes. Macrophages are the major cell
types expressing scavenger receptors; however, mesangial
cells, as well, express receptors for low-density lipoprotein
(LDL) and oxidized LDL, which upon activation induce
mesangial cell proliferation, increase mesangial matrix
deposition, and enhance production of chemokines, cyto-
kines, or growth factors and increase oxidative stress.

A relationship between serum cholesterol levels and
GFR decline was shown in adult patients with type 1
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diabetes and overt nephropathy [41]; patients with a total
cholesterol level >7 mmol/L showed an at least three times
faster decline in GFR than subjects with lower cholesterol
levels. For the general adult population, the Arteriosclerosis
Risk in Communities (ARIC) study demonstrated that
elevated triglycerides and low high-density lipoprotein
(HDL) cholesterol but not LDL cholesterol were associated
with an increased risk of renal dysfunction [37]. In a cohort
of more than 11,000 middle-aged adults with normal
kidney function, hypertriglyceridemia was associated with
a 1.68 times increased risk of a 0.4 mg/dl increase in serum
creatinine within the 3-year observation period [37].

There are also observations that insulin resistance
syndrome may underlie or mediate the association between
lipids and loss of renal function. In humans, a strong
relationship between metabolic syndrome and the risk for
chronic renal disease and microalbuminuria was found in a
large nondiabetic general population [42].

Anemia

There is increasing evidence that anemia is an independent
risk factor for progression of chronic renal failure. Anemia
is a surrogate marker for tissue hypoxia that might
perpetuate preexisting renal tissue damage. In patients with
reduced nephron number, hypoxia of tubular cells is
favored by an increase of oxygen consumption by tubular
cells of the remaining nephrons, a decrease in the number
of interstitial capillaries [43], and an accumulation of
extracellular matrix between interstitial capillaries and
tubular cells, which hampers oxygen diffusion. Hypoxia
appears to have at least three consequences: It stimulates
production of profibrotic molecules such as transforming
growth factor (TGF)-3 or endothelin-1 by tubular cells,
synthesis of extracellular matrix [44], and increased oxygen
consumption, which also enhances production of reactive
oxygen species (ROS) that may play an additional role in
CKD progression.

The renoprotective effect of erythropoietin (EPO) in CKD
might be partially related to an attenuation of interstitial
fibrosis and tubuloepithelial cell loss by improved oxygen
supply and reduced oxidative stress via correction of anemia.
In addition, EPO might exert direct protective effects on
tubular cells and might help maintain integrity of the
interstitial capillary network and stimulate regenerative
progenitor cells [45]. The combination of antiapoptotic effects
of thuEPO in renal tissue and stimulation of regenerative
progenitor cells may play a role in organ protection.

Oxidative stress

Oxidative stress is defined as an imbalance between ROS
and endogenous levels of antioxidant substances. High
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oxidative stress and low availability of the substrate of
nitric oxide (NO) synthase, L-arginine, and an accumulation
of endogenous NO inhibitors such as asymmetric dimethy-
larginine (ADMA) may induce endothelial dysfunction.
Several studies reported on increased oxidative stress in
CKD patients. This increase appears to correlate with the
extent of deterioration of renal function [46]. Increased
oxidative stress contributes to the release of proinflamma-
tory and profibrotic molecules and thereby directly enhan-
ces the production of extracellular matrix by fibroblastic
cells. This may lead to accelerated progression of CKD,
hypertension, and cardiovascular complications, and it was
suggested that increased oxidative stress in CKD patients
may be both a cause and an effect of renal injury. Anemia,
hypercholesterolemia, and chronic inflammation are con-
ditions known to further promote oxidative stress.

Nutrition

Nutrition has been considered an important instrument for
slowing down renal disease progression in individuals with
impaired renal function. In animals, high protein diet results
in renal scarring, whereas restriction of dietary protein
diminishes or even prevents progressive renal damage [47].
In end-stage renal failure, uremic symptoms can be often
diminished and renal replacement therapy postponed by the
restriction of dietary protein intake. This led to the
hypothesis that restriction of protein intake might also slow
down the progression of chronic renal failure in patients
with CKD stages 2—4.

Disorders of calcium-phosphate metabolism

Disorders of the calcium-phosphate metabolism are addi-
tional risk factors for renal disease progression. On one
hand, renal insufficiency causes disturbances of the
calcium-phosphate homoeostasis and alters serum lipid
profiles. On the other hand, the resulting vasculopathy
and hypertension promote progression of chronic renal
failure toward end-stage renal disease. Several factors
related to disturbed calcium-phosphorus metabolism, such
as hyperphosphatemia, hyperparathyroidism, lack of active
vitamin D, and possibly the phosphaturic hormone FGF23,
may be considered to be—at least to a minor extent—
involved in the progression of renal dysfunction [48].

Treatment strategies and their impact on renal
disease progression

Several antihypertensive and antiproteinuric therapies have
proven effective. Blood pressure control per se has a
proteinuria-lowering effect, as demonstrated by three large
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trials: the MDRD study [25], the Appropriate Blood Pressure
Control in Diabetes (ABCD) study [49], and the African
American Study of Kidney Disease and Hypertension
(AASK) [32]. A low blood pressure goal, i.e. <125/75 mmHg
in adults, either reduced proteinuria absolutely by 50% [25]
or prevented the two- to threefold increase in proteinuria
observed in patients with the more conventional blood pres-
sure goal of 140/90 mmHg [49]. A low blood pressure goal
appears to be very well tolerated by the vast majority of
patients and in terms of cardiovascular outcomes; the “J curve”
phenomenon (a slight increase of cardiovascular events in
patients achieving a very low blood pressure level) seems to be
confined to aged patients with advanced atherosclerosis.

The goal of any antiproteinuric treatment is to reduce
proteinuria as much as possible, ideally to <300 mg/m*/day.
This degree of proteinuria reduction appears to be associated
with the maximal renoprotective effect [35, 36]. Whereas the
different classes of antihypertensive agents are comparable
with respect to their blood pressure-lowering efficacy, they
differ markedly regarding their effects on proteinuria and
CKD progression [32, 35, 50, 51].

Blockade of the renin-angiotensin system

Antagonists of the RAS, such as ACE inhibitors and, more
recently, angiotensin II type I receptor blockers (ARB) have
become pharmacotherapeutics of first choice in adults [15]
as well as children with CKD by virtue of their pharma-
cological properties. They significantly reduce blood
pressure as well as urinary protein excretion and have an
excellent safety profile, which is almost indistinguishable
from placebo. In adults with essential hypertension,
treatment with RAS antagonists has been associated with
the best quality of life among all antihypertensive agents.

RAS antagonists suppress the local angiotensin II tone
(ACE inhibitor) or action (ARB). This results in a reduction of
intraglomerular pressure and proteinuria, diminished local
release of cytokines and chemokines, and alleviated activation
of inflammatory pathways, with consequently attenuated
glomerular hypertrophy and sclerosis, tubulointerstitial in-
flammation, and fibrosis [8], as well as in a normalized
central nervous sympathetic tone by reduced renal afferent
nerve stimulation. In addition, oxidative stress is reduced
independently of the blood-pressure-lowering effect [52].

In adults with diabetic or nondiabetic kidney disease,
several randomized trials demonstrate a more effective
reduction of proteinuria, usually by 30-40%, by ACE
inhibitors compared with placebo and/or other antihyper-
tensive agents [35]. This is associated with a significantly
reduced rate of renal failure progression in the long term
[31, 35, 53-61].

Very similar results were obtained in randomized studies
comparing ARBs with placebo or conventional antihyper-

tensive agents in diabetic nephropathy [51, 62, 63]. It has
been reasoned that ACE inhibitors might have a specific
renoprotective advantage by inducing accumulation of
vasodilatory and antifibrotic bradykinins; however, the
course of GFR was similar in two clinical trials comparing
ACE inhibitors and ARB therapy [64, 65]. The size of the
advantage of RAS antagonists over other antihypertensive
agents is still under debate [66]. The risk of doubling serum
creatinine or attaining ESRD is typically reduced by 30—
40%, but the superiority of RAS antagonists is related to
the prevailing degree of proteinuria [35, 36]. In adults, ACE
inhibitors are believed to provide better renoprotection than
other antihypertensive agents in patients with proteinuria
exceeding 500 mg/day.

However, there is some evidence that previous studies
may not have used sufficiently high ACE inhibitor doses to
achieve effective RAS suppression at the kidney tissue
level and obtain a maximal renoprotective effect. Further-
more, at least a subset of patients appears to develop partial
secondary resistance to ACE inhibition (aldosterone escape
by compensatory upregulation of ACE-independent angio-
tensin II production) [67—69]. It is currently an open issue
whether such patients would benefit from the primary use
of ARBs alone or in combination with ACE inhibitors.

Whereas the maximal antiproteinuric and renoprotective
effects of ACE inhibitors and ARBs seem to occur at doses
that are supramaximal with respect to maximal antihyperten-
sive action, regulatory authority approval is usually available
only for the indication of hypertension in the respective dose
range. Therefore, it is generally recommended to administer
these drugs, after confirming tolerability in a short run-in
period, at their highest approved doses [32, 70].

Limited information is available regarding the efficacy of
RAS antagonists for renoprotection in children with CKD.
Small uncontrolled studies showed stable renal function in
children with sequelae of hemolytic uremic syndrome during
long-term ACE inhibitor treatment [71], stable GFR during
2.5 years of losartan treatment in children with proteinuric
CKD [72], and attenuated histopathological progression in
children with IgA nephropathy receiving combined RAS
blockade [73]. Data from the ItalKid Study did not show a
significant modification of CKD progression by ACE
inhibitor treatment in children with hypodysplastic kidney
disease [74] compared with matched untreated subjects.
However, the overall CKD progression rate in the total
cohort was very slow (< —2 ml/min per 1.73 m? per year),
thereby making the detection of significant differences
(ACE inhibitors -1.08 vs. non-ACE inhibitors 1.80; not
significant) difficult. In addition, no information was
available with respect to the types and dosages of ACE
inhibitors used and the prevailing degree of proteinuria.

The ESCAPE trial demonstrated efficient blood pressure
and proteinuria reduction by ramipril in almost 400 children
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with CKD [17]. However, an interim analysis of the 3-year
results revealed a gradual rebound of proteinuria after the
second treatment year. This effect was dissociated from a
persistently good blood pressure control and may limit the
long-term renoprotective efficacy of ACE inhibitor mono-
therapy in pediatric chronic kidney disorders [28].

Aldosterone antagonists also lower blood pressure by
RAS suppression. Whereas the use of spironolactone is
limited by endocrine side effects, the new aldosterone
antagonist, eplerenone, has minimal affinity for progester-
one and androgen receptors. Apart from the risk of
hyperkalemia, reported side effects are similar to placebo
[75]. Combined therapy of eplerenone and an ACE
inhibitor increases patient survival in adults with congestive
heart failure [76]. However, combination therapy appears
limited in CKD patients due to the potentiated risk of
hyperkalemia [77, 78].

Aliskiren, a renin-antagonist, blocking the conversion
from angiotensinogen to angiotensin I, has been shown to
effectively lower blood pressure in animals and humans.
The effect on blood pressure is comparable with that of
ARBs, and combination therapy of aliskiren and valsartan
at maximum recommended doses provided significantly
greater reductions in blood pressure than did monotherapy,
with a tolerability profile similar to that of aliskiren or
valsartan alone [79]. However, there are no data on the
effect of aliskiren on renal disease progression in adults nor
on its applicability in children available to date.

Calcium-channel blockers

Calcium-channel blockers (CCBs) are safe and can achieve
blood pressure goals in patients with CKD. However, CCBs
of the dihydropyridine type (amlodipine, nifedipine) fail to
reduce progression of chronic renal failure and may even
increase proteinuria and promote more rapid CKD progres-
sion [33]. Therefore, dihydropyridine CCBs may be
acceptable as first-line antihypertensive monotherapy only
in nonproteinuric patients and should be avoided unless in
combination with RAS antagonists to improve blood
pressure control in proteinuric patients [70]. In contrast,
nondihydropyridine CCB (diltiazem, verapamil) may have
some antiproteinuric effect and may be therefore renopro-
tective [33]. However, data are not conclusive. An
antiproteinuric effect was not observed in type 2 diabetes
[80], and amlodipine exerted a renoprotective effect
comparable with ACE inhibitors in one study [81].

Beta-blockers
CKD is often a state of overactivation of the sympathetic

nervous system, and antiadrenergic drugs play an important
role in its management. Beta-blockers are effective in
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lowering blood pressure in CKD patients by blockade of
postsynaptic beta receptors, resulting—among others
effects—in a reduction of pulse rate, cardiac output,
afterload, and renal renin release. Metoprolol and atenolol
were the first antihypertensive agents for which beneficial
effects on the decline of renal function in CKD patients
were demonstrated [54]. In the AASK trial, the beta-
blocker metoprolol had an antiproteinuric effect almost
comparable with ramipril, in marked contrast to amlodi-
pine [32]. The antiproteinuric action may be due to
sympathicoplegic effects. Newer beta-blockers, such as
carvedilol, have even improved antiproteinuric effects
compared with atenolol [82, 83].

Combination therapy

Because hypertension is a multifactorial disorder, mono-
therapy is often not effective in lowering blood pressure or
reducing proteinuria to the target range. Treatment with a
single antihypertensive agent usually controls blood pres-
sure in less than half of the patients. According to the INC7
guidelines, subjects with blood pressure >20/10 mmHg
above the normal range (i.e. >160/100 mmHg in adults)
should be started on combination drug therapy [13]. In
CKD patients, RAS antagonists are most commonly
combined with a diuretic or with a CCB, whereas their
combination with a beta-blocker usually does not exert an
additive effect on blood pressure control. Fixed-dose
combination preparations are becoming increasingly popu-
lar in antihypertensive therapy and may help maximize
treatment adherence and efficacy.

Combined RAS blockade using ACE inhibitors and
ARB concomitantly has only a minor effect on blood
pressure (3—4 mmHg vs. monotherapy) but increases the
antiproteinuric effect of ACE inhibitors or ARB mono-
therapy by 30-40% [64, 84-86]. The prospective random-
ized Combination Treatment of Angiotensin II Receptor
Blocker and Angiotensin-Converting-Enzyme Inhibitor in
Non-diabetic Renal Disease (COOPERATE) trial, per-
formed in adults with nondiabetic nephropathies, suggested
that combination therapy may also provide better long-term
renoprotection [64]. However, in most ACE inhibitor/ARB
combination studies, it remained unclear whether maximal-
ly efficient single-drug doses were used, a formal prereq-
uisite to demonstrate true synergism of the two drug
classes. The few published studies assessed the effects of
single-drug dose escalation followed by combined admin-
istration of an ACE inhibitor and an ARB at maximally
effective single doses found synergistic antiproteinuric
effects of combined treatment [87]. Otherwise, a recent
study demonstrated additional proteinuria reduction by
escalating candesartan exposure to an ultrahigh dose [88].
Notably, raising the dose from 16 to 32 mg daily had no
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effect on proteinuria, whereas a further increase from 32 to
64 mg was highly effective, suggesting that the dose—
response relationship may be nonlinear. Hence, the issue of
whether ACE inhibitor and ARB combination therapies
have a synergistic renoprotective potential remains an
exciting field of clinical research.

Restoration of blood pressure day—night rhythm

In view of the fact that nondipping of nocturnal blood
pressure is an independent risk factor for CKD progression,
effects of the timing of application of antihypertensive
drugs may be an issue of interest. Even using agents with a
long half-time and recommended administration on a once-
daily basis, evening administration lowers nighttime blood
pressure more effectively, increasing the day—night ratio
and partially restoring the physiological nocturnal dipping
pattern. However, these effects seem to differ for individual
antihypertensive drug classes. Whereas bedtime adminis-
tration of CCBs and ACE inhibitors tends to restore the
dipping pattern, evening dosing of beta-blockers has no
effect on the circadian blood pressure rhythm [89]. In a
substudy of the Heart Outcomes Prevention Evaluation
(HOPE) trial, adult patients were evaluated by ambulatory
blood pressure monitoring (ABPM) after evening adminis-
tration of the ACE inhibitor ramipril. A more marked blood
pressure reduction during nighttime was observed, compat-
ible with the notion that the beneficial effects of ramipril on
cardiovascular morbidity and mortality in the HOPE study
were related to the 8% increase in the day—night ratio of
blood pressure obtained with evening dosing [90]. Al-
though this association appears firm, it is as yet unclear
whether pharmacological restoration of the dipping pattern
will result in any long-term clinical benefit for cardiovas-
cular health in general and for renal function preservation in
CKD. However, it is of note that the antiproteinuric efficacy
of the ARB valsartan was found correlated with the
increase in blood pressure day—night ratio induced by
evening dosing [91].

Treatment of dyslipidemia

General measures to prevent dyslipidemia in CKD patients
include prevention or treatment of malnutrition and correc-
tion of metabolic acidosis, hyperparathyroidism, and
anemia, all of which may contribute to dyslipidemia [92—
94]. In addition, referring to evidence from the general
population, therapeutic life-style modification is recom-
mended for adults and children with CKD-related dyslipi-
demia [95]. However, the lipid-lowering effect of life-style
modifications in CKD patients is usually not impressive.
Lipid-lowering medical treatment is commonly prescribed
in adults with CKD based on the evident benefit of this

approach for primary and secondary prevention of cardio-
vascular disease in the general adult population. Statin
therapy is effective in reducing cardiovascular morbidity
and mortality in adults with moderate to severe CKD
although not in patients with ESRD [96, 97].

With respect to renoprotection, experimental evidence
suggests that statins may retard renal disease progression
not only by their lipid-lowering but also by lipid-indepen-
dent pleiotropic effects. Statins inhibit signaling molecules
at several points in inflammatory pathways. Anti-inflam-
matory effects, reduction of oxidative stress, and improved
endothelial function are thought to be partially responsible
both for CVD risk reduction and improved renal function
[98]. Furthermore, there is also evidence for synergistic
effects of statins and RAS inhibitors on the prevention of
renal disease progression [99]. However, a recent meta-
analysis of published clinical trials concluded that the
intrinsic antiproteinuric and renoprotective effects of sta-
tins, albeit significant, are quantitatively small [100]. To
date, no studies have evaluated the usefulness of statins in
children with progressive nephropathies.

Erythropoietin treatment

In rats undergoing acute ischemic renal injury, pretreatment
with recombinant human erythropoietin (thuEPO) reduces
renal dysfunction and morphological damage. This effect
appears to be mainly mediated by a reduction of apoptotic
cell death [101]. Darbepoetin, a long-acting EPO analog,
ameliorated podocyte injury and decreased proteinuria by
maintenance of the podocyte actin cytoskeleton and nephrin
expression in puromycin-induced nephrotic rats [102].
Even more interesting than treatment of acute renal failure
may be tissue protection in chronic renal failure. In a
recently published clinical trial, early initiation of rthuEPO
therapy in patients with CKD and mild to moderate anemia
significantly slowed down the progression of renal disease
and delayed the need for renal replacement therapy [103].
However, other data in patients with more advanced CKD
and high-dose rhuEPO treatment revealed no beneficial
effect on renal survival [104]. The role of EPO in pediatric
CKD progression has not been defined yet.

Nutrition and vitamin D supplementation

For decades, low-protein diets have been prescribed for
preventing CKD progression. However, the effects of these
diets on CKD progression and delay of ESRD are still
inconclusive. One of the largest trials, the MDRD trial,
could not prove efficacy of a low-protein diet on progres-
sion in nondiabetic kidney disease [105], whereas a recent
Cochrane Review [106] found a risk reduction of renal
death in patients with protein restriction. Thus, the
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progression rate was not significantly influenced by protein
restriction, whereas renal replacement therapy could be
postponed. In children, reducing protein intake to the
maximal acceptable lower limit was ineffective to slow
down renal disease progression [9, 107]. Further reductions
may be effective but not acceptable. Furthermore, thera-
peutic strategies of protein reduction in children may be
conflicting, since a low-protein diet bears the risk of low
calorie intake, whereas a high calorie intake is needed for
optimal growth. Therefore, at present, it seems not to be
justified to prescribe low-protein diets to children early in
the course of chronic renal failure.

Some studies in adult CKD patients suggest that dietary
phosphorus restriction may stabilize kidney function [108].
However, conclusions in this regard could not be drawn
from studies in children [109]. A high calcium—phosphorus
product may be detrimental to renal survival by aggravating
intrarenal vasculopathy as well as by causing tubulointer-
stitial calcifications, which may stimulate tubulointerstitial
inflammation and fibrosis. In view of these pathophysio-
logical associations, it is currently discussed whether
calcium-free phosphate binders may have some renopro-
tective potential in patients with CKD. Sevelamer may
prove beneficial beyond phosphate lowering due to its
pleiotropic effects, which include lipid-lowering and anti-
inflammatory properties. Treatment with nonhypercalcemic
doses of active vitamin D attenuates renal failure progres-
sion in chronically uremic rats. This effect may be brought
about by the immune modulatory and antifibrotic proper-
ties of vitamin D. In addition, a negative endocrine
regulation of the RAS through 1,25-Dihydroxyvitamin Dy
has been reported [110]. In humans, an antiproteinuric
effect of oral paricalcitol was demonstrated in adult CKD
patients [111]. These exciting experimental and early
clinical findings provide an additional rationale beyond
mineral metabolism for close monitoring and early inter-
vention to maintain mineral, vitamin D, and PTH homeo-
stasis in CKD [109].

Conclusion

In conclusion, hypertension and proteinuria are key players
in renal disease progression. Therapeutic strategies to
prevent progression should comprise blood pressure control
and lowering of proteinuria. RAS antagonists preserve
kidney function, not only by lowering blood pressure but
also through antiproteinuric and antifibrotic properties.
Other factors contributing to renal disease progression in a
multifactorial manner include anemia, dyslipidemia, and
disorders of mineral metabolism, and measures to preserve
renal function should therefore also comprise the mainte-
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nance of hemoglobin and serum lipid and calcium-
phosphorus ion product levels in the normal range.

Questions
(Answers appear following the reference list.)

1. Progression of chronic renal failure toward ESRD is
common in children with CKD and:

a. Declines linearly

b. Nonlinearly and often characterized by a sharp
decline in renal function during puberty

c. Inevitably

d. Strongly, depending upon the underlying renal
disease

e. Results in ESRD in less than 50% of patients at age
20 years

2. The most important factors influencing renal disease
progression are:

a. Age at onset of chronic renal failure, gender, and
underlying renal disease
b. Residual renal function and blood pressure
¢. Blood pressure and proteinuria
d. Rapid somatic growth during puberty, and age
3. The different antihypertensive drug classes are compa-
rable regarding:

Antihypertensive efficacy

Antiproteinuric efficacy

Side effects and safety profile

Effect on CKD progression

4. The antihypertensive and antiproteinuric effects of RAS
antagonists are:

aoe o

a. Strictly dose dependent

b. Basically mediated by reduction of systemic hy-
pertension

¢. Mediated by bradykinin release

d. Also mediated by antifibrotic and vasodilatory
effects

e. Due to restoration of the often disturbed day—night
blood pressure pattern (dipping) in CKD patients

5. Angiotensin receptor antagonists in children:

a. Are approved for the indication proteinuria and
hypertension

b. Do not exert additional antiproteinuric effect when
combined with ACE inhibitors

c. Should be given at the highest approved dose for
maximal antiproteinuric effect

. Should not be combined with ACE inhibitors
e. Have the same side effect profile as ACE inhibitors
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Decline of GFR:

a. Is independent of serum cholesterol level
b. Can be reversed by dietary protein restriction
c. Can be reversed by the use of statins in younger
children
. May be accelerated by prescription of erythropoietin
e. May be retarded by the lipid-independent pleiotro-
pic anti-inflammatory effects of statins
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