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Abstract: Cardiac Progenitor Cells (CPCs) show great potential as a cell resource for restoring cardiac
function in patients affected by heart disease or heart failure. CPCs are proliferative and committed to
cardiac fate, capable of generating cells of all the cardiac lineages. These cells offer a significant shift
in paradigm over the use of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes
owing to the latter’s inability to recapitulate mature features of a native myocardium, limiting
their translational applications. The iPSCs and direct reprogramming of somatic cells have been
attempted to produce CPCs and, in this process, a variety of chemical and/or genetic factors have
been evaluated for their ability to generate, expand, and maintain CPCs in vitro. However, the
precise stoichiometry and spatiotemporal activity of these factors and the genetic interplay during
embryonic CPC development remain challenging to reproduce in culture, in terms of efficiency,
numbers, and translational potential. Recent advances in biomaterials to mimic the native cardiac
microenvironment have shown promise to influence CPC regenerative functions, while being capable
of integrating with host tissue. This review highlights recent developments and limitations in the
generation and use of CPCs from stem cells, and the trends that influence the direction of research to
promote better application of CPCs.

Keywords: cardiac progenitor cells; induced pluripotent stem cells; transdifferentiation; direct
reprogramming; genetic engineering; cardiac tissue engineering; biomaterials

1. Cardiac Regeneration—A Problem to Solve or A Solution with Promise?

With morbidity rates associated with cardiovascular diseases in the decline in the developed
world from improved treatments and pharmacological intervention, scientists and clinicians have
been approaching therapies recently for these diseases with vigor. However, there is still no reliable
therapy for acute cardiac conditions like myocardial infarction (MI), which account for nearly half of
all cardiovascular deaths in the industrialized world [1,2]. Regenerative medicine-based strategies
for infarcted myocardium have shown promise in preclinical animal models as well as early clinical
trials [3]. Whilst these have demonstrated some physiological improvements in ventricular function,
they were associated with very low cell retention after some weeks, suggesting a paracrine effect of
transplanted cells rather than functional integration within the damaged tissue [4].

The heart was long viewed as a post-mitotic or terminally differentiated organ with no
ability to regenerate or repair, a dogma that has been challenged abundantly in recent years [5,6].
Cardiac regeneration, following injury, is still an unresolved debate over whether it is attributed
to dedifferentiation and proliferation of resident cardiomyocytes or from an inherent trigger in
differentiation of cardiac stem or progenitor cells in putative cell niches within the heart [7–11].
The turnover of cardiomyocytes in the adult heart is around 1% per year which is insufficient to counter
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the loss caused by MI that can lead to loss of around 1 billion cardiomyocytes [12]. Therefore, the only
long-term solution relies on heart transplantation, but this does not come without its own issues such as
insufficient number of donors coupled with the requirement for a life-long immunosuppressive therapy.
This catapulted research towards cell-based therapies for cardiac regeneration [13]. Cardiomyocytes are
the main cardiac cell type that is lost in cardiovascular disorders, like heart failure, myocardial infarction,
and ischemia, and therefore, replacing these cells could potentially restore heart function. However,
transplanting cardiomyocytes to repair diseased hearts has shown to yield only transient responses
as most cells are eventually lost in the host environment [14,15]. This is because cardiomyocytes
have very limited proliferative ability and as a result, they are unable to repopulate and replenish
the damaged tissue efficiently [16,17]. Furthermore, other cell types like smooth muscle cells, and
endothelial cells can suffer from collateral damage and their functional renewal is vital for effective
heart regeneration [18]. This puts emphasis on the role of a precursor cell type capable of extensive
expansion and differentiation into the key cell players of cardiac regeneration.

Even though some level of cell turnover has been observed in the adult heart, cells with self-renewal
or potency capabilities are generally considered lacking in this tissue [19]. Nevertheless, several studies
report the evidence of a progenitor population from resident cardiac stem cells (CSCs) in the heart,
called Cardiac Progenitor Cells (CPCs) [20–23]. In contrast to terminally differentiated cardiomyocytes,
CPCs are highly proliferative and can theoretically differentiate into all the necessary cardiac cell types
for effective reconstitution of damaged cardiac tissue and promoting its neovascularization [14,18,20,
21,24–31]. Therefore, CPCs present a more effective cell source than cardiomyocytes for cell-based
regenerative strategies. However, the application of CPCs has not been straight-forward particularly
in chronic infarcts, where CPCs are associated with senescence, decreased telomerase activity and
increased apoptosis [7]. Cell therapy using CPCs generally involve transplantation of in vitro-expanded
CPC populations which in turn yield mild improvements in cardiac function [32]. However, long term
prognosis with such therapies are poor owing to reduced cell viability and inefficient engraftment into
the host tissue. This is compounded by the somewhat hostile microenvironment created by MI, from
scar formation and associated inflammatory or tissue alterations, which compromises the effectiveness
of such therapies [33–35]. There are also reports that the administration of CPCs predisposed the risk
of cardiac arrhythmias and teratoma formation [36]. Therefore, better understanding of the CPC cell
behavior in dynamic pathophysiological microenvironments could aid in developing strategies to
optimize their contribution to cardiac repair.

Various approaches have been developed to generate CPCs ex vivo, in the hope of obtaining
reliable source of cells that can trigger mechanisms of cardiac regeneration. For example, CPCs from the
heart tissue (also known as putative CPCs) can be isolated and expanded in vitro [27,37–40]. However,
such cells are hard to access and are present in low numbers in the tissue, making them extremely
challenging to harvest and realize their potential [41]. Pluripotent stem cells, such as embryonic stem
cells (ESCs) and induced pluripotent stem cells (iPSCs), are thought to be a superior alternative cell
source since they could potentially provide an unlimited supply of cardiac progenitor cells. However,
ESC-based therapy faces several challenges like immunogenicity, high risk of tumor formation and
the characteristic ethical concerns, which have prevented their clinical application [42,43]. On the
other hand, iPSCs avoid the ethical issues associated with ESCs and allows for the development of
patient-specific derived CPCs, which represents an advantage over other cell sources in the creation
of immune-compatible cardiac therapies [44,45]. However, with issues surrounding the safety of
iPSC-based therapies, in terms of the potential risk of tumor formation associated with such therapies
or immune rejection of iPS-derived cells from a common donor, scientists are looking at reprogramming
from a different perspective [46–48]. Reprogramming patient somatic cells into other cell types,
bypassing the step of stem cell generation, can potentially overcome issues with translating iPSC
technology. This process is known as direct cellular reprogramming or transdifferentiation, and might
represent a more robust approach to rapidly generate sufficient numbers of CPCs from somatic cells
for therapy [49].
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This review focuses on the ongoing progress and limitations in generating CPCs from iPSCs and
through direct reprogramming. It will start by providing a concise introduction about the various
cardiac progenitor cells identified in embryonic and adult heart tissues. The review will then move
towards discussing reprogramming approaches that were successful in generating CPCs and the
functionality of these CPC-derived cells. Strategies to improve efficiencies of current protocols and
tissue engineering advances to mimic CPC microenvironment and in vivo applications of CPCs will
also be evaluated. Finally, the review will finish with a summary of existing challenges and limitations
and future directions for CPC research, hopefully convincing readers it is a promising strategy for
cardiac regeneration (Figure 1).
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Figure 1. The interplay between genetics and biomaterials for understanding Cardiac Progenitor
Cells (CPCs) biology, function, and its regenerative applications. eCPCs (endogenous CPCs), rCPCs
(reprogrammed CPCs), iPSCs (induced Pluripotent Stem Cells), SPs (Side Population-derived CPCs),
CSs/CDCs (Cardiospheres/Cardiosphere-Derived Cells), EDPCs (Epicardium-derived CPCs), FHF/SHF
(First Heart Field-/Second Heart Field-derived CPCs) CMs (Cardiomyocytes), SMCs (Smooth Muscle
Cells), ECs (Endothelial Cells).

2. Cardiac Progenitor Cells (CPCs) In Vivo

Progenitor cells are distinct from embryonic stem cells as they have a predetermined differentiation
fate and therefore, their ability to self-renew and differentiate into other cell types is restricted [19].
CPCs generate cells of the three cardiac lineages: cardiomyocytes, smooth muscle cells and endothelial
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cells. These cells are also responsible for the maintenance of cardiac homeostasis under physiological
and pathological conditions [50]. Several studies have identified and isolated multiple CPC populations
from distinct stages of cardiac development and heart locations. These cells are collectively characterized
according to their cell surface and genetic marker expression profiles. The various CPCs reported to
date are described below and their specific features are summarized in Table 1.

2.1. c-KIT-Expressing CPCs

The first-ever detected CPCs were isolated from female rats and were characterized by the
expression of the stem cell surface marker c-KIT [28]. These CPCs are present throughout the ventricular
and atrial myocardium, particularly in the atria and the ventricular apex [28]. These progenitor cells
also express the cardiac transcription factors NKX2.5, GATA4, and MEF2C, and are negative for
hematopoietic lineage markers, such as CD45, CD34, CD3, CD14, CD16, CD19, CD20 and CD56 [50–52].
They are self-renewing, clonogenic and are able to differentiate into the three cardiac cell types
in vitro and in vivo [28,53]. The c-KIT receptor binds to the Stem Cell Factor (SCF) which leads to the
activation of the signaling pathways Phosphoinositide 3-kinase/Protein Kinase B (PI3K/AKT) and p38
Mitogen-Activated Protein Kinase (MAPK) [54,55]. These pathways regulate a variety of CPC functions
like self-renewal, proliferation, survival, and migration [54–57]. Even though c-KIT CPCs contribute to
the generation of cardiomyocytes at earlier stages of embryonic development and right after birth,
this ability is mostly lost in the adult heart and very low percentages of new cardiomyocytes seem to
originate from these CPCs [58–60]. Therefore, the improvement of cardiac function by c-KIT CPCs
might be a result of paracrine factors rather than the production of de novo cardiomyocytes [58,61].
Furthermore, c-KIT expression is considered necessary but not sufficient to define CPCs [62].

2.2. SCA1-Expressing CPCs

Another CPC population present in adult hearts expresses the Stem Cell Antigen 1 (SCA1).
The cells were first identified in adult mouse hearts [11] and are predominantly located in the atrium,
the intra-atrial septum, the atrium-ventricular boundary and scattered within the epicardial layer [37].
SCA1 is a cell surface protein of the Ly6 gene family and it was initially used to isolate hematopoietic
stem cells [63]. Additionally, SCA1 is widely expressed by stem and progenitor cells from a variety
of tissues, including the heart, and it has roles in cell survival, proliferation and differentiation [63].
Several studies have shown that SCA1 CPCs are negative for hematopoietic lineage markers and
are able to differentiate into the three cardiac lineages [11,64]. These CPCs also have the ability of
homing in response to injury and contribute to neovascularization in vivo [11,65,66]. Although this
CPC population seems promising for cardiac regeneration, their translational relevance is not without
caveats. First, all the SCA1 CPC populations identified to date display different gene expression
profiles and distinct differentiation potential [37,66–71]. In addition, several studies have shown that
the benefits resulted from the transplantation of these CPCs might be predominantly due to paracrine
mechanisms as these cells differentiate into cardiomyocytes with very low efficiency [66,68,70,71].
Finally, SCA1 is only present in murine cells and a human ortholog of SCA1 has yet to be identified [63].
Therefore, the nature of the epitope target of SCA1 in humans and the nature of regeneration of the
associated CPC population have yet to be determined.

2.3. MESP1/2-Expressing CPCs

During the development of mesoderm, embryonic cells express the transcription factor Mesoderm
Posterior Protein 1/2 (MESP1/2), which is essential for proper cell migration [15,72–74]. MESP1/2
expression marks the first step in the commitment of the nascent mesoderm into the myocardial
lineages, and it describes the first population of multipotent cardiac progenitor cells that produce
the various cardiac cell types of the heart [72,75]. Although MESP1/2 CPCs show increased cardiac
potential, in comparison to other CPC types, they are not irreversibly committed to the cardiac fate [76].
Consequently, there is a possibility that these cells will differentiate into derivates of the paraxial
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mesoderm and skeletal muscle [77,78]. Furthermore, MESP1/2 is only transiently expressed during
embryonic development, which increases the difficulty of tracking the expansion and differentiation of
the CPCs [79,80].

2.4. KDR/FLK1-Expressing CPCs

During cell movement from the primitive streak to the anterior regions of the embryo, the
precardiac mesodermal cells start to express a receptor for Vascular Endothelial Growth Factor (VEGF)
called KDR/FLK1 [20,81]. These FLK1-expressing progenitor cells have the ability to generate cells from
both hematopoietic and cardiac lineages [20,81–83]. Selection between these two lineages is determined
by the levels of FLK1 activity [81]. For example, high expression of FLK1 promotes differentiation
towards hematopoietic lineages, whereas low or absent FLK1 expression stimulates cells to follow
the cardiac fate [81,82]. These negative FLK1-expressing cells further generate a second FLK1+ cell
population that represents the first multipotent cardiac progenitor cells that are permanently committed
to the cardiogenic fate [20,29]. Because KDR/FLK1 displays a broad expression, it is frequently used in
combination with other cardiac markers, such as Platelet-Derived Growth Factor-alpha (PDGFRα),
C-X-C chemokine Receptor type 4 (CXCR4) and sometimes MESP1/2, to enrich for CPCs [79,80].

2.5. CPCs from the First and Second Heart Fields

The cardiac mesoderm contains two unique progenitor cell pools that give rise to the primary and
secondary heart fields [20,22]. The two fields develop sequentially and display distinctive molecular
profiles that lead to the formation of different heart components. CPCs of the first heart field (FHF)
express the transcription factor NKX2.5, whereas CPCs from the second heart field (SHF) express the
transcription factor ISL1 [15,22,40,75,84]. FHF-derived CPCs are more difficult to isolate owing to a
lack of unique markers except for NKX2.5 [84]. The hyperpolarisation-activated nucleotide-gated
cation channel HCN4 has been suggested as an additional marker for FHF, however, this marker
might isolate a more restricted CPC that preferentially generates cells of the conduction system [85–87].
Regardless of the markers, FHF-CPCs predominantly differentiate into cardiomyocytes and have some
tendency towards smooth muscle lineages [21]. On the other hand, ISL1 CPCs can generate cells of all
the three cardiac lineages and they are responsible for producing most of the cardiomyocytes (around
40%) during heart development [22,30,40]. In addition, these CPCs have also been identified in the
adult heart, specifically in the outflow tract, atria and right ventricle [30,40].

2.6. Epicardium-Derived CPCs

Several studies have demonstrated that a specific CPC population present in the postnatal and
adult heart is derived from the epicardium. They express the transcription factor Wilms tumor 1
(WT1) and are originally derived from CPCs of the second heart field [88]. Additionally, these CPCs
emerge from epicardial cells that migrate into the myocardium and undergo epithelial-to-mesenchymal
transition (EMT) [88,89]. The epicardial-derived CPCs can differentiate into several different cell
types such as coronary smooth muscle cells, cardiomyocytes, endothelial cells, perivascular and
cardiac interstitial fibroblasts, albeit with varying efficiencies [51,88–93]. Even though WT1 CPCs
could potentially be an additional cell source for cardiac regeneration, these cells seem to share
some characteristics with c-KIT CPCs: they participate in cardiomyocyte formation during cardiac
development but are present at extremely low levels in the adult heart [9,88,90,92]. Stimulatory factors
like peptide thymosin beta 4 (Tβ4) can potentially reactivate the developmental program of adult
epicardial cells, however, the reactivated cells still exhibit distinct phenotype from their embryonic
counterparts, raising doubts about their cardiogenic potential [92].

2.7. Side Population-Derived CPCs

Side populations (SPs) have been detected in various tissues, including the heart, and are enriched
for stem and progenitor cell activity [38,94–98]. These cells are generally identified in vitro by their
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ability to export the DNA Hoechst dye from their nuclei when stained [94,95]. This dye efflux is
performed by an ATP (Adenosine Triphosphate)-binding cassette transporter (also known as ABC
transporter protein) that is present in their cellular membranes [94,95]. The phenomenon causes the
side population cells to contain much lower concentrations of the dye in their nuclei compared to other
cell types, allowing for their isolation using cell sorting techniques [95]. The main ABC transporter
protein used to identify cardiac SPs is the ABCG2, which was demonstrated to have a role in stem
cell proliferation and differentiation and is expressed in SP cells during early development and in
the postnatal heart [38,94,95,99]. These cardiac SPs can be found in the perivascular and interstitial
areas of the heart, and display self-renewal, homing and multipotency [94,97,100–102]. Noseda et al.
(2015) demonstrated that cardiac SPs, co-expressing SCA1 and PDGFRα, displayed high clonogenicity
and multilineage potential [103]. They particurlaly demonstrated that clones derived from cardiac
SPs subjected to long-term propagation (more than 10 months and 300 doublings) still resembled
freshly isolated SP cells, showing maintainance of phenotype, self-renewal and tri-lineage capacity
and absence of replicative senescence. However, cardiac SPs exhibit a few disadvantages that could
potentially prevent their clinical application. For instance, the differentiation potential of human SPs
has not been thoroughly investigated [38]. In addition, the multipotency of SPs might be attributed to
their heterogeneous nature as they are composed of several subpopulations with distinct differentiation
potential (cardiac, hematopoietic and mesenchymal) [38,104]. Therefore, it is still inconclusive on
which markers can predict the SP subpopulation with the best cardiac potential.

2.8. Cardiosphere-Derived CPCs

Cardiospheres contain a mixture of stromal, mesenchymal and progenitor cells that are isolated
from human heart biopsy cultures [39,52]. They represent a niche-like environment containing a
mixture of cells, with cardiac-committed cells in the center and supporting cells, such as mesenchymal
and endothelial progenitor cells, in the periphery of the spherical cluster [105,106]. Many cells can
be harvested from these cell clusters and they are called cardiosphere-derived cells (CDCs) [52,105].
However, like in the case of c-KIT and epicardial CPCs, the regenerative potential of CDCs is
questionable as it has been shown that cardiac repair by these cells mainly results from paracrine
mechanisms rather than cell generation [105].
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Table 1. Types of CPCs identified in the heart tissue.

CPC Type Marker Expression Differential Potential Functionality of the Differentiated
Cells Applied to Disease In Vivo Concerns Ref.

c-KIT

Ki67+

NKX2.5+

GATA4/5+

MEF2C+

TBX5+

CD45−

CD34−

CD31+/−

-Differentiation trend
towards CMs *, **
-Few fibroblasts *
-ECs *

In vitro:
-Atrial and ventricular CMs and cells
of the conduction system *
-CMs show a disorganized structure,
no sarcomeres, and smaller size than
their adult counterparts *, **
In vivo:
-CMs couple with host cells and
display spontaneous beating and
striated structures *, **

-Formation of structural and
functional CMs and
contribution to coronary
vessels in MI rats **
-Reconstitution of a myocardial
wall that encompassed up to
70% of LV in MI rats ***

-CPC population is heterogeneous with cells at distinct
stage of differentiation and with different commitment
to the cardiac lineages *, **
-Differentiated cells show an immature phenotype *, **
-No consensus regarding the regenerative capability of
c-KIT CPCs and their lineage marker expression *, **
-Distinct differential potential between neonatal and
adult c-KIT+ CPCs and between species *, **
-Benefits are mainly a result of paracrine factors *, **

[21,27,28,31,53,
58,59,107,108]

SCA1

ISL1+

c-KIT+/−

PDGFRα+

CD105+

CD90+

CD44+

GATA4+

MEF2C+

NKX2.5+/−

TEF-1+

CD31+/−

CD34−

ABCG2+

-CMs, SMCs, and
ECs *, **
-Foetal SCA1+ CPCs tend
to differentiate into ECs,
whereas adult CPCs have
more efficiency towards
CMs **

In vitro:
-CMs display spontaneous beating,
myofilaments and expressed
connexin 43 *, **
-Immature CMs and SMCs *, **
-ECs form tube-like structures *, **
-Foetal SCA1+ CPCs exhibit more
spontaneous beating than adult
SCA1+ CPCs **
In vivo:
-ECs contribute to capillaries and
CMs display defined striated
structures *

-Knockdown of SCA1 led to
larger LV volume, increased
infarct rate and limited
angiogenesis in MI mice *
-SCA1+/CD31− cell population
numbers increased in the LV
following MI *
-Transplantation of
SCA1+/CD31− in MI mice
attenuates adverse LV
remodeling *

-No human homolog of SCA1 identified **
-SCA1 does not discriminate between proliferating and
differentiating cells *, **
-SCA1+ CPCs represent a heterogeneous population
with subpopulations displaying different lineage
potential *, **
-Distinct potency between neonatal and adult SCA1+

CPCs **
-Differentiation into CMs requires co-culture with
adult/neonatal CMs **
-Benefits are mainly a result of paracrine factors *, **

[11,21,37,64–67,
69,70,109]

KDR/FLK1low/−

T+

MESP1+

c-KIT−

GATA4+

TBX5+/

NKX2.5+/−

CD31+/−

SL1+/−

SMA+

PDGFRα+

-Highest efficiency for
SMCs, followed by CMs
and then ECs *, **
-KDR+/CXCR4+ has
better efficiency towards
CMs *

In vitro:
-CMs display spontaneous
Beating *, **
-Predominantly atrial and ventricular
CMs **
-Few pacemaker and conduction
system cells *
-Electrical coupling is observed **
-ECs display LDL-uptake capacity **
-ECs and SMCs form tube-like
structures **
In vivo:
-Human ESC-derived KDR+ CPCs
differentiate into CMs and ECs **

-Human ESC-derived KDR+

progenitors increased ejection
fraction in infarcted hearts of
NOD/SCID mice **

-Hematopoietic tendency *, **
-FLK1/KDR marks two populations with distinct
cardiac potential that develop at different temporal
stages of mesoderm differentiation *

[20,29,79,82,110]
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Table 1. Cont.

CPC Type Marker Expression Differential Potential Functionality of the Differentiated
Cells Applied to Disease In Vivo Concerns Ref.

MESP1/2

SSEA1+

OCT4+

T+

KDR+

ISL1+

TBX5/6/18/20+

GATA4/6+

NKX2.5+

MEF2C+ MYOCD+

PDGFRα/β+

CXCR4+

WNT8A+

FGF8+

HAND2+

-More efficiency towards
SMCs and ECs *, **
-Some CMs *, **

In vitro:
-Formation of ventricular CMs *
-CMs express sarcomeric structures
when co-cultured with human
cardiac fibroblasts and CMs **
In vivo:
-CMs display organized myofibrillar
striations and express CX43, and
SMCs and ECs form tube-like
structures and contribute to
neovasculogenesis *

-Murine ESC-derived MESP1
CPCs decreased LV-EDV, scar
size, and improved LV ejection
fraction, stroke volume and
cardiac function in MI mice
hearts *

-Not fully committed to the cardiac lineages *, **
-Not thoroughly investigated as CPCs *, **
-MESP1 marks a mixed population of CPCs with
different multilineage differentiation potential *, **
-MESP1 CPC might be a subset of KDR+/PDGFRα+

cells *, **
-MESP1 is transiently expressed, making it difficult to
track the expansion and differentiation of the CPCs *, **

[72,76,79,80,111]

From First
Heart Field

(FHF)

NKX2.5+

HAND1+

TBX5+

HCN4+

-More efficiency towards
CMs *, **
-Some SMCs *, **

In vitro:
-Atrial, left ventricle and conduction
myocytes *, **
-Presence of both mature and
immature CMs *
-Some spontaneous beating *, **
-Most CMs display a ventricular-like
action potential *
-Some atrial-like and nodal-like
action potentials are formed *
In vivo:
-ESC-derived CPCs differentiate into
SMCs and CMs, which display
beating and form myofibrils *

-Not yet applied in vivo in a
disease context

-Difficult to identify and characterized due to lack of
markers *, **
-FHF have limited potency *, **
-Not thoroughly investigated as CPCs *, **

[21,84–86]

From Second
Heart Field

(SHF)

ISL1+

c-KIT−/+

NKX2.5+/−

TBX1+

GATA4+

KDR+/−

FGF8/10+

FOXH1+

MEF2C+

WT1+

-Majority to CMs,
including pacemaker *, **
-Some cardiac fibroblasts,
SMCs and ECs *, **
-ISL1+/KDR+ into ECs
and SMCs *
-NKX2.5+/ISL1+ into CMs
*, **
-NKX2.5+/KDR+ into
SMCs *

In vitro:
-Remarkable contribution to the
sino-atrial node *
-Only a few towards
atrial-ventricular node *
-CMs exhibit synchronized calcium
transients *
In vivo:
-Contribution to the coronary arterial
system *
-SMCs are in the most proximal
outflow tract *
-ESC-derived ISL1+ CPCs
differentiate into pacemaker and
ventricular CMs, SMCs and ECs *
-Knockdown of ISL1 led to a
reduction in cardiac tissue formation
and affects CPC proliferation,
survival and migration *

-Not yet applied in vivo in a
disease context

-Majority of contribution to the conduction system is
restricted to the sino-atrial node *
-EC and SMC contribution is limited to the proximal
area of the great vessels *
-Embryo-derived SHF show a significant reduction in
differentiation into CMs and tripotency was rare *

[22,30,40,83,84,
112,113]
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Table 1. Cont.

CPC Type Marker Expression Differential Potential Functionality of the Differentiated
Cells Applied to Disease In Vivo Concerns Ref.

Epicardial-derived

WT1+

TBX18+

SLUG
RALDH2

SCA1+

PDGFRα+

-Vascular SMCs *, **
-CMs under certain
in vitro conditions *, **
-Some cardiac fibroblasts
(perivascular and
interstitial) *, **

In vitro:
-SMCs and fibroblasts *,**
-Atrial and ventricular CMs, with
striated cytoarchitecture,
spontaneous contraction, native
calcium oscillations and electrical
coupling *
In vivo:
-SMCs contribute to the coronary
arteries *
-Differentiation into fibroblasts,
SMCs and coronary endothelial cells;
CMs can be formed when subjected
to the stimulation of exogenous
factors *

-Epicardial-derived CPCs
increased vessel formation and
stimulate angiogenesis in
murine MI models *
-Epicardial-derived CPC
conditioned medium reduced
infarcted size and improved
heart function in MI mice
models *,**
-Priming of the epicardium
with Tβ4 prior to injury led to
enhanced migration of
epicardial-derived CPCs and
generation of CMs in MI mice *

-Epicardial-derived CPCs descend from NKX2.5-and
ISL1-expressing cells *, **
-No EC differentiation *, **
-Epicardial-derived CPCs are difficult to culture in
Vitro *, **
-No consensus about the level of contribution of the
epicardium in cardiac repair *,**

[88–91,114–117]

Side
Population

(SP)

ABCG2+

SCA1+

CD34+/−

CD31+/−

c-KIT−

NKX2.5+/−

GATA4+/−

MEF2C+

CD45−

VE-cadherin−

-Fibroblasts & SMCs *, **
-SCA1+/CD31− SPs into
CMs *
-SCA1+/CD31+ SPs +
VEGF into ECs *
-CD45− SPs into ECs *

In vitro:
-CMs show spontaneous beating and
striations on staining *
-Electrical coupling is observed when
SPs are co-cultured with adult CMs *
In vivo:
-Differentiation into CMs, forming
striated sarcomere structures, SMCs,
ECs, and fibroblasts *, ***

-Cardiac SP numbers are
significantly increased,
particularly in the left ventricle,
following acute ischemia **
-Myocardial injury facilitated
migration and homing of
cardiac SPs *, ***

-Hematopoietic differentiation tendency *
-Low percentage of CMs reach advanced maturity *, **
-Contradictory results between different studies on the
maturity of the SP-derived CMs *, **
-SPs represent an extremely heterogeneous population *
-Complete differentiation requires both cell-intrinsic
and -extrinsic factors *

[38,94,96,97,100–
102,104,118]

Cardiosphere
(CS)-derived
cells (CDCs)

KDR+

c-KIT+

SCA1+

CD34+/−

CD45−

CD133−

NKX2.5+

GATA4+

ISL1+

CD105+/CD31+/
CD90+/c-KIT−

supporting cells

CMs, SMCs &
ECs *, **

In vitro:
-CMs display spontaneous beating,
but lack sarcomeric structure *
-Differentiation into ECs and SMCs
with VEGF treatment *, **
In vivo:
-Differentiation into SMCs and ECs,
some potential towards CMs
lineages *, **
-Formation of tubular-like structures
*

-Transplantation of CDCs/CSs
improved cell survival,
engraftment and LV ejection
fraction, stimulated
angiogenesis, inhibited adverse
LV remodeling and reduced
infarct size in the infarcted
mice **

-Human CSs/CDCs require co-culture with adult CMs
to stimulate contraction and advance maturity **
-Stemness decreases in monolayer cultures **
-CSs/CDCs represent a mixed cell population *, **
-Benefits result from paracrine factors *, **
-Low CDC engraftment and differentiation efficiency **
-Different markers used, which isolate cells with
distinct differentiation potential *, **

[39,106,119,120]

CMs: Cardiomyocytes; SMCs: Smooth Muscle Cells; ECs: Endothelial Cells; MI: Myocardial Infarction; LV: Left Ventricle; EDV: End-Diastolic Volume; LDL: Low Density Lipoprotein;
ESC: Embryonic Stem Cell; NOD/SCID: Non-Obese Diabetic/Severe Combined Immunodeficient; VEGF: Vascular Endothelial Growth Factor; *, Mouse; **, Human; ***, Rat.
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3. Generation of CPCs from Human iPSCs

Native CPCs are present in very low numbers in the heart tissue, and therefore, a larger source of
cells is required for efficient cardiac regeneration [41]. The reprogramming of human adult somatic
cells into embryonic stem cell-like cells (known as iPSCs) using defined factors opened new possibilities
for the generation of patient-specific pluripotent cells. In turn, human iPSCs could potentially offer an
unlimited source of differentiated cells and in the process, offer the chance to recreate the development
process of CPCs in vitro [121]. This section will provide a detailed description and assessment of
current methods used to induce, expand and maintain CPCs derived from iPSCs.

Several techniques have been developed to modulate cardiac differentiation in iPSCs (Table 2).
However, the efficiencies for cardiac differentiation can vary considerably between iPSC lines [121–124].
Regardless of the type of culture employed, the first step in all protocols involves the dedifferentiation
of a chosen cell type into a pluripotent state using conventional reprogramming factors, such
as OCT4, SOX2, KFL4 and c-MYC [44,45]. Once pluripotency has been achieved, the following
step is to induce cardiac differentiation of the iPSCs. Different methods have been employed to
accomplish differentiation of iPSCs into cardiomyocytes: embryoid body (EB); monolayer-based
cultures supplemented with growth factors, serum or small molecules, matrices, and co-culture with
visceral endodermal stromal (END2) layers [15,122,125]. Recent protocols utilise a monolayer culture
with a serum-free medium, such as mTeSR1 or E8 medium, which maintains iPSC pluripotency and
self-renewal in a feeder-free culture [126,127]. Unfortunately, these studies predominantly focused
on the generation of iPSC-cardiomyocytes and not necessarily the homogeneity of CPC population
entering the cardiac lineages.

In addition to the nature of the pluripotent culture employed, the type and timing of growth
factors and/or small molecules added throughout the protocol affects cardiomyocyte differentiation
efficiency. Early differentiation protocols only employed growth factors that modulate key signaling
pathways involved in cardiomyogenesis, like Bone Morphogenic Protein (BMP), Activin/Nodal and
Fibroblast Growth Factor (FGF) signaling pathways [15,128]. Such factors included Activin A, BMP2/4
and FGF2 which induce cardiac mesoderm formation in iPSCs [15,29,122,128,129]. Lian et al. (2012)
demonstrated that iPSC differentiation towards cardiac lineages could be accomplished by exclusively
using small molecule modulators of the Wingless (WNT) signaling pathway [130]. Minami et al. (2012)
also showed that combining analogous WNT modulators during the early and middle stages of the
cardiac differentiation process can further enhance the protocol’s efficiency [131]. Many protocols rely
on adding a Glycogen Synthase Kinase (GSK3) inhibitor, such as CHIR99021 (CHIR), to the medium for
24 h to activate the canonical WNT signaling [126,130,132]. Induction of the canonical WNT signaling
stimulates the expression of the mesoderm marker Brachyury (T) in undifferenced iPSCs, initiating
mesoderm induction [126,132]. Once T+ cells have been established, the WNT signaling is then
suppressed to direct the mesodermal cells towards the cardiac fate [126]. Several inhibitory molecules
can be used, like XAV939, inhibitor of WNT production (IWP), inhibitor of WNT response (IWR) or
an exogenous β-catenin small hairpin RNA (shRNA). After 3/4 days of WNT signaling suppression,
iPSC-derived T+ mesodermal cells begin to express cardiac transcription factors, like NKX2.5, ISL1,
FLK1, and PDGFRα, which transitions into the CPC population.

More recent studies have been successful in generating CPCs from iPSCs using a single
small molecule, potentially reducing costs, time and labor. For instance, the immunosuppressant
cyclosporin-A (CSA) was shown to stimulate differentiation of FLK1-positive mesodermal cells into
FLK1+/CXCR4+/VE-cadherin− CPCs and cardiomyocytes [133,134]. When CSA was added to the
medium, the CPC and cardiomyocyte yield was 10 to 20 times higher compared to untreated cells.
Additionally, the generated cardiomyocytes exhibited molecular, structural and functional properties of
adult cardiomyocytes. However, additional factors and/or other protocols may be required to produce
cells from the other cardiac lineages as FLK1+/CXCR4+/VE-cadherin− CPCs have an exceptionally
low endothelial potential and cannot differentiate into smooth muscle cells [110,133]. Furthermore,
the study used co-culture with END2 cells to induce cardiac differentiation in iPSCs, which prevents
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reproducibility of the protocol due to the presence of END2-derived growth factors at unknown
concentrations [135]. Another study also demonstrated that treating human iPSCs with the cardiogenic
small molecule isoxazole (ISX-9) for 7 days stimulated the expression of CPC markers [136]. These CPCs
expressed NKX2.5, GATA4, ISL1, and MEF2C and were able to generate cardiomyocytes, smooth
muscle cells and endothelial cells under basal differentiation conditions. Furthermore, ISX-9 seems to
modulate key signaling pathways involved in cardiomyogenesis, like VEGF, Activin A and canonical
and non-canonical WNT signaling. The study also demonstrated that the small molecule might
participate in CPC generation by upregulating activators involved in both canonical and non-canonical
WNT pathways in a temporal and sequential manner (WNT3A at day 3 and WNT5A and WNT11 at
day 7, respectively).

Therefore, the application of iPSC technology in CPC research has great prospects for improving
current cardiac regeneration approaches through the development of novel cell therapies, disease
models and drug screens. However, most studies using iPSCs in cardiac regeneration predominantly
focus on producing cardiomyocytes and improving their maturation [15,126,130,137–142]. Current
knowledge about associating this with the generation of iPSC-CPCs, however, remain limited.
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Table 2. Protocols producing CPCs as target cells or as intermediate cells from iPSCs.

Protocol CPC-Associated
Markers

Identified

CPCs as Target or
Intermediate

Differentiation and Functionality Potential Limitations Ref.
Pluripotent Culture Mesoderm

Differentiation Cardiac Specification

Mouse iPSCs on
feeder-layers and human

iPSCs in hESC culture
medium without bFGF

Differentiation medium with 20% FBS +
gelatin-coated plates + AA between day 2 and 6

NKX2.5+

TBX5+

& FLK1+

CXCR4+

Intermediate -Synchronous beating and better-organized
striated myofilaments in CMs

-AA is not able to promote
mesodermal differentiation and CM
proliferation
-No reports on CPC potential into
SMCs and ECs

[143]

Human iPSCs in
monolayer culture

(mTeSR1 +
Matrigel-coated plates)

ROCK inhibitor (Y27632) for 1 day and
DMEM/F12/B27-vitamin A + BMP4 + AA +

CHIR for 3 days

SSEA1+

MESP1/2+

ISL1+
Target

-Differentiation into the three cardiac lineages
under specific differentiation media
-80% efficiency towards CMs, and 90% into
SMCs and ECs
-Synchronized beating and presence of
organized sarcomeric structures

-Both early and late CPC-related
markers were co-expressed in the
generated CPCs
-Repeated passaging leads to a
decrease in CPC proliferation rate
-Only one iPSC line was tested

[144]

Human iPSCs on
inactivated MEFs

followed by feeder
depletion culture in

Matrigel

BMP4 for 3 days and
+/− Activin A + bFGF
from day 1 until day 3

DKK1 + VEGF + SB
+/−

Dorsomorphin/Noggin
at day 3

KDR+

PDGFRα+ Intermediate -Low yield of CMs (11%)

-iPSC line variability affects
protocol’s efficiency and optimal
growth factor concentrations
-Presence of the CPC population does
not always predict efficient
differentiation to CMs

[128]

Mouse iPSCs in DMEM
with 15% FCS on feeder

layers

Differentiation
medium with 10%

FCS + type IV
collagen-coated

dishes/OP9 cell sheets
for 96–108 h

FLK1+ mesodermal
cells co-cultured on

OP9 cells +
differentiation

medium +
cyclosporin-A

FLK1+

CXCR4+

VE-cadherin−

Target -Synchronous beating
-Pacemaker and ventricular action potentials
-Myofilaments formation with transverse
Z-bands
-Presence of ion channels (Cav3.2, HCN4 and
kir2.1) and intercalated disks

-CPCs were only isolated from mouse
iPSCs
-Differentiation efficiency was
different for various iPSC lines
-Incomplete human CM maturation

[133]

Human iPSCs on SNL
feeder cells and

Matrigel-coated plates

Co-culture on END-2 cells + cyclosporin-A at
day 8 Target

Human iPSCs on
inactivated MEFs with
KO-DMEM medium

Serum-free medium (RPMI/B27) + BMP2 +
SU5402 for 6 days

OCT4+

SSEA1+

MESP1+

TBX5+

TBX6+

TBX18+

GATA4+

MEF2C+

NKX2.5+

ISL1+

TBX20+

Target

-Differentiation towards CMs, SMCs and ECs
under specific conditions
-Arranged sarcomeric organization and gap
junctions when CPCs were co-cultured with
either fibroblasts + FCS, cardiac fibroblasts +
CMs or conditioned medium
-Trend towards ventricular CMs

-Only one iPSC line was tested
-SSEA1+ CPCs can differentiate into
multiple cardiac lineages, like FHF,
SHF, epicardium and cardiac neural
crest in the presence of FGF signals

[145]
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Table 2. Cont.

Protocol CPC-Associated
Markers

Identified

CPCs as Target or
Intermediate

Differentiation and Functionality Potential Limitations Ref.
Pluripotent Culture Mesoderm

Differentiation Cardiac Specification

Murine iPSCs on
inactivated MEFs

Feeder-free culture on
gelatin-coated plates +

BIO
IMDM with 15% FCS

FLK1+

MESP1+

NKX2.5+
Target -Presence of CM, EC and SMC markers

-Incomplete CM maturation
-Functionality of the differentiated
cells in in vitro conditions needs
further assessment

[146]

Human iPSCs on
Matrigel-coated plates

E8 medium + ROCK inhibitor for 24 h and
RPMI/B27-insulin + CHIR for 48 h/

4 days

TBX5+

NKX2.5+

CORIN+

HCN4+

GATA4+

Target

-FHF: mainly differentiates into left ventricular
(90%) and some atrial CMs (10%)
-Presence of ion channels (Kir2.1) and higher
contraction velocity

-4 different CPC populations
identified with distinct differentiation
potential
-Isolation of the CPC populations was
performed via a double transgene
reporter
-Expression of TBX5 and NKX2.5
dynamically changed during
differentiation culture, except for the
double negative (TBX5−/NKX2.5−)
cell population

[147]

TBX5+

NKX2.5−

HCN4+

GATA4+

WT1+

TBX18+

KDR+

PECAM1+

Target

-Epicardial progenitors: contribute to nodal
(80%) and some atrial CMs
-Formation of tight junctions and expression of
the ion channel KCNJ3
-Some potential towards fibroblasts, SMCs and
ECs

TBX5−

NKX2.5+

GATA4+

MEF2C+

ISL1+

Target

-SHF: differentiation predominantly into atrial
(90%) and some nodal and ventricular CMs
-Atrial CMs displayed slower beating rates
-Some potential towards SMCs and ECs

TBX5−

NKX2.5−

KDR+

PECAM1+

Target -Endothelial potential
-Formation of tube-like structures under VEGF

Human iPSCs on
inactivated MEFs
followed by EB

suspension culture

BMP4 for 4 days IWR1/IWP1 for 2 days

NKX2.5+

ISL1+

GATA4+

MEF2C+

Intermediate
-Low percentage of CMs
-Organized sarcomeric structures
-Normal calcium transient rhythm

-The CPCs were only identified when
using human ESCs
-Embryonic action potentials
-CPC was an intermediate state
during differentiation into CMs

[148]

Human iPSCs on MEFs

DMEM/F12 with 20%
FBS + AA + EB plating

on gelatin-coated
dishes at day 7

MEFs for 24 h and
BMP2 + SU5402 for 4

days in RPMI/B27-
vitamin A

ISL1+

NKX2.5+

KDR+

MESP1+

TXB20+

GATA4+

Target -Differentiation towards myocytes and
vascular lineages under specific conditions

-Differentiation trend and CM
maturation in vitro were not fully
assessed

[149]

Human iPSCs on
Synthemax-coated plates

in E8 medium then
mTeSR1/E8 + ROCK

inhibitor for 24 h

Albumin-free RPMI +
CHIR for 24 h

RPMI + IWP2 for 2
days at day 3 + basal

medium at day 5

ISL1+

NKX2.5+

KDR+
Intermediate

-Spontaneous contraction and well-organized
sarcomere filaments
-Development of ventricular action potentials
-Spontaneous calcium transients and connexin
43 expression in CMs

-No information about differentiation
potential towards ECs and SMCs [150]



Cells 2019, 8, 1536 14 of 55

Table 2. Cont.

Protocol CPC-Associated
Markers

Identified

CPCs as Target or
Intermediate

Differentiation and Functionality Potential Limitations Ref.
Pluripotent Culture Mesoderm

Differentiation Cardiac Specification

Human iPSCs on Matrigel
in MEF-CM

supplemented with bFGF

RPMI/B27-insulin +
Activin A for 24 h +

BMP4 and bFGF for 4
days

RPMI/B27-
insulin + DKK1 for 2

days

MESP1+

KDR+

ISL1+

NKX2.5+

Intermediate
-Sarcomere formation
-Ventricular and pacemaker action potentials
-CM yield varied between 4 and 34%

-Protocol efficiency and CM
differentiation and maturation is
affected by cell line variability
-Incomplete CM maturation
-CPC was an intermediate state
during differentiation into CMs

[140]

Human iPSCs in Geltrex
with E8 medium using

spheroid culture

RPMI/B27-insulin +
CHIR + BMP4 for 48 h

XAV939 for 48 h at day
4

ISL1+

TBX1+

FGF10+

FGF8+

CXCR4+ (SHF)

Target
-38% efficiency towards CMs
-More potential to generate SMCs, ECs and
fibroblasts

-No information about the
functionality of the differentiated
cells
-Only one hiPSC line was tested

[151]

ISL1+

HCN4+

TBX5+

GATA4+

CXCR4− (FHF)

Target -62% efficiency towards CMs
-Low levels of EC and fibroblast markers

Human PSCs on
Matrigel/Synthemax-coated

plates in mTeSR1/E8
medium with ROCK

inhibitor

CHIR in RPMI basal
medium for 24 h

IWP2/IWP4 in RPMI
basal medium from

day 3 to day 5 +
LaSR basal or

RPMI/Vc/Ins with
ROCK inhibitor at day

6 +
CHIR for 48 h from

day 7

WT1+

TBX18+

TCF21+

ALDH1A2−

KDR+

Target

-Differentiation towards fibroblasts and SMCs
-Fibroblasts and SMCs display fibroid
spindle-like shape and a fusiform appearance,
respectively
-Formation of mature epithelial-like sheets
with tight junctions (cobblestone morphology
and expression of ZO1 along cell borders)
-SMCs display calcium transients and
contractibility

-Epicardial progenitor cells are
derived from a more multipotent
CPC population (PDGFRα+/
ISL1+/NKX2.5+/GATA4+/TBX5+)
-Format size of the culture (i.e.,
96-well or 6-well plate) affects
maturity of the epicardial cells
-Different protocols lead to the
formation of mesodermal cells
expressing distinct markers
(PDGFRα+/KDR+ and
ISL1+/NKX2.5+)
-Epicardial progenitor cells exhibit
multiple origins

[152]

Albumin-free RPMI +
CHIR for 24 h

RPMI + IWP2 for 2
days at day 3 +

RPMI/Vc/Ins with
ROCK inhibitor for 24

h at day 6
+ CHIR in

RPMI//Vc/Ins for 48 h
at day 7

Target [153]

Human iPSCs on
inactivated MEFs

StemPro-34 medium +
BMP4 for 24 h + BMP4,
Activin A and bFGF

from day 1 until day 3

StemPro-34 medium +
Matrigel-coated plates
+ BMP4 + CHIR + SB

+ VEGF for 2 days

Target [154]

Human iPSCs in CDM +
BSA + Activin A + FGF2
on gelatin-coated plates

CDM + PVA + FGF2 +
LY294002 + BMP4 for
36 h and CDM + PVA

+ FGF2 + BMP4 for 3.5
days

CDM + PVA + BMP4
+ WNT3A + RA for 10

days
Target [155]

Human iPSCs in E8
medium and monolayer

culture on
vitronectin-coated plates

S12-insulin medium +
CHIR for 24 h

S12-insulin medium +
IWR1 for 48 h at day 3

and RA + CHIR
between day 5 and 8

Target [156]
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Table 2. Cont.

Protocol CPC-Associated
Markers

Identified

CPCs as Target or
Intermediate

Differentiation and Functionality Potential Limitations Ref.
Pluripotent Culture Mesoderm

Differentiation Cardiac Specification

Murine iPSCs in
inactivated MEFs in SCM

SCM-LIF + AA at day
2

Puromycin at day 6
for 3 days

NKX2.5+

c-KIT+

FLK1+

SCA1+

Target

-Differentiation potential towards ventricular
CMs, SMCs and ECs
-Sarcomeric organization and intracellular
coupling observed

-Presence of CPCs expressing
different sets of markers
-Application of a plasmid system for
CPC enrichment

[157]

Human iPSCs on MEFs
followed by suspension
culture in ESC culture

medium

Gelatin-or human
laminin211-coated

plates + IMDM-serum
and CHIR + BIO for 3

days

KY02111 +/− XAV939
or IWP2 from day 3

until day 9

NKX2.5+

GATA4+ Intermediate

-Predominantly ventricular CMs and 16%
pacemaker cells
-Spontaneous beating, sarcomere
myofilaments, Z-bands, ion channels (HERG
and KCNQ1) intercalated disks observed

-Mechanism of canonical WNT
inhibition by KY02111 not fully
understood
-Protocol efficiency is affected by the
presence of serum and cytokines
-No differentiation into SMCs and
ECs

[131]

Human iPSCs in E8
medium on

Synthemax/Matrigel-coated
plates

CDM3 medium (RPMI
basal medium + AA +
rice-derived RHA) +

CHIR for 2 days

CDM3 medium +
WNT-C59 for 48 h at

day 2

MESP1+

KDR+

ISL1+

GATA4+

NKX2.5+

TBX5+

MEF2C+

Intermediate -Formation of atrial, ventricular and nodal
CMs

-Presence of unspecified CMs,
without a defined subtype
-Incomplete CM maturation
-No differentiation into SMCs and
ECs
-CPC was an intermediate state
during differentiation into CMs

[137]

Human iPSCs in mTeSR1
+ ROCK inhibitor on
Matrigel/Synthemax

Pre-treatment with
CHIR/BIO for 3 days

RPMI/B27-insulin +
Activin A for 24 h +

BMP4 for 4 days

ISL1+

NKX2.5+ Intermediate -High yield of CMs
-Normal sarcomere organization with
transverse Z-bands
-Presence of intercalated disks
-Maturation trend towards ventricular CMs
(80–90%) Some atrial-like action potential
(10%) and absence of nodal-like potentials
-Some formation of SMCs

-Optimal BMP4 concentration varies
with different cell lines
-Heterogenous activation of the
canonical WNT signaling upon CHIR
treatment in transgenic iPSC lines
-Requirement of long periods of time
(>60 days) to reach advanced CM
maturity
-Greater efficiency observed in
studies using transgenic models

[126,130]

Transgenic iPSC lines
carrying lentiviral

integrated β-catenin
shRNA

CHIR in
RPMI/B27-insulin for

24 h

Doxycycline at 36 h
post-CHIR addition

ISL1+

NKX2.5+

TBX5+

WT1+

Intermediate

Non-transgenic hiPSC
lines

IWP4 or IWP2 at day 3 Not reported - [130]

IWP2 at day 3 ISL1+

NKX2.5+ Intermediate [126]

Human iPSCs on
vitronectin-coated plates

in mTeSR1 + ROCK
inhibitor for 24 h

RPMI/B27-insulin + ISX-9 for 7 days

NKX2.5+

GATA4+

ISL1+

MEF2C+

Target

-Differentiation potential towards CMs, ECs,
and SMCs in vitro and in vivo
-CMs displayed myofilaments, mitochondria
and glycogen particles
-Formation of tube-like structures and
LDL-uptake in ECs
-ECs, and SMCs formed vascular structures
in vivo

-The exact mechanisms by which
ISX-9 induces the expression of
cardiac transcription factors is
unclear
-No reports about electric coupling
between generated CMs and
endogenous CMs in vivo
-No information about the
electrophysiology of CMs

[136]
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Table 2. Cont.

Protocol CPC-Associated
Markers

Identified

CPCs as Target or
Intermediate

Differentiation and Functionality Potential Limitations Ref.
Pluripotent Culture Mesoderm

Differentiation Cardiac Specification

Human iPSCs on Matrigel
in mTeSR1 + ROCK

inhibitor

CHIR in
RPMI/B27-insulin for

24 h + bFGF

IWP2 from day 3 to
day 5

MESP1+

T+

GATA4+

ISL1+

NKX2.5+

TBX1+

HAND2+

at day 2–3
&

KDR+

PDGFRα+

at day 4–5

Intermediate

-Formation of SHF-derived CPCs
-Differentiation trend into fibroblasts, which
exhibited characteristics of fetal ventricular
fibroblasts

-Stage-specific progenitors were
generated with this protocol
-Differentiation potential was limited
to fibroblasts
-The fibroblasts generated might
represent just one of the populations
of cardiac fibroblasts present in the
native heart
-Only one hiPSC line was tested (line
variability effects need further
assessment)

[158]

Human iPSCs in
feeder-free (Geltrex)
monolayer culture

RPMI + PVA + BMP4
+ FGF2 for 2 days

RPMI-insulin + 20%
FBS/human serum for

2 days
MESP1+

ISL1+

NKX2.5+

Intermediate -Robust contraction
-Striated sarcomeres and gap junction
formation
-High yield of CMs (64–89%)
-Presence of physiological calcium transients
and functional electrical coupling
-Differentiation trend into ventricular CMs

-FBS is undefined
-Incomplete CM maturation
-CPC was an intermediate state
during differentiation into CMs

[122]

RPMI-insulin + 20%
HSA + AA for 2 days Intermediate

RPMI-insulin + 20%
HSA + AA for 2 days Intermediate

hiPSCs: human iPSCs; (h)ESC(s): (human) Embryonic Stem Cell(s); b(FGF): (basic) Fibroblast Growth Factor; FBS: Foetal Bovine Serum; AA: Ascorbic Acid; CM(s): Cardiomyocyte(s);
SMC(s): Smooth Muscle Cell(s); EC(s): Endothelial Cell(s); DMEM/F12/B27: Dulbecco’s Modified Eagle Medium/Ham’s F12 Nutrient Mixture/B27 serum supplement; BMP: Bone
Morphogenic Protein; CHIR: CHIR99021; MEF(s): Murine Embryonic Fibroblast(s); DKK1: Dickkopf WNT signaling Pathway Inhibitor 1; VEGF: Vascular Endothelial Growth Factor;
SB: SB-431542; FCS: Foetal Calf Serum; OP9: Mouse bone marrow-derived stromal cells; SNL: Mouse Fibroblast STO cell line-derived feeder cells; END-2: Visceral Endodermal Stromal
cells; KO-DMEM: KnockOut DMEM; RPMI/B27: Roswell Park Memorial Institute/B27; FHF: First Heart Field; SHF: Second Heart Field; BIO: 6-bromoindirubin-3′-oxime; IMDM: Iscove’s
Modified Dulbecco’s Medium; EB: Embryoid Body; IWR: Inhibitor of WNT Response; IWP: Inhibitor of WNT Production; MEF-CM: MEF-Conditioned Medium; LaSR: advanced
DMEM/F12 with ascorbic acid; RPMI/Vc/Ins: RPMI with Ascorbic Acid (Vc) and Insulin (Ins); ZO1: Zonula Occludens-1/Tight junction protein-1; CDM: Chemically Defined Medium;
BSA: Bovine Serum Albumin; PVA: Polyvinyl Alcohol; RA: Retinoic Acid; S12: Chemically Defined S12 Differentiation Medium; SCM: Stem Cell Medium; LIF: Leukaemia Inhibitor Factor;
RHA: Recombinant Human Albumin; shRNA: small hairpin RNA; ISX-9: isoxazole; HSA: Human Serum Albumin.
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4. Direct Reprogramming into CPCs

The discovery of iPSC reprogramming prompted studies to evaluate if it would be possible to
reprogram somatic cells directly into other cell types without an iPSC intermediate stage, a process
known as transdifferentiation or direct reprogramming. Transdifferentiation has shown to be a
much quicker process than dedifferentiation into iPSCs, with the former taking only a few days to
achieve, whereas the latter can last up to 3 weeks plus differentiation time to produce the desired cell
lineages. With the added advantage of avoiding potential cumulative mutation or epigenetic changes,
generally associated during complex iPSC reprogramming processes, direct reprogramming of somatic
cells can potentially offer a simpler, faster and safer alternative to generate cells compared to iPSC
dedifferentiation [41]. Most transdifferentiation studies in the cardiac field involve the generation of fully
differentiated cardiac cells, particularly cardiomyocytes, rather than cardiac progenitor cells [159–172].
Potentially, using transdifferentiation protocols to generate CPCs might be a superior approach for
regenerative medicine applications. This section focuses on the current approaches that are associated
with producing CPCs from direct reprogramming.

4.1. Partial Somatic Cell Reprogramming into CPCs

Some studies have developed transdifferentiation protocols that involve a transient stage of
pluripotency of somatic cells before they continue into CPC fates. The use of reprogramming factors
(OCT4, SOX2, KLF4 and C-MYC) seems to be enough to initiate resetting of epigenetic memory of
somatic cells towards a stem cell path (partial reprogramming), but the factors alone are insufficient to
directly activate cardiac lineage-specific genes for directed differentiation [159]. In order to achieve
lineage commitment, signaling molecules involved in cardiogenesis, like BMPs, WNT modulators and
FGFs, need to be activated in the cultures [14,159], similar to differentiation protocols for cardiomyocytes
from iPSCs. One study demonstrated that secondary mouse embryonic fibroblasts can be converted into
CPCs using a technique developed by Wang et al. (2014) called Cell Activation and Signaling-Directed
(CASD) lineage conversion [165], which combines reprogramming and cardiac-specific factors to
induce cell activation and direct cell fate towards cardiogenesis, respectively [14]. Zhang et al. (2016)
transiently exposed the mouse fibroblasts to reprogramming medium containing doxycycline and JAK
inhibitor 1 (JI1) for 6 days, and then to transdifferentiation medium with CHIR99021 and JI1 for 2 days
to induce cardiac differentiation. Following this, the cells are treated with a mixture of CHIR99021,
BMP4, Activin A, and SU5402 (inhibitor of FGF, VEGF, and PDGF signaling) for 3 days. The obtained
CPCs from this protocol expressed the proliferative marker Ki-67, the typical cardiac transcription
factors GATA4, MEF2C, TBX5 and NKX2.5, and the cell surface molecules FLK1 and PDGFRα and
were capable of producing cells from the three cardiac lineages. Efe et al. (2011) also demonstrated that
transient expression of pluripotent markers (OCT4, SOX2, KLF4 and C-MYC) followed by exposure to
chemically defined media containing BMP4 and the JAK inhibitor JI1 induced cardiac conversion of
mouse embryonic and tail-tip fibroblasts [159]. JI1 was added to the reprogramming media for 9 days
and from day 9, BMP4 was added and the media was subsequently changed to RPMI supplemented
with N2 and B27 lacking vitamin A for 5 additional days. This protocol upregulated the expression of
several CPC markers such as NKX2.5, GATA4, and FLK1 by day 9/10.

Wang et al. (2014) were able to significantly reduce the number of reprogramming factors to
successfully stimulate cardiac transformation in mouse fibroblasts [165]. This protocol involved a single
transcription factor (OCT4) and a cocktail of small molecules: an activin A/TGF-β receptor (ALK4/5/7)
inhibitor (SB431542), GSK inhibitor (CHIR), Lysine (K)-Specific Demethylase 1 (LSD1/KDM1) inhibitor
(parnate/tranylcypromine) and an adenylyl cyclase activator (forskolin). Mouse fibroblasts were first
exposed to the reprogramming media, containing the small molecules, for 15 days. This was followed by
media change to RPMI supplemented with N2 and B27 lacking vitamin A and addition of BMP4 during
the first 5 days. CPC markers, like FLK1, MESP1, ISL1, GATA4, and Ki-67, can be detected around
days 15–20. These cells went on to differentiate into cardiomyocytes, endothelial cells and smooth
muscle cells under specific conditions. Another study developed an entirely chemical reprogramming
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protocol that utilised a larger combination of small molecules compared to Wang et al. (2014): CHIR,
the ALK5 inhibitor RepSox, forskolin, the histone deacetylase (HDAC) 1 inhibitor valproic acid (VPA),
parnate and the retinoid pathway activator TTNPB [173]. Mouse fibroblasts were exposed to the
reprogramming cocktail for 16 days and CPC markers could be detected around day 8-20. The markers
identified included SCA1, ABCG2, WT1, FLK1, and MESP1, demonstrating that the protocol can
generate CPC populations. Most of the studies described protocols predominantly focused on their
ability to generate cardiomyocytes from somatic cells using some iPS factors, and whilst CPCs were
observed in some of these studies, their characteristics were not necessarily a focus of their attention
and would warrant some investigation in their potency independently.

4.2. Direct Somatic Reprogramming into CPCs

Direct reprogramming of somatic cells involves the transdifferentiation into other cell types
without an iPSC intermediate stage. One study showed that CPCs can be directly generated from adult
mouse fibroblasts from different tissues (cardiac, lung and tail tip) using a 11- (MESP1, MESP2, GATA4,
GATA6, BAF60C, SRF, ISL1, NKX2.5, IRX4, TBX5 and TBX20) or a 5- Factor (MEF2C, TBX5, GATA4
NKX2.5, BAF60C) reprogramming protocol [24]. Both protocols led to the formation of CPCs expressing
the genes NKX2.5, MEF2C, MESP1, TBX20, IRX4, and the cell surface protein CXCR4, independently
of factor combination and tissue origin of the fibroblasts. The CPCs also showed downregulation
of fibroblasts-specific genes, such as FSP1, and could differentiate into the three cardiac lineages.
Furthermore, adding a canonical WNT activator, and a JAK/STAT activator during the reprogramming
process can increase the protocol efficiency, leading to the production of more CPCs. Even though the
11-factor and 5-factor protocols generated CPCs with comparable characteristics, they differ in the
amount of CPC colonies generated, with the former producing more, and in the expression of smooth
muscle cell and endothelial cell markers in CPC-differentiated cells, with the 5-factor protocol-based
CPCs generating more of these markers than the 11-factor system. Another study showed that human
dermal fibroblasts can be directly reprogrammed into CPCs by overexpressing the genes MESP1 and
ETS2 [174]. In this specific reprogramming protocol, human dermal fibroblasts are converted into CPCs
through a 4-day co-expression of ETS2 and MESP1 using lentiviral vectors, which is then followed by
Activin A and BMP2 treatment for another 2 days. Human ETS2 is a transcription factor involved in
development, apoptosis and oncogenic transformation and when co-expressed with MESP1, induces
the expression of BMP2, initiates the Activin A/Nodal signaling and stimulates the emergence of
CD31/PECAM-1 (endothelial cells) and KDR cells (CPCs). ETS2 could potentially be substituted by
other ETS transcripts, such as ETS1, FLI1, ETV1, ETV5, ERG and ETV that are also highly abundant in
the developing heart, and might function similarly to ETS2 in reprogramming human somatic cells
into CPCs.

All these protocols described required the use of viral vectors, usually lentiviruses, to deliver the
reprogramming factors into cells. This implied host cell genome changes which could potentially affect
its suitability for translational applications. One method that addresses this concern is through the
delivery of reprogramming proteins, related to transcription factors, directly into cells. These proteins
can modulate the gene expression of cells to convert them into other cell types. For example, using
a nonviral-based protein delivery system with the cardiac transcription factors GATA4, HAND2,
MEF2C, and TBX5 induces reprogramming of human dermal fibroblasts into CPCs [41]. Additionally,
adding growth factors such as BMP4, Activin A and basic Fibroblast Growth Factor (bFGF) can further
stimulate and sustain potency towards a CPC state. This combination increased the cellular expression
of CPC markers (FLK1 and ISL1) and decreased the expression of fibroblast-specific markers (COL1A2
and FSP1). Furthermore, the protocol demonstrated high efficiency in direct transdifferentiation,
converting more than 80% of the human dermal fibroblasts into CPCs.
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4.3. Somatic Reprogramming into Cardiospheres

Recent studies have shown that adult skin fibroblasts from mouse and human can be converted
into cardiospheres that, in turn, have the potential to generate CPCs [175,176]. For this, the skin cells
were first reprogrammed with the Yamanaka factors SOX2, KLF4 and OCT4 overnight, followed by
media change to Knockout Serum Replacement-based media for 18 days and finally treatment with
the GSK3 inhibitor BIO and Oncostatin for 2 days [175,176]. The resulted cardiospheres resembled
endogenous cardiospheres formed from the cellular outgrowth of cardiac explants in vitro [39], but
produced a higher number of MESP1, ISL1-, and NKX2.5- expressing cells [175,176]. On passaging,
the cardiospheres became enriched with CPCs expressing c-KIT, FLK1 and CXCR4, which were
able to differentiate into cardiomyocytes [175]. However, human cardiospheres do not display
spontaneous beating and fail to propagate in vitro compared to mouse cardiopsheres, suggesting
different signaling pathways being utilized for somatic reprogramming into cardiospheres in both
mice and humans [175,176].

4.4. In Vivo Direct Reprogramming

One exciting potential of direct reprogramming is its application in vivo, in which endogenous
cardiac cells would be directly converted into CPCs to repair the damaged myocardium. This approach
could represent an improvement in promoting cardiac regeneration as it bypasses the several issues
associated with cellular transplantation [166,177]. In addition, it avoids the need for cell harvesting,
expansion, maintenance, and/or effective delivery systems, which are current challenges faced by cellular
in vitro methods. In vivo direct reprogramming takes advantage of the heart native environment that
might contain extracellular matrix proteins and growth factors that could make cells more permissive
for functional reprogramming and lead to the formation of more mature cardiac cells [160,177–180].
In a study using an in vivo zebrafish model [181], cardiac ventricular injury induced the expression
of Notch and RALDH2 in atrial cardiomyocytes, which caused the cells to lose their sarcomeric
organization and re-express CPC transcription factors, such as GATA4, HAND2, NKX2.5, TBX5,
TBX20 and MEF2. Once these dedifferentiated atrial cardiomyocytes reached the ventricle, they
further expressed ventricle-specific markers, like Iroquois Homeobox Protein Ziro 1 (IRX1A) and
ventricular Myosin Heavy Chain (vMHC), and differentiated into ventricular cardiomyocytes. Another
study demonstrated that adult murine atrial and ventricular cardiomyocytes can acquire properties
of CPCs through spontaneous dedifferentiation in vitro [182]. The dedifferentiated cardiomyocytes
gave rise to CPCs that expressed the cardiac markers c-KIT, GATA4, and NKX2.5, self-organised into
cardiospheres and were able to differentiate into functional cardiomyocytes and endothelial cells [182].
These results were further investigated by Zhang et al. (2015) in vivo using a MI mouse model [183].
They specifically analysed DNA methylome changes during cardiomyocyte dedifferentiation and
observed that cardiomyocyte-specific genes, like Myosin Light Chain Kinase 3 (MYLK3) and Myosin
Heavy Chain 6 and 7 (MYH6 and MYH7), became hypermethylated (repressed), whereas cell cycle
and proliferation genes, such as Epiregulin (EREG) and SRY-box 4 (SOX4), were hypomethylated
(upregulated) in the generated CPCs. This concept could potentially be applied in in vivo CPC
reprogramming. However, the molecular mechanisms involved in somatic cell dedifferentiation are
not fully elucidated and more information is needed to identify the factors responsible.

Although in vivo reprogramming shows great potential, it has only been employed to derive fully
differentiated cardiac cells, specifically cardiomyocytes, and not CPCs as such [160,177–180,184,185].
Therefore, even though direct reprogramming seems to be a suitable approach to generate CPCs,
there are still some issues that influence its application in regenerative therapeutics. These include
sub-optimal efficiencies in transdifferentiation protocols for CPC generation and lack of in-depth
characteristics of CPC potency, differentiation potential and functionality of their derivatives.
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5. In Vitro Culture of CPCs Derived Through Reprogramming Protocols

Establishing reprogramming protocols to generate CPCs from iPSCs and somatic cells is essential
to advance CPC research for cardiac regeneration. However, the field also faces issues regarding the
isolation, propagation, and expansion of CPCs in vitro. This section focuses on the current methods
that have been successful in isolating, expanding and maintaining CPCs in vitro.

5.1. Isolation of CPCs

Isolation of CPCs is usually performed based on their characteristic gene expression patterns and
surface markers (see Table 1). For example, ISL1 and NKX2.5 genes are frequently used to identify
CPCs [186]. However, these genes are transiently expressed in cells which can lead to the isolation of a
heterogeneous cell population containing various CPCs with distinct self-renewal and differentiation
potential [186]. When using only cell surface markers, a combination of at least two markers is frequently
used as a single surface marker seems insufficient to discriminate a CPC signature. For instance, Nsair
et al. (2012) demonstrated that the co-expression of two cell surface markers, FLT1 (VEGFR1) and FLT4
(VEGFR3) specifically identifies ISL1/NKX2.5-expressing CPCs [187]. This combination was also shown
to be more effective in identifying homogenous CPC populations (approximately 89% pure) compared
to other combinations, such as FLK1 alone or FLK1 with PDGFRα. Furthermore, the isolated CPCs
were able to differentiate into the three cardiac lineages and engraft into the host tissue. One study by
Nelson et al. (2008) used the cell surface markers CXCR4 and FLK1 to isolate a more restricted CPC
from a heterogeneous FLK1 positive population [188]. Zhou et al. (2017) also demonstrated that the
marker SIX2 is able to target temporally distinct cell subpopulations from second heart field-associated
CPCs [189]. One very recent study (Torán et al., 2019) used proteomic and genomic approaches to
comprehensively characterize the proteome of human adult c-KIT CPCs [190]. It was demonstrated
that these CPCs highly express 4 surface markers: GPR4 (G protein-coupled receptor 4), CACNG7
(calcium voltage-gated channel auxiliary subunit gamma 7), CDH5 (VE-cadherin) and F11R (F11
receptor) in comparison to mesenchymal stem cells, human dermal fibroblasts and cardiac fibroblasts.
More research, however, will be required to further clarify the role of these proteins in CPC functions.

Thus, new markers are continuously being discovered to isolate specific CPC populations.
However, they are frequently identified in CPCs derived from neonatal/adult tissue but fewer in
ESC-CPCs and iPSC-CPCs [107,133,134,190–192]. Further validation of such markers is vital to assign
a common signature that accurately identifies these cells.

5.2. Expansion and Maintenance of iPSC-CPCs

The maintenance of β-catenin concentration seems to be an efficient method for CPC expansion
in vitro [187,193]. Applying GSK3 inhibitors, like WNT3A, CHIR, or 6-bromoindirubin-3′-oxime/BIO,
can promote CPC expansion and suppress myocytic differentiation, leading to the formation of a
relatively homogenous CPC colony [193]. Furthermore, the combination of a WNT/β-catenin inhibitor
(IQ-1) and a ROCK inhibitor (Thiazovivn) is also able to expand CPCs in a feeder-free medium
for a minimum of 4 weeks, while maintaining their multipotent state (more than 90% remained
multipotent) [187]. IQ-1 is a selective β-catenin inhibitor that targets the signaling mediated by the
protein’s interaction with p300. This suppresses p300 pro-differentiation function and stimulates a
pluripotency state. Furthermore, WNT signaling seems to interact with other signaling pathways, such
as Notch and FGF signaling, to stimulate the expansion of CPCs [194,195]. For example, activation of
the Notch signaling by Notch1 represses expansion, self-renewal and β-catenin activity in CPCs [195].
Activation of both WNT and FGF signaling pathways enhances ISL1 CPCs in a cooperative manner [194].
Therefore, using biomolecules that inhibit and activate the Notch and FGF signaling, respectively,
together with WNT activators might facilitate CPC expansion. Notably, inhibition of FGF signaling
has also been demonstrated to enhance CPC expansion, but this inhibition is suggested to affect only a
subset of CPCs (expressing SCA1) [196] and therefore, warrants further investigation.
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Several studies have shown that persistent inhibition of the BMP signaling enhances expansion
of CPCs and prevents their differentiation [186,197,198]. For example, the BMP inhibitor Gremlin
2 (GREM2), whose expression initiates in NKX2.5+ CPCs after cardiac mesoderm specification and
follows cardiac lineage differentiation, promotes proliferation of CPCs from iPSCs by suppressing
the BMP4 receptor activity [197]. This effect was demonstrated to be consistent across distinct iPSCs
lines and independent of the differentiation method used. However, GREM2 is also able to induce
differentiation of CPCs into the cardiac cell subtypes. Therefore, timing and potency of this BMP
antagonist may need careful evaluation to CPCs and avoid spontaneous differentiation. Notably,
GREM2 appears to only increase the number of KDRlow and NKX2.5+ CPCs in vitro, and its function
seems to be lost in the adult heart. Ao et al. (2012) used a second-generation BMP inhibitor called
Dorsomorphin homologue 1 (DMH1) that was able to enrich CPCs, expressing Branchyury, MESP1
and ISL1 markers, from pluripotent cells [198]. Additionally, DMH1 was shown to be a more selective
inhibitor of BMP type 1 receptors compared with other BMP inhibitors. This selective inhibition
is, therefore, best applied during early stages of cardiac differentiation (pre-mesoderm and cardiac
mesoderm stages) in order to increase the number of CPCs.

Another molecule that enhances CPC expansion in vitro is Ascorbic acid (AA) [143]. AA was shown
to enhance the expansion of isolated iPSC-derived FLK1+/CXCR4+ CPCs through the MEK-ERK1/2
pathway by promoting collagen synthesis. However, the effects of AA on other CPC types need to be
evaluated before AA can be used as a universal factor for efficient CPC expansion. Birket et al. (2015)
used a cocktail of molecules modulators of the FGF, VEGF, PDGF, BMP, Nodal, AKT and hedgehog
signaling pathways (SU5402, DMH1, SB431542, Insulin-Like Growth Factor 1 (IGF1) and Smoothened
Agonist (SAG)) that was capable of expanding CPCs for more than 40 population doublings [186].
However, this study used MYC-transduced iPSC lines and consequently, the method needs further
assessment using CPCs derived from non-transgenic iPSCs. Bao and colleagues (2017) developed
two protocols, with and without serum, to maintain self-renewal and stimulate expansion of human
iPSC-derived epicardial CPCs for long periods of time [152,153]. Both methods involve the addition
of a TGF-β inhibitor, such as SB431542 or A83-01, to the medium. The epicardial CPCs can either be
cultured in LaSR basal medium, which contains albumin, or in RPMI with ascorbic acid and insulin
(RPMI/Vc/Ins), a xeno-free/chemically defined medium. Cells kept in LaSR basal medium can be
maintained for up to 2 months, whereas CPCs in RPMI/Vc/Ins can be cultured for approximately 24 days
before they start undergoing epithelial-to-mesenchymal transition (EMT) and lose their morphology.
The use of a gentler dissociating buffer (Versene) also seemed to improve expansion efficiency of
the CPCs from human pluripotent stem cells (iPSCs and ESCs) after 8 passages [152]. One study
developed a Good Manufacturing Practice (GMP)-compatible system for the expansion of CPCs, using
stirred tank bioreactors and microcarrier technology [199]. Human CPCs from three different donors
were inoculated with microcarriers (Cytodex 1 coated with CELLstartTMCTSTM) for up to 7 days.
The microcarrier-based stirred cultures lead to a cell suspension increase of 3-fold and greater cell
viabilities compared with standard static T-flask monolayers. Furthermore, the CPCs in the culture
system expressed the markers CD44, CD105, CD166, KDR, GATA4, and TBX5. This method provides
tight control of environmental cues to mimic physiological conditions, which could potentially improve
the production of high-quality CPCs for therapeutic applications.

5.3. Expansion and Maintenance of Transdifferentiated CPCs

CPCs derived from direct reprogramming of somatic cells seem to have similar requirements as
iPSCs-CPCs for expansion and maintenance. For instance, adding a canonical WNT activator and
a JAK/STAT activator to the cultures was shown to maintain the proliferative and multipotent state
of the CPCs for several passages (over 20 and 30 passages for a 5- and 11- Factor reprogramming
protocol, respectively) without continuous expression of the reprogramming factors [24]. However,
CPC maintenance and expansion potential can be negatively affected when utilising somatic cells from
tissues other than cardiac tissue, like lung and skin tissues. Furthermore, fibroblast-derived CPCs



Cells 2019, 8, 1536 22 of 55

can be alternatively expanded and maintained using a combination of signaling molecules (BMP4,
Activin A, CHIR, and SU5402) that synergistically repress cardiac differentiation and sustain CPC
self-renewal [14]. In this case, the CPCs’ undifferentiated morphology, gene expression pattern and
cell surface molecule expression remain the same for more than 18 passages regardless of the tissue
origin of the donor cells.

Overall, the requirements for in vitro culture of CPCs involved the precise temporal activation and
suppression of several signaling pathways. It remains challenging to expand CPCs while maintaining
their self-renewal and multipotent differentiation potential as the process is extremely complex,
preventing the development of standard conditions yet. This can be more complicated when considering
CPCs derived from iPSCs and direct reprogramming and their associated characteristics [186,200–202].
Therefore, more comparative studies of current protocols will be imperative to establish standard in vitro
culture conditions that are optimal for the isolation, expansion and maintenance of specific CPCs.

6. Strategies to Improve CPC Reprogramming

Strategies for producing CPCs are still developing with time. Whilst the concept of CPC
generation through reprogramming or transdifferentiation has taken precedence to produce desired
cardiac lineages, the protocols suffer from poor efficiency or lack of mechanistic insight to achieve the
target population and desired functional improvement. Strategies to accelerate proliferation and extend
replicative lifespan of CPCs are being essentially employed to understand and potentially overcome
the inherent limitations of patient CPC populations derived from compromised, aged, or damaged
myocardium. With developments in genetic engineering approaches and factors, such as CRISPR
gene editing, epigenetic modulators and/or microRNAs, and its significance in cardiac development,
there seems scope for applying this in the field of CPC regeneration and address some of the current
limitations. This section will describe examples of such strategies in the context of CPCs.

6.1. Genetic Engineering with PIM1

Genetic engineering with PIM1, has been applied in CPCs to enhance their properties, like
proliferation, survival and differentiation [203]. Pro-viral insertion site for the moloney murine
leukemia virus (PIM1), a proto-oncogene serine/threonine-protein kinase, is highly expressed in bone
marrow, tumor cells and fetal heart and is associated with many signaling pathways, mostly related to
anti-cell apoptosis and cell cycle regulation [204]. Mohsin and colleagues (2013) genetically modified
patient-derived human CPCs (hCPCs) with PIM1 kinase (termed hCPCeP) to increase proliferation,
telomere length, survival and decrease expression of cellular senescence markers, rejuvenating the
phenotypic and functional properties of hCPCs, in an effort to ameliorate the cumulative effects
of age and disease [205]. The PIM1-engineered cells also showed increased commitment to the
three cardiac lineages [203]. Interestingly, the effect of PIM1 in hCPCeP normalizes after several
rounds of passaging, consistent with the notion that PIM-1 can transiently increase mitosis coupled
with telomere stability (increased TERT activity) and without resultant oncogenic transformation
through a c-MYC synergy. These properties of hCPCeP can be modulated by targeted localization of
PIM1 in mitochondrial or nuclear components, conferring an optimal stem cell trait irrespective of
patient-associated cell heterogeneity [206]. Furthermore, intramyocardial injection of hCPCeP into
cardiomyopathic challenged-SCID mice demonstrate increased cellular engraftment and differentiation
with improved vasculature and reduced infarct size [203]. Similar results were also observed when
using murine CPCs [207] but these earlier studies relied largely on viral delivery methods to induce
PIM1 overexpression. In an alternative strategy, a non-viral modified plasmid-minicircle (MC) was
used as a vehicle to deliver PIM1 into mouse CPCs (mCPCs) in vitro and the myocardium in vivo [208].
Mice with PIM1-MC injection showed increased protection compared to control groups measured by
ejection fraction at 3- and 7-days post injury, supporting the potential of a non-cell based therapeutic
approach for treatment of ischemic heart disease and MI.
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6.2. CRISPR in Context with CPCs

In an effort to identify previously unknown regulators of cardiomyocyte differentiation from
human ESCs (hESCs) through quantitative proteomics, Murry lab [209] demonstrated that DAB2
(Disabled 2) plays a functional role in cardiac lineage specification towards cardiomyocytes by
being preferentially upregulated in CPCs. CRISPR/Cas9 deletion of Dab2 in zebrafish embryos
was used to show increase in WNT/β-catenin signaling and consequent decrease in cardiomyocyte
number, suggesting that inhibiting WNT/β-catenin signaling by DAB2 (or analogous inhibitors like the
Dickkopf WNT signaling Pathway Inhibitor 1 (DKK1)) can be crucial in maintaining cardiomyocyte
numbers from CPCs in the developing heart. Supporting this mechanism, the same lab, using
antisense knockdown and CRISPR/Cas9 mutagenesis in hESCs and zebrafish, went on to demonstrate
that Alpha Protein Kinase 2 (ALPK2) is temporally expressed during specification of CPCs (but
not in endocardial-like endothelial cells), and cardiac commitment through negative regulation of
WNT/β-catenin signaling [210]. In a more recent study [211], CRISPR-mediated ablation of Furin gene
in mouse CPCs, whose product is a natural target of Nkx2.5 repression during heart development,
produces abnormalities in embryo characterized by reduced proliferation of CPCs and their premature
differentiation, suggesting Furin mediates some aspects of Nkx2.5 function in heart and is necessary
for CPC differentiation. This role of Furin in the maturation of CPCs is, in part, mediated by the
modulation of the BMP pathway by Nkx2.5. Therefore, genetic engineering using CRISPR has been
pivotal in recent years to identify mechanisms associated with CPCs and continue to show promise
with a perpetual trend in CRISPR advances.

6.3. Epigenetic Modulators

Distinct cell types display different epigenetic profiles that leads to differential gene expression.
Cellular reprogramming is associated with changes in the epigenetic signature of cells. During these
epigenetic transitions, proteins called epigenetic modulators bind to specific regions of the chromatin
and regulate the transcription of genes. Therefore, inhibition and/or overexpression of these modulators
might affect cardiac reprogramming efficiency [41,212]. For example, knockdown of the polycomb
ring finger pro-oncogene Bmi1 in several fibroblast types (murine embryonic, neonatal and adult tip
tail and adult cardiac fibroblasts) results in the activation of core cardiac transcription factors, such as
GATA4, ISL1 and TBX20, which converts the cells into cardiomyocytes [212]. Additionally, Zhou et al.
(2016) demonstrated that silencing of Bmi1 allowed for efficient cardiomyocyte reprogramming using
just two factors (MEF2C and TBX5). The induced cardiomyocytes displayed features of advanced
maturity, such as contractile activity, sarcomere structures and periodic calcium oscillation. Therefore,
it would be useful to investigate the role of Bmi1 in the context of CPC reprogramming, considering
the significance of ISL1 upregulation under Bmi1 depletion. Another epigenetic modulator that could
potentially be employed in CPC reprogramming is the BAF chromatin remodeling protein BAF60A.
BAF60A is thought to have a role in the maintenance of CPC self-renewal thought interaction with
TBX1 [213,214]. TBX1 seems to recruit BAF60A onto the promoter region of WNT5A gene, upregulating
its expression in CPCs [214]. WNT5A is a non-canonical WNT pathway ligand that is highly expressed
in CPCs derived from the SHF, and it cooperates with another non-canonical WNT ligand, called
WNT11, to induce development of CPCs from the two heart fields [215]. Accurate identification of the
cellular epigenetic barriers could potentially reduce the number of reprogramming factors employed
to generate CPCs and ultimately, lead to faster and safer protocols.

6.4. MicroRNAs

MicroRNAs are short non-coding RNA molecules that bind to messenger RNA and repress gene
expression. MicroRNAs show a promising alternative to traditional reprogramming protocols as they
are easily delivered and display low toxicity in animal models [184]. In addition, several microRNA
transcripts can be packed into a single delivery vector, which could potentially increase reprogramming
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efficiency. However, most studies have mainly examined the use of microRNAs in converting somatic
cells directly into cardiomyocytes, not CPCs as such [180,184,216]. Nevertheless, microRNAs have
been shown to modulate CPC functions [217–219] (see Table 3). Sirish et al. (2012) investigated the
miRNA expression changes in CPC development [219]. They identified 8 differentially expressed
microRNAs (miR-103, -130a, -17, -130b, -208b, -185, -200b and -486) in mouse neonatal and adult
LIN−/c-KIT+ CPCs. The target proteins of microRNAs were predicted to be predominantly involved in
cell proliferation, with a few proteins having roles in cell organisation, development, metabolic process,
adhesion, homeostasis, activation, communication, and motility. The group also demonstrated that
overexpression of the miR-17-92 cluster, which targets cell cycle proteins, in adult CPCs increased their
proliferative capacity by 2-fold in vivo. Two studies showed that the microRNAs miR-1, -499 and -204
repress proliferation and stimulate differentiation in committed SCA1+ CPCs [217,218]. Additionally,
Xiao et al. (2012) revealed that inhibition of miR-204 suppressed CPC differentiation and promoted
proliferation without affecting cell viability [218]. A study in 2016 identified several microRNAs that
regulate cardiac fate, like let-7, miR-18, miR-302 and the miR-17-92 cluster, in MESP1+ CPCs [220].
It was also shown that the CPCs were particularly enriched for the miR-322/-503 cluster which targets
the CUG-binding protein Elav-like family member 1 (CELF1). Ectopic CELF1 expression promoted
neural lineage-specification at the expense of cardiomyocyte differentiation in the CPCs. Therefore,
miR-322/-503 may be a key regulator in promoting the cardiac program in early mesodermal cells
by cross-suppressing other lineages. Garate et al. (2018) investigated the expression of microRNAs
during the differentiation of human pluripotent stem cells (hPSCs) towards mesoderm and cardiac
cells [221]. They found several microRNA families (miR-302, C19MC, miR-17/92 and miR-26) that were
highly expressed in EpCAM/CD326-negative and NCAM/CD56-positive mesoendodermal progenitor
cells (MPCs) [222]. The microRNA families identified were speculated to be associated with the
epithelial to mesenchymal transition occurring during the development of mesoderm. However, the
specific roles of the microRNAs in CPCs will need to be determined as MPCs are able to generate
all the mesoendodermal lineages, including cardiovascular, hematoendothelial and mesenchymal.
One very recent study by Cheng et al. (2019) showed that the ischemic heart secretes microRNAs
(miR-1a, miR-133a, miR-208a and miR-499) that mobilised LIN−/c-KIT+ bone marrow progenitor
cells (BM PCs) into the site of injury, where they proliferated and promoted vascularisation [223].
These results demonstrated the principle of employing microRNAs to target endogenous progenitor
cells to enhance ischemic cardiovascular repair. Therefore, as molecular mechanisms regulated by
microRNAs during CPC development get explored more, they offer a suitable choice of target for
improving CPC generation from iPSCs or for transdifferentiation.
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Table 3. Role of microRNAs in CPC biology.

CPC Property MiRNA Involved Target Protein/Pathway Mechanism Ref.

Proliferation

miR-21 PTEN

Inhibit negative regulators of cell proliferation [224]
miR-218 SFRP2

miR-548c
MEIS1miR-509

miR-23b

miR-204 ATF2

Repress proliferation-related transcription factors and induces differentiation [225]
miR-1

HDAC4

HAND2

miR-200b GATA4

miR-17-92 cluster Not reported Increases proliferation rate [219]

Differentiation

CMs

miR-133 NELFA Suppresses cardiogenesis [226]

miR-218 SFRP2 Inhibits a negative regulator of cell proliferation [227]

miR-142 MEF2C Suppresses CM formation [228]

miR-1 DLL1 Increases NKX2.5 and Myogenin expression [229]

miR-499
ROD1

Suppresses inhibitory factors of cardiac differentiation
[224,230]

SOX6

miR-708 N-RAS [231]

miR-322-503 cluster CELF1 [220]

SMCs
miR-22 EVI1 Inhibits negative regulators of SMC marker gene expression and of SMC transcription factors [232]

miR-29a YY1 [233]

miR-669a
MYOD Increases CPC differentiation potential by preventing skeletal myogenesis [234]

miR-669q

Migration miR-206 TIMP3 Suppresses a metalloproteinase inhibitor [235]

miR-21 PTEN Promotes migration of SCA1+ CPCs (not fully clear) [236]

Apoptosis
miR-21

BIM

Inhibit apoptotic activators [237]PDCD4

miR-24
BIM

miR-221

Necrotic Cell Death miR-155 RIP1 Inhibits necrosis activators [238]

Vascular Remodeling miR-221 c-KIT
eNOS

Inhibit endothelial cell migration and proliferation [239]
miR-222

Cell Repolarization miR-1 KCNE1
KCNQ1

Reduce potassium current in hyperglycemia conditions [240]
miR-133

CM(s): Cardiomyocyte(s); SMC(s): Smooth Muscle Cell(s); PTEN: Phosphatase and Tensin Homolog; SFRP2: secreted Frizzled-Related Protein 2; MEIS1: Meis Homeobox 1; ATF2: Activating
Transcription Factor 2; HDAC4: Histone Deacetylase 4; NELFA: Negative Elongation Factor-A; DLL1: Delta-Like protein 1; ROD1: Regulator of Differentiation 1; N-RAS: Neuroblastoma
RAS Viral Oncogene Homolog; CELF1: CUG-binding Protein Elav-like Family Member 1; EVI1: Ecotropic Virus Integration Site 1 Protein Homolog; YY1: Transcription Factor Yin Yang 1;
MYOD: Myoblast Determination Protein 1; TIMP3: Tissue Inhibitor of Metalloproteinase 3; BIM: BCL2-like Protein 11; PDCD4: Programmed Cell Death 4; RIP1: Receptor-Interacting
Protein Kinase 1; eNOS: endothelial Nitric Oxide Synthase; KCN-E1/-Q1: Potassium Voltage-Gated Channel Subfamily E Member 1/Subfamily Q Member 1.
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7. Tissue Engineering with CPCs and CPC-Derived Cardiomyocytes

Several studies have demonstrated that the cells generated from CPCs, particularly cardiomyocytes,
display an immature phenotype similar to that of embryonic cardiac cells [3]. However, when the
CPCs are transplanted into a host environment, the differentiated cells reach a more advanced
maturity, such as greater organisation of sarcomeres and formation of gap junctions (in the case of
cardiomyocytes) and development of tubular-like structures (for smooth muscle and endothelial
cells) [11,24,27,28]. Furthermore, CPCs seem to have distinct differentiation potential in vitro and
in vivo [96,111]. This could mean that the microenvironment of the heart might have a key role in CPC
functions. Stem and progenitor cells reside in specific tissue microenvironments, called niches, which
provide protection and support to the cells [241]. A way to potentially enhance CPC regenerative
potential could be to mimic their microenvironment. Cardiac tissue engineering aims to achieve this
goal by combining multiple microenvironment components, such as cells, extracellular matrix (ECM)
and biochemical factors like BMP2, VEGF, bFGF, DKK1, and IGF1, to create cardiac tissue constructs.
Therefore, determining the ideal matrix for supporting CPCs and their derivatives is paramount.
In principle, the scaffold matrix should be biodegradable, immune-privileged, provide electrical and/or
mechanical properties for cell coupling and assembly, and support vascularisation [242,243]. Two types
of materials are typically employed in the production of scaffolds for tissue engineering: natural
matrices and synthetic matrices. This section will describe different types of scaffolds that have been
used in combination with CPCs and CPC-derived cardiomyocytes (Table 4).

7.1. Natural Scaffolds

Natural matrices have the advantage of being composed of native ECM cues that modulate cell
behavior [243,244]. These scaffolds can comprise pure ECM elements, like hydrogels made from natural
materials such as fibrin, alginate, gelatin, and collagen, or acellular tissue which displays the biochemical
and biomechanical properties (tensile strength and composition) of the native ECM tissue [245,246]. Three
independent studies used a fibrin patch seeded with CPCs (murine and human) to develop a tissue
construct, which was then tested in vivo [247–249]. Vallée et al. (2012) specifically utilized BMP2-primed
murine ESCs seeded onto fibrin matrices as single cells, small cluster and embryoid bodies [249]. These
constructs were then engrafted onto myocardial infarcted rat hearts, which led to a reduction in remodeling
and deterioration of cardiac functions. Seeded cells were identified by the expression of the cardiac genes
MESP1, NKX2.5, MEF2C, TBX6 and GATA4, speculating a CPC-related population. The transplanted
cells were also able to colonize the outer connective tissue where they differentiated into cardiomyocytes
and promoted neovascularization. The results from Vallée et al. (2012) encouraged two other studies to
apply their tissue engineering approach with human CPCs [247,248]. Bellamy et al. (2015) and Menasché
et al. (2015) seeded human CPCs, expressing the markers SSEA1 and ISL1, in a fibrinogen patch [247,248].
The two studies differed in the number of CPCs used, Bellamy et al. (2015) used 700,000 cells whereas
Menasché et al. (2015) used 4 million cells; and in the in vivo model chosen, myocardial infarction rats
and a 68-year-old patient suffering from severe heart failure, respectively. Improvement of contractility
and attenuation of ventricular remodeling was observed in both studies. It was also shown that these
benefits were likely a result of paracrine factors secreted by the transplanted CPCs rather than de novo
generation of tissue. Gaetani and colleagues (2012 and 2015) used 3D printing with SCA1+/CD105+ fetal
CPCs, which are referred to as human fetal cardiomyocyte progenitor cells (hCMPCs), and three types
of natural scaffolds (pure, RGD-modified alginate and a hyaluronic acid/gelatin-based matrix) [250,251].
The hCMPCs were able to migrate from the scaffolds, colonize the surrounding areas and form tubular-like
structures [250,251]. Another study by Christoforou et al. (2013) used murine iPSC-derived CPCs mixed
within a fibrin/Matrigel hydrogel that were applied in polydimethylsiloxane (PDMS) molds and cultured
for 14 days in vitro [157]. These CPCs expressed NKX2.5, GATA4, c-KIT and either FLK1 or SCA1 and
differentiated into mature cardiomyocytes that aligned into unidirectional myofilament and displayed
abundant electromechanical connections. This study also concluded that accessibility to oxygen and
nutrients within tissue constructs greatly affects integration of the implanted cells.
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Native ECM generally comprise of various components such as glycosaminoglycans (GAGs),
collagen, fibrinogen, hyaluronic acid and hydroxyapatite (HA) [246]. To mimic this, recent studies
have applied natural scaffolds generated from the decellularisation of tissues. This technique removes
any cells present in the tissue while preserving its original 3D architecture and ECM. Two studies have
combined decellularised scaffolds with iPSC-derived CPCs [252,253]. Lu et al. (2013) used human
iPSC-CPCs that were positive (low) for the marker KDR and negative for c-KIT to repopulate a whole
decellularised mouse heart [252]. The CPCs differentiated into cardiomyocytes, endothelial cells and
smooth muscle cells, and efficiency to a specific lineage could be changed with the addition of growth
factors. The recellularised scaffolds displayed vessel-like structures, spontaneous contraction, uniform
wave propagation in some regions, and the ECM seemed to stimulate proliferation of CPCs and
formation of wider myofilaments of cardiomyocytes. However, drawbacks of this study included the
uneven recellularisation of the heart constructs which led to weaker mechanical forces and incomplete
synchronization, and inability to generate cells of the conduction system and cardiac fibroblasts.
Although natural scaffolds retain the ultrastructure and biological information of the native tissue,
there is a risk of immunological reaction, disease transmission (in case of animal-derived materials)
and are generally variable in their physical properties [243,245].

7.2. Synthetic Scaffolds

The ideal synthetic scaffold should be biocompatible, degradable, display a surface that allows
for cell attachment, migration and differentiation, and a macrostructure that supports cell growth and
nutrient and waste exchange [245]. Structure and properties of synthetic scaffolds, like the associated
mechanics, chemistry and degradation rate, can be easily customised for the type of cells being
used [243,245,246]. Two studies employed self-assembling peptide nanofibres with CPCs and tested
the constructs in vivo [254,255]. Both studies used two distinct experimental designs: Padin-Iruegas et
al. (2009) seeded adult rat Lin− c-KIT+ CPCs onto nanofibres tethered with IGF1, whereas Tokunaga
et al. (2010) used adult mouse SCA1+ CPCs mixed with Puramatrix® (3D Matrix, Ltd.) (no tethered
factors). The CPCs in Tokunaga et al. (2010) nanofibres minimally contributed to de novo cardiomyocyte
generation and had no differentiation potential towards endothelial lineages [255]. The benefits
observed were associated to effects from paracrine signaling. On the other hand, Padin-Iruegas et al.
(2009) showed that continued IGF1 release from nanofibres enhanced CPC survival and proliferation,
and stimulated differentiation into cardiomyocytes, smooth muscle cells and endothelial cells [254].
Additionally, the regenerated cardiomyocytes were able to couple with resident cardiomyocytes, and
the smooth muscle cells and endothelial cells formed vascular structures. These studies demonstrated
that functionalising self-assembling peptide nanofibres can potentially support long-term CPC survival,
proliferation and differentiation, and lead to a more robust maturity of the CPC-derived cells, especially if
applied in the human CPC context. Li et al. (2011) used a solution made of mouse cardiosphere-derived
cells and degradable poly(N-isopropylacrylamide) hydrogel and performed in vitro testing of the
effects of scaffold stiffness and presence/absence of collagen on the cells’ functions [256]. The hydrogels
with medium stiffness and collagen were optimal for cardiosphere-derived cells differentiation into
cardiomyocytes, which displayed the highest expression of maturation genes (MYH6 and cTNT).
Unfortunately, there were no reports on the effects of the hydrogels on cardiosphere-derived cells
differentiation potential towards smooth muscle cells and endothelial cells. Liu et al. (2015) also
employed nanofibres with CPCs, but they used poly(l-lactic acid) and mouse ESC-derived CPCs [257].
These CPCs were positive for ISL1 and GATA4 and differentiated into the three cardiac lineages in both
in vitro and in vivo conditions. Additionally, differentiation potential towards endothelial lineages was
improved in vivo compared to that of in vitro. The scaffolds supported CPC survival, engraftment,
proliferation and integration with the host tissue, and stimulated the expression of intercellular coupling
proteins (connexin 43) and maturation of cardiomyocytes.

One study used a novel concept called “scaffold-in-scaffold” to promote human CPC growth and
differentiation in vitro [258]. The aim of this approach was to create a structure with different physical
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characteristics to better mimic the ECM microarchitecture. The multitexture 3D scaffold was composed
of a polyethylene glycol diacrylate (PEGDa) woodpile and a softer PEGDa hydrogel. Human LIN−

SCA1+ CPCs seeded on these scaffolds highly differentiated into cardiomyocytes, which aligned in an
orderly manner. However, robust cardiomyocyte maturation, such as sarcomeric organisation and
formation of gap junctions, was not achieved. In addition, there were no reports on the differentiation
potential towards other cardiac lineages.

Synthetic biomaterials are a great promise to constructing 3D microenvironments with adjustable
features. However, they still come with a few limitations, such as poor biocompatibility, incomplete
polymer degradation, and some toxicity, that will need to be addressed systematically to achieve better
cellular responses.

A significant trend that has been popular with human Pluripotent Stem Cell-Cardiomyocytes
(hPSC-CMs), has been the implementation of electrically-compatible scaffolds or biomaterials (in 2D
or 3D) compatible with standard electrophysiology measurements to stimulate hPSC-CM electrical
behavior and consequently its mature electrophysiological phenotypes (see Table 5). This would be a
strategy for exploration with CPCs as we improve our understanding of the CPC niche. Furthermore,
while most of the studies described above employed ESC-derived or putative CPCs on scaffolds,
studies using patient-specific CPCs from iPSCs or from transdifferentiation in engineered scaffolds to
model phenotypes are very rare. Therefore, with potential improvements in cardiac tissue engineering
and mechanistic understanding of responses in situ, the CPC niche can be exploited to assess normal
and disease-associated cardiac cell behavior to produce better regenerative outcomes (Figure 2).
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Figure 2. Promising strategies to improve CPC characteristics and functionality. Strategies for
producing CPCs to date through reprogramming or transdifferentiation has been associated with
poor efficiency or lack of mechanistic insight to achieve the target population and desired functional
improvement. With a range of tools for genetic engineering or gene modulation, and with advances in
tissue engineering approaches, new strategies have been applied in this field to accelerate proliferation,
enhance differentiation, extend replicative lifespan or improve functionality or engraftment of CPCs
(detailed in Sections 6 and 7).
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Table 4. Cardiac tissue engineering strategies with biomaterials using CPCs.

Scaffold Biomaterial Experimental Design Outcome Limitations Ref.

Fibrin patch

SSEA1+ and ISL1+ hESCs-CPCs mixed in fibrinogen, and
scaffolds were then transplanted into myocardial infarction

rats

-Improved contractility and decrease in adverse
ventricular remodeling
-Increased angiogenesis and attenuation of fibrosis

-Poor long-term cell engraftment
-Functional improvements resulted from
paracrine signaling

[247]

Same process as above, except the scaffolds were delivered
surgically on the infarct area of a 68-year-old patient

suffering from severe heart failure

-No observation of ventricular arrhythmias
-Decreased in adverse ventricular remodeling

-Presence of T-cell response 3 months
post-implantation
-Absence of neovascularization in
patch-treated area

[248]

mESCs were primed with BMP2 for 36 h and seeded into
fibrin matrices

The constructs were then implanted onto normal or
infarcted rat left ventricles

-Efficient cell engraftment
-Attenuation of left ventricle dilation
-Promotion of neovascularization

-Rapid inflammation-driven degradation of
scaffolds
-Unclear whether neovascularization was due
to in situ cell differentiation or endogenous EC
recruitment

[249]

Polyethylene glycol diacrylate
woodpile (PEGDa-Wp) and

PEGDa hydrogel.

Human adult LIN−/SCA1+ CPCs were seeded in a PEGDa
hydrogel and the mixture was then cultured onto a

PEGDa-Wp

-Benefits on cell assembly and alignment
-Induction of cell spatial-ordered multilayer
organization and differentiation towards a CM
phenotype

-Incomplete maturation of CMs
-No differentiation into SMCs and ECs
-No in vivo testing of the scaffolds

[258]

Poly(l-lactic acid) Nanofibres

mESC-derived ISL1+/GATA4+ CPCs were seeded onto
nanofibres

After 7 days of in vitro differentiation, the scaffolds were
implanted subcutaneously in the dorsal area of athymic

nude mice

-Enhancement of cell attachment, extension and
differentiation in vitro
-Improvement of cell survival, integration and
commitment to the three cardiac lineages in vivo
-Induction of angiogenesis in vivo

-Poor in vitro differentiation into ECs
-Unclear whether neovascularization was due
to paracrine factors or CPC-derived SMCs and
ECs

[257]

Tissue Printing using Sodium
Alginate

Human SCA1+ CPCs were mixed with alginate matrixes,
including an RGD-modified alginate, which were then used

to print porous and non-porous scaffolds

-Porosity preserved viability and proliferation and
increased cardiac commitment of CPCs
-CPCs migrated from the construct and formed
tubular-like structures

-Incomplete maturation of the differentiated
cells
-No in vivo testing of the scaffolds

[250]

Porcine- and human-derived
myocardial matrices

Human SCA1+ CPCs were seeded onto porcine and human
ECM

Scaffolds were injected into the left ventricular free wall of
healthy hearts of Sprague Dawley rats

-Porcine-derived ECM was more efficient at
promoting CPC differentiation, whereas
human-derived ECM promoted CPC proliferation

-Variation in ECM properties due to distinct
decellularised methods used, patient-to-patient
variability and tissue age

[259]

3D-printed hyaluronic
acid/gelatin-based matrix

Human SCA1+ CPCs were printed together with the matrix
The cell-loaded patches were transplanted in myocardial

infarction mice

-Reduction of adverse remodeling and fibrosis
-Long-term CPC survival and engraftment
-Formation of vessel-like structures within the
scaffold in vivo

-Absence of neovascularization in the infarcted
region
-Incomplete maturation of CMs in vivo

[251]

Collagen/Matrigel hydrogels
Human SCA1+ CPCs were encapsulated in

collagen/Matrigel hydrogels which were cultured in either
stress-free or unidirectional constrained conditions

-Enhanced cardiac differentiation and matrix
remodeling
-Constrained hydrogels stabilized CPC viability,
attachment and proliferation
-Static strain stimulated actin fiber formation and
cell alignment

-Differentiation trend towards CMs
-Incomplete maturation of CMs
-No CPC differentiation into SMCs and ECs
-No in vivo testing

[260]
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Table 4. Cont.

Scaffold Biomaterial Experimental Design Outcome Limitations Ref.

Decellularised porcine
ventricular ECM

Human Foetal and adult SCA1+ CPCs were resuspended in
porcine myocardial matrix and collagen type I solutions

The cell/matrix mixtures were injected into the left
ventricular wall of Sprague Dawley rats

-The myocardial matrix improved CPCs adhesion,
survival, proliferation and cardiac commitment
both in vitro and in vivo
-Foetal CPCs survived better than adult CPCs
in vivo

-Rats were euthanized 30 min
post-implantation, preventing assessment of
long-term effects on cell survival, migration
and cardiac function

[261]

Same procedure as above, exceptions: use of adult rat
c-KIT+ CPCs and no in vivo implantation

-The cardiac ECM improved cardiac commitment,
cell survival, proliferation and adhesion

-Differentiation trend towards CMs.
-Low differentiation efficiency towards ECs
and SMCs

[262]

Whole decellularised mouse
heart

hiPSC- and hESC-derived KDR+/c-KIT− CPCs were seeded
into a whole decellularised mouse heart

The repopulated hearts were perfused with VEGF and
DKK1 or VEGF and bFGF

-Efficient control of in situ iPSC-CPC
differentiation
-Advanced CM maturation
-Development of vessel-like structures and
spontaneous contraction for both iPSC-and
ESC-CPC constructs

-Scattered regions of uncoupled cells
-Insufficient mechanical force generation and
incomplete electrical synchronization of the
constructs

[252]

FLT1 (VEGFR1)+/PDGFRα+ hESC-CPCs were seeded onto
decellularised mice hearts, which were implanted

subcutaneously into SCID mice

-In situ generation of CMs, SMCs and ECs
-Formation of a vascular network and higher
expression of CM markers in vivo

-In vivo differentiated ECs were not
ubiquitously distributed in the decellularised
scaffold
-Absence of beating populations

[263]

Whole decellularised rat heart

hESC-derived KDR+/PDGFRα+ CPCs were expanded in a
stirred-suspension bioreactor and seeded onto

perfusion-decellularised Wistar rat hearts containing
immobilized bFGF

-Improved CPC retention, proliferation and
cardiac differentiation potential
-Spontaneous and synchronous contractions
-Advanced CM maturation

-Growth factor immobilization prevents
spatiotemporal control
-No in vivo testing

[264]

Whole decellularised human
heart

Human adult c-KIT+ CPCs from human cardiac biopsies
were cultured onto perfused-decellularised heart ventricles

-Increased CPC growth and stimulated
differentiation towards cardiac lineages in vitro

-Poor CPC infiltration into the matrix
-No electrical signal propagation.
-No in vivo testing

[265]

Rat and pig collagen matrix and
decellularised left ventricle

ECM

iPSC-CPCs were cultured on rat or pig collagen matrices
and decellularised ECM

CPCs were also co-cultured with ECs and CMs

-Enhanced expression of contractile protein gene
expression
-Cell communication was observed in co-cultures

-No results reported on CPC proliferation and
differentiation
-No information about the CPC markers

[253]

3D-bioprinted patch containing
decellularised porcine

ventricular ECM

Bioinks composed of decellularised ECM, human neonatal
c-KIT+ CPCs and gelatin methacrylate were used to print
patches, which were implanted onto the epicardial surface

of the right ventricle of Sprague Dawley rat hearts

-Good CPC retention and viability in the scaffolds
-Enhanced cardiogenic differentiation and
angiogenic potential
-Presence of vascularization in the patches in vivo

-Main purpose of the patch was to improve the
paracrine release from the CPCs
-No influence in SMC differentiation

[266]

Foetal and adult rat
decellularised ventricle ECM

Immortalized adult mouse LIN−/SCA1+ CPCs were seeded
onto embryonic, neonatal and adult rat ECM

-Good CPC retention, motility and viability
-Remodeling of the supporting ECM
-Enhanced production of cardiac repair factors

-No evidence of CPC differentiation
-No in vivo testing [267]

Decellularised murine
embryonic heart

Day 5 and 9 mESC-CPCs were then seeded onto the
decellularised scaffolds

-Day 5 progenitors formed spontaneously beating
constructs in the scaffolds

-Mixed cell population isolated
-Not all cell populations led to functional
maturation

[268]
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Table 4. Cont.

Scaffold Biomaterial Experimental Design Outcome Limitations Ref.

Decellularised human
pericardium-derived
microporous scaffold

Human SCA1+ CPCs were seeded onto 3D microporous
pericardium scaffolds, which were then implanted

subcutaneously into Wistar rats

-Improved CPC migration, survival, proliferation
and differentiation
-Reduction of immunological response and
enhanced angiogenesis

-No influence in CPC differentiation towards
SMCs [269]

Self-assembling peptide
nanofibers

Adult LIN−/c-KIT+ rat CPCs were seeded onto
IGF1-tethered nanofibres

CPCs and scaffolds were injected into myocardial infarction
rats

-Enhanced CPC survival, proliferation and
differentiation into CMs
-Improved angiogenesis, recruitment of resident
CPCs and attenuation of ventricle dilation

-Growth factor immobilization prevents
spatiotemporal control
-Newly formed CMs were derived from
resident CPCs
-CPCs were not cultured on the scaffolds prior
to implantation

[254]

Adult mouse SCA1+ CPCs were mixed with Puramatrix®

complex and injected into the border area of the
myocardium in myocardial infarction mice

-Reduction of the infarct area and attenuation of
ventricular dilation.
-Enhanced neovascularization

-No CPC differentiation towards ECs
-Functional improvements resulted from
paracrine signaling
-Poor CPC engraftment

[255]

RDG-modified collagen and
porous gelatin solid foam

Human adult CS-CPC were grown as secondary CSs, which
were seeded onto the scaffolds

-Enhanced cell migration and ECM production
-Increased CPC cardiogenic potential, cell retention
and adherence

-Cardiac commitment trend towards CMs
-Distinct scaffold morphologies promoted
different biological processes

[270]

Degradable
Poly(N-isopropylacrylamide)

hydrogel

Mouse CDCs were added into hydrogel solutions, with or
without collagen and containing different stiffness

-Preservation of CDC proliferation
-Stimulation of differentiation into mature cardiac
cells in hydrogels with medium stiffness and
collagen

-No differentiation into ECs and SMCs
-No in vivo testing [256]

Biodegradable gelatin
Human CDCs were seeded onto bFGF immobilized gelatin

hydrogels, which were implanted in the epicardium of
immunosuppressed myocardial infarction pigs

-Enhanced angiogenesis, cell engraftment
-Reduction of the infarct area and attenuation of
adverse ventricular remodeling

-Growth factor immobilization prevents
spatiotemporal control
-No differentiation into ECs and SMCs

[271]

Fibrinogen/Matrigel mixture
and PDMS molds

NKX2.5+/c-KIT+/either FLK1+ or SCA1+ iPSC-CPCs were
mixed in a fibrinogen/Matrigel hydrogel and applied into

PDMS molds

-Spontaneous and synchronous contraction
-Highly organized sarcomere structures and robust
electromechanical connections

-Improper nutrient access within the construct
-No differentiation potential towards SMCs
and ECs
-No in vivo testing

[157]

Collagen sponge
CPCs were seeded onto collagen sponges and then
transplanted into rat hearts with atrioventricular

conduction block

-Enhanced vascularization
-Gap junction formation
-Differentiation into CMs, conduction cells and ECs

-No information about the functionality of the
CPC-derived cells [272]

(h/m)ESC(s): (human/murine) Embryonic Stem Cell(s); BMP: Bone Morphogenic Protein; EC(s): Endothelial Cell(s); CM(s): Cardiomyocyte(s); SMC(s): Smooth Muscle Cell(s);
ECM: Extracellular Matrix; VEGF: Vascular Endothelial Growth Factor; DKK1: Dickkopf WNT Signaling Pathway Inhibitor 1; bFGF: basic Fibroblast Growth Factor; hiPSC(s): human
induced Pluripotent Stem Cell(s); SCID: Severe Combined Immunodeficiency; IGF1: Insulin-like Growth Factor; CS(s): Cardiosphere(s); CDC(s): Cardiosphere-Derived Cell(s);
PDMS: polydimethylsiloxane.
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Table 5. In vitro cardiac tissue engineering techniques with biomaterials to stimulate and record hPSC-CM electrical activity.

Cells Biomaterial/Scaffold Platform Stimulation Electrophysiology Ref.

hiPSC-CMs Graphene substrate 2D
FET (current pulse with f = 1 Hz)

For calcium: voltage ramp from −80 to
+60 mV at 20 mV/s

-Enhanced electrophysiological properties:
RP = −40.54 ± 1.72 mV
AP = 75.24 ± 3.91 mV
CV = 5.34 ± 1.60 cm/s
ICa2+ density = −9.31 ± 2.35 pA/pF
ICa2+,L density = −2.47 ± 0.6 pA/pF
Ik density = 46.24 ± 8.45 pA/pF
Ikr density = 36.57 ± 5.84 pA/pF
Ca2+ transients:
Amplitude intensity = 1.69 ± 0.20 u
Upstroke velocity 3.09 ± 0.99 u/s
Decay velocity (50%) = 0.84 ± 0.29 s

[273]

iCell® CMs & hESC-CMs
Reduced graphene oxide

(rGO) 2D
Light: intensity >1 mW/mm2, duration
40-ms-2-Hz light pulses and 3-s step of

light

-Optical stimulation on rGO substrates improves CMs
electrophysiology
-rGO increases AP peaks frequency
-On rGO CMs contraction frequency increases with light
intensity

[274]

Neonatal Sprague Dawley rat vCMs Electrospun gelatine +
PCL nanofibres 3D FET (1–3 V, 50-ms-long pulses at 1–2 Hz)

-Electrical stimulation results in regularly spaced spikes (f =
1–2 Hz) with shape and width consistent with CM extracellular
signals
-NE increases electrical activity and frequency of calcium
transients

[275]

hiPSC-CMs PLGA electrospun aligned
nanofibres 3D Not applied

-Enhanced CM maturity and electrical activity
-CM drug (E4031) response showed higher electrophysiological
homogeneity
-L-ANFs increased FP amplitude, number of electrically active
cells, synchronization and anisotropic propagation of the
electrical signal

[276]

hESC-CMs & hiPSC-CMs Type I collagen gel
template suture (Biowires) 3D

Electrical field with daily and
progressively frequency increase: low

frequency ramp-up regimen (from 1 to 3
Hz) or high frequency ramp-up regimen

(from 1 to 6 Hz)

-Electrical stimulation enhanced electrical activity frequency
-High frequency increased electrophysiological properties,
contractile activity, synchronization and CV
-High frequency decreased excitation threshold and variability
in AP duration
-High frequency improved CM response to caffeine and Ca2+

handling properties:
IERG = 0.81 ± 0.09 pA/pF
IK1 = 1.53 ± 0.25 pA/pF

[277]
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Table 5. Cont.

Cells Biomaterial/Scaffold Platform Stimulation Electrophysiology Ref.

hESC-CMs MEA coated with collagen
type I + agarose layer 2D Anti-arrhythmic and pro-arrhythmic

drugs

-Pharmacological stimulation influences CMs electrophysiology
-FPD and CT are dependent on the dose of arrhythmogenic
drugs:
E-4031 & Astemizole increased FPD
Flecainide & Terfenadine decreased FPD
Flecainide, Astemizole & Terfenadine
increased CT
and of safe drugs:
Verapamil & Lidocine decreased FPD
Lidocine slightly increased CT

[278]

hiPSC-CMs
MEA coated with

hydrogel containing
fluorescence microbeads

2D

Electrical: periodic voltage pulses
(biphasic square waves with pulse width

= 4 ms, f = 0.2 Hz, peak-to-peak
amplitude = 4 V)

Pharmacological: drug exposure (NE
and Blebbistatin)

-Good electrical coupling of CMs
(FP = 9–35 µV and CV = 16 cm/s)
-Electrical pacing promoted synchronized contraction
(f = 11 bpm)
-Recorded impedance increased with cell attachment and at
each contraction
-Blebbistan inhibited beating activity and has no effect on FP
-NE increased CV and contraction spikes rate

[279]

hiPSC(s): human induced Pluripotent Stem Cell(s); hESC(s): human Embryonic Stem Cell(s); (v)CM(s): (ventricular) Cardiomyocyte(s); FET: Field Effect Transistor; f: frequency; RP:
Resting Potential; AP: Action Potential; CV: Conduction Velocity; PCL: Polycaprolactone; NE: Norepinephrine; PLGA: Poly(lactic-co-glycolic) acid; L-ANFs: Low-density nanofibres; FP:
Field Potential; FPD: Field Potential Duration; CT: Condition Time; MEA: Micro-Electrode Array; IDE: Interdigitated electrode.
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8. In Vivo Applications of Human CPCs

The end-goal of in vitro and animal in vivo studies in CPC research is to provide enough evidence
regarding the efficacy and safety of cell therapies for further application in human trials. This is not
without the caveat that, despite promising results from in vitro and animal models, the translation to
clinical trials still suffer from serious inefficiencies in desirable outcomes over long term, costing billions
of dollars in the process [280]. Even though there is not yet an agreement on the CPC population that
displays the best regenerative capacity, a variety of CPCs have been used or are being used in clinical
trials, which are summarized in Table 6.

The first-ever clinical trial using CPCs, called SCIPIO (Stem Cell Infusion in Patients with Ischemic
cardiOmyopathy) used human LIN− c-KIT+ CPCs to improve postinfarction left ventricular dysfunction.
However, this study has now been retracted due to concerns about the randomisation and lack of integrity of
certain data [281,282]. In 2012, the randomised phase I trial CADUCEUS (CArdiosphere-Derived aUtologous
stem CELLs to reverse ventricUlar dySfunction) employed cardiosphere-derived cells to reduce scarring after
myocardial infarction [283]. These cells were obtained from endomyocardial biopsy specimens and were
transplanted into patients 1.5–3 months post-myocardial infarction using intracoronary infusion. The results
showed that the cells led to an improvement in viable heart tissue and a reduction of scarring. Differentiation
potential of cardiosphere-derived cells towards cardiac lineages remained to be elucidated and thus, it is
likely that the benefits observed in the CADUCEUS study were a result of paracrine factors. In the same
year, another phase I trial called ALCADIA (AutoLogous human CArdiac-Derived stem cell to treat Ischemic
cArdiomyopathy) used autologous human CPCs in combination with a controlled released of bFGF in patients
suffering from ischemic cardiomyopathy and heart failure [284,285]. These CPCs expressed the mesenchymal
surface markers CD105 and CD90 and were also derived from endomyocardial biopsy specimens. The cells were
injected intramyocardially and a biodegradable gelatin hydrogel sheet containing bFGF was then implanted on
the epicardium, which covered the injection sites areas. However, as in the case of the CADUCEUS study, the
benefits observed, such as attenuation of adverse ventricular remodelling and neovascularisation, were probably
due to paracrine mechanisms as there was no compelling evidence that the employed CPCs can differentiate
into cardiomyocytes in vivo [284,286]. A more recent trial published in 2018, named ESCORT (Transplantation
of Human Embryonic Stem Cell-derived Progenitors in Severe Heart Failure), used hESC-derived CPCs,
expressing the markers SSEA1/CD15 and ISL1, embedded in a fibrin gel [287]. The scaffold was then delivered
onto the epicardium of the infarct area. The aim of the study was to confirm the safety and feasibility of the
therapy rather than evaluating its regenerative effects in the patients. Further investigation will be needed to
thoroughly assess the benefits of the fibrin gel patch in severe heart failure.

There are also reports on phase I and II clinical trials assessing the use of autologous cardiosphere-derived
cells in paediatric patients suffering from hypoplastic left heart syndrome [288,289]. The phase I TICAP
(TranscoronaryInfusionofCArdiacProgenitorcells inpatientswithsingleventriclephysiology)demonstrated
that the approach was safe and feasible for improving cardiac function after 18 months [288]. The safety of
the therapy was also analysed at 36 months post-transplantation [290]. There was no tumour formation
and the initial observed benefits were enhanced, with attenuation of ventricular stiffness and improvement
of ventriculoarterial coupling. The results obtained from TICAP were further confirmed by the phase II
PERSEUS (Cardiac Progenitor Cell Infusion to Treat Univentricular Heart Disease) [289]. Furthermore, the
therapy is currently being tested in a phase III trial (APOLLON) [291] and applied in paediatric patients
diagnosed with dilated cardiomyopathy (phase I trial TICAP-DCM: Transcoronary Infusion of CArdiac
Progenitor cells in paediatric Dilated CardioMyopathy) [292], for which results are still waiting.

Most trials involving CPCs come with limitations in employing small sample sizes or lack of
blinded assessment, which ultimately leads to inconclusive results regarding the therapies’ efficiency
in recovering from cardiac disorders. In addition, it is still inconclusive whether the positive results are
attributed to intracoronary infusion of CPCs themselves or from paracrine factors as speculated by
some trials. It will, therefore, be imperative to perform future clinical trials with a broader assessment of
study subjects and an established human reproducible model to better explore the CPCs’ regenerative
capacity in human hearts.
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Table 6. Past and ongoing clinical trials using CPCs.

Clinical Trial Name Phase Start/End Date CPC Type Delivery of Cells Biomaterial Added Results Ref.

CADUCEUS
prospective, randomized trial I 2009–2012 CDCs Direct injection via

catheter none

LVEF unchanged at 12 months
Scar size decreased 12.3% at 12

months
Regional contractility and systolic

wall thickening increased

[283,293]

ALCADIA
Open-label, non-randomized

trial
I 2010–2013 CDCs Direct injection via

catheter

Biodegradable gelatin hydrogel
sheet containing 200 µg of bFGF

planted onto epicardium
covering the injection site

LVEF increase 12% at 6 months Scar
size decrease 3.3% at 6 months [285]

ALLSTAR
Open-label cohort (PI),

double-blinded, randomized,
placebo-controlled study (PII)

I/II 2012–2019 CDCs Direct injection via
catheter none Terminated (follow-up activities were

ceased) [294]

ESCORT
Open-label trial I 2013–2018 ESC-derived

ISL1+/CD15+

Epicardial patch via
coronary artery

bypass procedure

Fibrin gel patch containing
progenitor cells

LVEF increase of 12.5%
No arrhythmias, or tumor formation [287]

CAREMI
Double blinded, randomized,

placebo-controlled trial
I/II 2014–2016 CDCs Direct injection via

catheter none
Infarct size decreased to 15.6% at 12

months
LVEF increase of 7.7% at 12 months

[295]

DYNAMIC
Open-label trial, randomized,

double-blinded,
placebo-controlled trial

I 2014–ongoing CDCs

Direct injection via
catheter to

multi-vessel areas of
heart

none Ongoing [296]

CONCERT-HF
Randomized, double-blinded,

placebo-controlled trial
II 2015–ongoing c-KIT+ Direct injection via

catheter none Ongoing (paused on 29.10.18,
re-approved 06.02.2019) [297]

TICAP
Open-label trial,
non-randomized

I 2011–2013 CDCs Direct injection via
catheter none

RVEF increase of around 8.0% at 18
and 36 months

No tumor formation
[288,290]

PERSEUS
Open-label trial, randomized II 2013–2016 CDCs Direct injection via

catheter none LVEF increase of 6.4% at 3 months
Reduction in scar size [289]

APOLLON
Randomized, single-blinded III 2016 & Unknown CDCs Direct injection via

catheter none Unknown status (last update was
September 2017) [291]

TICAP-DCM
Randomized I 2017–ongoing CDCs Direct injection via

catheter none Recruiting [292]

REGRESS-HFpEF
Randomized, double-blinded,

placebo-controlled trial
II 2017–ongoing CDCs Direct injection via

catheter none Ongoing [298]

CDCs: Cardiosphere-Derived Cells; ESC: Embryonic Stem Cell; bFGF: basic Fibroblast Growth Factor; LVEF: Left Ventricular Ejection Fraction; RVEF: Right Ventricular Ejection Fraction.
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9. Current Challenges and Limitations

There is still a lot of debate on the effect that CPCs play a role in cardiac regeneration and repair
in the context of diseases like MI, demonstrating increased left ventricular ejection fraction, decreased
infarct size, and an increase in hemodynamic function following infusion of autologous CPCs. Even
though there is a growing emphasis on the application of CPCs for cardiac regeneration, its impact is
still obscure, particularly owing to its heterogeneous nature and mechanistic silencing from deep-rooted
complexities associated with the nature of the cardiomyopathic disease. For example, there is still no
consensus regarding which CPC population is the ideal cell type for cell-based regenerative therapies
and which combination of markers accurately characterise CPCs. Additionally, the characteristic
epigenetic, gene, protein and secretome profiles of most CPCs remain unclear [19,41]. This could
elucidate how phenotypes and genotypes of CPCs alter throughout their development and their
effects on self-renewal and potency potentials. Furthermore, not many studies have investigated and
compared the therapeutic efficacy of different CPCs. The ideal CPC type should be able to tolerate
autologous transplantation, expand extensively in vitro, differentiate into mature cardiac cell subtypes
and integrate with the host cells [299].

Viral transduction remains the main approach applied in most reprogramming processes (both
in vitro and in vivo) as it shows the greatest efficiency. However, this is associated with a risk of genome
integration and activation of oncogenic genes. In addition, the currently developed protocols require
the use of both reprogramming and growth factors which substantially increases their complexity and
final cost. It is, therefore, imperative to develop a more effective and simpler gene transfer methods
that ensure cell therapies are safe and display a good cost-benefit ratio.

Furthermore, the populations of CPC-derived cells are heterogeneous and frequently represent
immature cells, which could potentially lead to arrhythmias, lower long-term stability and poor
integration when transplanted [3,300]. The mechanisms involved in cardiac lineage subtype
specification will need to be fully investigated and optimised to produce purer and more mature
populations of the desired cell types from the CPCs. With the growing pace of CRISPR strategies
and its potential to address limitations associated with genetic control and regulation, it will not be
surprising that this will be applied to CPCs for this purpose in the very near future.

Epigenetic profiles seem to strongly affect reprogramming efficiencies for both iPSCs and
transdifferentiation technologies. For example, using cells from non-cardiac tissue organs or aged
tissue negatively affects the cardiogenesis capability of iPSCs [301]. The success of reprogramming a
cell fate relies on the ability to overcome the several epigenetic barriers present in somatic cells. The
more distinct the donor somatic cells are from the cardiac tissue, the higher the number of epigenetic
barriers that need to be overcome and consequently, the harder it is to reprogram the cells. Therefore,
understanding the epigenetic regulatory mechanisms involved CPC formation might be vital to
improving reprogramming efficiency.

Another limitation in CPC research is that many studies have been performed in rodent models,
which display distinct cardiac anatomy and physiology from the human heart. Additionally, current
techniques developed using animal cells will need to be further validated for human context. For
example, the direct reprogramming protocol involving the three core cardiac genes GATA4, MEF2C
and TBX5 (also known as GMT) was demonstrated to induce mouse fibroblasts into cardiac cells, but it
was insufficient to convert human fibroblasts [164].

For future preclinical trials, the relationship between the number of CPCs and their effects on
cardiac regeneration and the appropriate frequency of administration of each cell therapy needs to be
further investigated [299]. In addition, molecules and/or cells are very often directly injected into the
heart during open-surgery. This is an invasive approach that could cause additional injury and pain
to the patients. Other less invasive methods, such as intracoronary and intravenous injection, have
been employed to deliver cells to the heart. However, these techniques rely on correct homing of cells
into the damaged tissue, and very often the delivered cells become trapped in other organs [302,303].



Cells 2019, 8, 1536 37 of 55

Consequently, other delivery systems that are less aggressive and show the best efficacy and safety
need to be developed before CPCs can be applied in regenerative medicine strategies.

There are sufficient reports that support the existence of CPCs within specialized niche structures
in the myocardium [241]. For therapeutic applications, these CPCs can be isolated and cultured in vitro,
prior to transplantation into the affected heart or, the local microenvironment can be modulated to
recruit CPCs to the infarct area. Current biomaterial strategies (discussed in Tables 4 and 5) have
exploited both these methods for functional improvements but do not report complete recovery under
physiological conditions or pathological insults. This is evident in the lack of clinical trials with CPCs
using biomaterials (Table 6). This offers an opportunity to integrate engineering with mechanistic
modulation (perhaps through genetic engineering) to contextualize CPC behavior with disease factors.

The difficulties described above rely, to some extent, on the incomplete understanding of the
heart development and cardiac regeneration processes. Increasing this knowledge will clarify the
precise stoichiometry of the cardiac factors and optimal culture conditions to accurately mimic the
development of CPCs in vitro.

10. Final Thoughts—Controversies Surrounding CPCs

It does seem that the debate surrounding CPCs and adult heart repair is taking a full circle—it is
there, it is not there, it is there, etc? With the first evidence in rodents supporting the notion of c-KIT+

cells from bone marrow or adult heart to replace damaged myocardial tissue, from Piero Anversa’s lab,
and subsequent retractions of 31 papers from his group owing to unreliable data, it has encouraged
the field to challenge the theory by more robust techniques in mouse models [58,61,304,305]. Results
from such studies showed that cardiomyocyte generation from a c-KIT+ cells was an extremely rare
event. Notably, more recently, the data from Li et al. (2018) showed compelling evidence to support
endogenous stem cell to myocyte conversion in embryonic but not in adult heart [306].

Ironically, a more recent work in 2019, by Narino et al., has demonstrated that c-KIT expression
labels a heterogeneous cardiac cell population, with cells low in c-KIT expression enriched for CSCs
while c-KIT high expressers having endothelial/mast cell differentiation potential [307]. This study went
on to show that adult c-KIT-labeled CSCs in mouse “can be myogenic” and help to regenerate after injury
and to counteract effects of aging on cardiac structure and function, thus boldly suggesting that CSCs
as the bonafide endogenous source of cardiomyocytes in healthy/pathological heart. Consequently,
they identified c-KIT haploinsufficiency, generated usually in lineage-tracing studies, prevents efficient
labeling of true CSCs on one hand while affecting the regenerative potential of these cells on the other,
which perhaps could have been the oversight in the rival camp. Nevertheless, irrespective of the c-KIT
controversy, there is no denying that animal studies and clinical trials have appreciated the benefit of a
range of cell types for CPCs from many different sources through cellular transplantation approaches
([308–310] and Tables 1, 4 and 6). Furthermore, there is an emerging theory that injected/infused
CPCs can induce a reconditioning of the injured heart through paracrine signalling or that these cells
stimulate an acute inflammatory response when these cells die and are cleared, resulting in a secondary
acute healing response [311].

Therefore, as implied in Table 1, there is still no consensus on an endogenous CPC type that
is critical for myocardial repair and regeneration but there is growing consensus that regeneration
associated with these CPCs are not robust enough to repair severe myocardial damage such as in MI
(commented in [307]). While this review does not offer to bias the reader for one or the other theory, in
light of these recent studies, it offers the field impetus to interrogate other strategies and CPC sources
(like from stem cells or transdifferentiation of somatic cells) to provide mechanistic insights into how
CPCs can be more functionally significant in the context of cardiac regenerative medicine.

11. Future Directions

Heart failure patients are typically elderly, and suffer from chronic cardiomyopathies and associated
complications like diabetes, hypertension, etc. Notably, they possess CPCs with compromised regenerative
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potential, insufficient to recover lost cardiac function [312,313]. The propensity of CPCs to affect
cardiac repair is influenced by several factors, including genetics [314], epigenetic dysregulation [315],
environmental stress [315], disease progression and pathogenesis [316,317], heart load [318], medication,
and aging [319,320]. Nevertheless, discovery of CPC characteristics has revolutionized the conceptual
view of treatment for heart disease, supported by the capacity of CPCs to form functionally integrated
cardiomyocytes and vasculature [321]. Therefore, it is rational to enhance potential of CPCs from the
adult or reprogrammed cell sources prior to adoptive transfer into a damaged myocardium. Hence, CPC
research is gaining momentum to improve its feasibility for cardiac regenerative therapeutics. Advances
in this field are progressing towards combining optimised reprogramming approaches from iPSCs and
somatic cells with tissue engineering strategies. This will undoubtedly bring advances in genomics,
epigenomics, and proteomics of CPCs and their differentiated counterparts, to realise their full potential.
Future regenerative approaches might bring together genetic engineering (a very tested strategy in iPSCs),
the addition of multiple stimuli (mechanical, electrical and biochemical factors) and tissue engineering
approaches to develop a meticulously controlled system that maximises CPC regenerative capacity, and
that could potentially be applied in cell therapy, disease modelling, and drug screening (Figure 1).
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