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Abstract

Purpose

Cortical porosity is a key characteristic governing the structural properties and mechanical

behaviour of bone, and its quantification is therefore critical for understanding and monitor-

ing the development of various bone pathologies such as osteoporosis. Axial transmission

quantitative acoustics has shown to be a promising technique for assessing bone health in a

fast, non-invasive, and radiation-free manner. One major hurdle in bringing this approach to

clinical application is the entanglement of the effects of individual characteristics (e.g. geom-

etry, porosity, anisotropy etc.) on the measured wave propagation. In order to address this

entanglement problem, we therefore propose a systematic bottom-up approach, in which

only one bone property is varied, before addressing interaction effects. This work therefore

investigated the sensitivity of low-frequency quantitative acoustics to changes in porosity as

well as individual pore characteristics using specifically designed cortical bone phantoms.

Materials and methods

14 bone phantoms were designed with varying pore size, axial-, and radial pore number,

resulting in porosities (bone volume fraction) between 0% and 15%, similar to porosity val-

ues found in human cortical bone. All phantoms were manufactured using laser sintering,

measured using axial-transmission acoustics and analysed using a full-wave approach.

Experimental results were compared to theoretical predictions based on a modified Timo-

shenko theory.

Results

A clear dependence of phase velocity on frequency and porosity produced by increasing

pore size or radial pore number was demonstrated, with the velocity decreasing by between

2–5 m/s per percent of additional porosity, which corresponds to -0.5% to -1.0% of wave

speed. While the change in phase velocity due to axial pore number was consistent with the

results due to pore size and radial pore number, the relative uncertainties for the estimates

were too high to draw any conclusions for this parameter.
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Conclusions

This work has shown the capability of low-frequency quantitative acoustics to reflect

changes in porosity and individual pore characteristics and demonstrated that additive

manufacturing is an appropriate method that allows the influence of individual bone proper-

ties on the wave propagation to be systematically assessed. The results of this work opens

perspectives for the efficient development of a multi-frequency, multi-mode approach to

screen, diagnose, and monitor bone pathologies in individuals.

Introduction

Osteoporosis is a systemic bone pathology characterized by the degradation of micro- and

macroscopic bone properties [1–3] and a corresponding increase in fracture risk. Osteoporosis

is the most widespread skeletal disorder, affecting one in two women and one in five men over

the age of 50 in the western world [4,5] and more than 200 million individuals worldwide [2].

The lifetime risk of suffering from an osteoporosis-related fracture in subjects over 50 years is

estimated to be 53.2% in women and 20.7% in men [6], a number that will likely be exacer-

bated by increasing life expectancies. Apart from causing individual suffering, osteoporosis

also places a high financial burden on the public health sector, estimated to be $3.8 billion

annually in the US alone [1,6], with every osteoporosis-induced fracture incurring some

$10’000 additional cost within the initial six months after fracture [7].

Although considerable changes occur within the trabecular bone structure due to osteopo-

rosis [5,8], the endosteal cortex is also known to be affected, where an imbalance in bone

resorption over bone formation leads to an increase in cortical porosity, as well as thinning of

the cortical shell, thereby increasing bone fragility [5,9–12]. Cortical porosity has also been

shown to account for most of the variations in mesoscopic bone elasticity and anisotropy [13],

making cortical porosity a key property governing the mechanical properties of the bone.

Thus, any state-of-the-art approach to clinically assess bone health clearly needs to take cortical

porosity into account.

Axial transmission quantitative acoustics (ax-QA)—here assumed to include quantitative

sound in the frequency range between 1Hz and 20kHz as well as quantitative ultrasound when

frequencies over 20k Hz are employed—is a bone sonometry method that has shown sensitiv-

ity to bone related pathologies [14–19] and individual properties of human cortical bone [20–

23]. Compared to conventional radiation-based methods, ax-QA is fast, non-invasive, porta-

ble, inexpensive, and radiation-free, which opens perspectives for applications such as diagno-

sis, monitoring, and widespread prevention programs. In ax-QA, transducers are placed

supercutaneously along the bone (e.g. tibia, ulna. . .) and transmit acoustic waves into the bone

cortex through the overlying soft-tissues. Separate surface sensors measure the propagation of

these acoustic waves, providing information on bone properties such as cortical thickness

[20,21] or porosity [22,23].

Early ax-QA devices used acoustic waves of frequencies between 250kHz and 1MHz and

analysed the “first arriving signal” (FAS), sometimes also termed the “speed of sound” or “fast

wave”, which has commonly been defined by the first crossing of the signal over an arbitrary

threshold and has therefore never been standardized [15,21,24–28]. Later, this FAS approach

was extended to also consider the “energetic late arrival” (ELA) or “slow wave”, which is a

high-energy signal arriving after the FAS. It was eventually found that the FAS and ELA con-

sisted of not only one, but rather multiple wave modes and their reflections propagating within
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the bone at the same time, making valid interpretation of results difficult [29,30]. Specifically,

it has been shown through numerical and experimental studies that the FAS corresponds to a

lateral head wave for λ<< d and to a S0-like guided wave (lowest-order symmetric) from

plate theory for λ> d; the energetic-late-arrival (ELA) was identified to correspond to a Ray-

leigh wave for λ<< d and to the A0-like guided wave (lowest-order antisymmetric) for λ> d

[30–32], where λ denotes the wavelength and d the cortical thickness.

Furthermore, it was shown that due to their intrinsic characteristics, particular wave modes

are more sensitive to the measurement of specific bone properties than others and that these

characteristics can vary drastically with frequency [5,16,21,30,33]. Together, these insights

have led to the development of multi-mode analyses as well as full wave analyses of individual

modes [31,34], in which the complete time-signal is considered. Contrary to FAS and ELA,

which only assess a small part of the signal, such full wave analyses allow the differentiation

between various reflections propagating within the bone without the requirement for arbitrary

thresholds.

The fact that the ability to measure a certain bone property in a sensitive manner depends

on the frequency and wave mode opens perspectives for a multi-frequency, multi-mode analy-

sis to gather comprehensive information on bone properties over various length scales and

various depths of the bone [23,33]. Towards bringing such an approach to clinical application,

considerable effort has been invested in assessing the potential information accessible over dif-

ferent frequency ranges through in-vitro [21,29,31,34] as well as in-vivo studies [16,19]. By

examining the A0- and S0-modes in the frequency range from 250 kHz to 1.25 MHz, these

experiments have clearly shown that information on geometrical properties and properties

near the endosteum are only accessible using frequencies below about 500 kHz in the case of

these modes, but not by using higher-frequency waves due to their limited penetration depth

into the bone [23,30,31,35]. The quantification of geometrical and endosteal properties is criti-

cal, particularly in the assessment of osteoporosis, in which the changes in bone properties

such as porosity mainly occur at the endosteal surface [10,11]. While recent research suggests

that these properties might still be accessible at frequencies above 500kHz using higher order

modes [36–38], such approaches are still restricted by the complexity of exciting, measuring,

and differentiating the individual modes. While these higher order modes have the potential to

be sensitive to additional characteristics of bone properties over and above the standard low-

order modes, the use of these A0- and S0-modes offers a robust and established way to assess

geometry and endosteal properties at a macroscopic level.

In addition to the problem of finding suitable frequency ranges and wave modes, experi-

ments on in-vitro or in-vivo human bone are complicated by an entanglement of the effects of

individual characteristics (e.g. geometry, porosity, anisotropy, overlying soft-tissue) on the

measured wave propagation. In order to address this entanglement problem, we therefore pro-

pose a systematic bottom-up approach, in which only one bone property is varied while all

others are kept constant, before addressing the various interaction effects.

The aim of this study was therefore to investigate the capability of low-frequency ax-QA

using the fundamental A0-mode to measure porosity in bone phantoms in a systematic man-

ner, examining the role of varying pore size, as well as axial and radial pore number, while

keeping geometry and material properties constant.

Methods

Bone phantoms

For this study, 14 bone phantoms with varying pore size, radial or axial pore number were

designed (see Fig 1 and Table 1) to allow the investigation of porosities (volume fraction)
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between 0% and 15%. These values were chosen in order to mimic human bone, which has a

cortical porosity between approximately 1% and 20%, depending on age, bone, and osteopo-

rotic status [12,39–43].

All phantoms were cylindrical with 3cm diameter and 30cm length, and were manufactured

out of Polyamid 12 (PA12) using selective laser sintering in a vertical orientation. The simple

phantom shape approximates a long bone in the human body (e.g. tibia, ulna, femur), avoids

the effects of more complex geometry or wall thickness on the wave propagation, and facili-

tates an experimental procedure with high reproducibility and repeatability. To check whether

the laser sintering manufacturing process or the manufacturing orientation introduces addi-

tional anisotropic effects on the wave propagation, one additional phantom was manufactured

in a horizontal orientation and two further phantoms of the same shape, made from Polyvinyl-

chlorid and Polyethylen, were manufactured by conventional extrusion. Additionally, planar

X-ray images were taken with a fluoroscope (resolution 0.27 mm) to qualitatively confirm the

success of the manufacturing process with regard to the design specifications.

Measurement setup and protocol

All acoustic measurements in this study were performed using the Bone Stiffness Measure-

ment Device (BSMD), which has been described in detail elsewhere [44] but a brief overview is

Fig 1. In this study phantoms with varying porosities in radial (left) and axial (right) direction were manufactured. The

radial distribution is identified by the number of pores in the cross-section (here 37), and the axial distribution is identified by

the number of such patterns along the axis (here 25).

https://doi.org/10.1371/journal.pone.0182617.g001

Table 1. Design parameters of the manufactured phantoms.

id porosity (%) pore size (mm) pore pattern # of patterns # of pores

100 0.00 0 0 0 0

101 0.12 0.5 19 25 475

102 0.94 1 19 25 475

103 3.17 1.5 19 25 475

104 7.51 2 19 25 475

105 14.66 2.5 19 25 475

107 1.84 1 19 49 931

108 2.74 1 19 73 1387

109 3.64 1 19 97 1843

110 1.01 1 7 73 511

111 1.87 1 13 73 949

113 3.60 1 25 73 1825

114 5.34 1 37 73 2701

The column “id” contains an arbitrarily chosen identifier for each phantom, “pore pattern” refers to the number of spheres in one cross-sectional pattern, “#

of patterns” refers to the number of such cross-sectional patterns, and “# of pores” gives the overall number of pores.

https://doi.org/10.1371/journal.pone.0182617.t001
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presented here: The BSMD consists of a piezo-electric transducer to excite an acoustic wave,

multiple acceleration sensors to measure the wave propagation, and a data acquisition system

to control the device and to record the measurement data. The acoustic wave was excited by a

sine of 3300 Hz, enveloped by a Gaussian with Full-Width-at-Half-Maximum (FWHM) of

2000 Hz. The accelerometers (4518, Brüel & Kjael GmbH, Pöcking, Germany) had a sensitivity

of 100 mV/G, where G is 9.81 m/s2, and data was sampled at a frequency of 96kHz.

This experiment utilised a custom-made mounting platform to achieve high reproducibility

in transducer and specimen placement while also ensuring acoustic decoupling. A foam

underground for the specimen provided mechanical stability for the specimens as well as a

strong impedance mismatch with the specimen material. This mismatch causes near perfect

reflections to occur at the phantom-foam interface and thus minimizes the effect of the foam

on the wave propagation.

The transducer was mounted, facing radially inwards, 5mm from the end of the phantom,

which also acted as the origin of the coordinate system. This placement allowed the excitation

of a transversal wave inside the phantom, superimposing the direct wave and the first reflec-

tion from the nearest end of the phantom, thus creating a well-defined wave front propagating

away from the origin. One acceleration sensor was placed in-line with the transducer at a dis-

tance of 50mm. In this configuration, a wave was induced and 2000 data points were mea-

sured, corresponding to approximately 20ms. The sensor was then repositioned 10mm along

the phantom’s axis and another measurement was performed; this process was repeated until

the sensor reached the end of the phantom. Overall, this procedure resulted in a collection of

26�2000 space-time data per phantom.

To exclude the possibility that the pore patterns cause an angular dependency of our results,

two of the phantoms were tested in orientations between 0˚ and 180˚ in 15˚ steps.

Wave speed analysis

Each of the measurements was first windowed along the time-axis using a Hamming-window

of 1000 points width and center at 0.01s, followed by a 2D-Fast Fourier Transform (2D-FFT)

with lengths of 256 and 32768 points, which were chosen to be about 10 times the length of

acquired data for space and time respectively. This procedure transformed the space-time

data, collected for each phantom, to the wavenumber-frequency domain and allows differenti-

ation between the various possible modes at each frequency. Since the comparatively short

length of the phantoms, together with the excitation duration and the wave velocity, lead to

multiple reflections propagating and overlapping within the phantom, the presented 2D-FFT

technique is especially advantageous for differentiating these various reflections.

A sinc function fit

y xð Þ ¼ A
sinðpðx � x0ÞÞ

pðx � x0Þ
ð1Þ

was performed between 3.0 and 10.5 1/m for each frequency, corresponding to wavespeeds of

approximately 270 m/s to 1200 m/s for the considered frequency range, by minimizing a sum

of squared deviations cost function, where x is the inverse wavelength, and x0 and A are free

parameters to be determined. This fitting function allows the isolation of the A0-like flexural

wave mode travelling away from the transducer and the fitting function was motivated by the

fact that the finite measurements in space can be seen as a subset of an infinite number of mea-

surements that are contained within a rectangular window, the transformation of which is the

sinc-function.
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Using the x0 determined from the fit, the wave speed was then calculated as

c ¼ cðf Þ ¼ f lðf Þ � f =x0ðf Þ; ð2Þ

where f is the frequency and λ is the wavelength. Fig 2 shows an illustration of the overall anal-

ysis procedure up this point.

The uncertainty in the wave speed Δcfit, attributable to the fitting procedure, was calculated

from Eq 2 using Gaussian error propagation [45]:

Dcfit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@c
@x0

� �2

Dx2
0

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f
x0

Dx0

� �2
s

; ð3Þ

where Δx0 is the uncertainty in x0 estimated from the fitting procedure [46–48]. Finally, the

determined wave speeds c(f) were averaged over a number of 100Hz frequency bands to

reduce effects from the limited frequency resolution–based on our central frequency and

bandwidth, we used 2900-3000Hz, 3100-3200Hz, 3300-3400Hz, and 3500-3600Hz.

Statistics and analytical model

To estimate the overall uncertainty for each phase velocity measurement, the experiment and

analysis were repeated seven times for a single phantom with full repositioning of the phan-

tom, transducer, and sensors after each measurement. The standard deviation of the phase

velocity results was then bias-corrected and used as an estimate for the overall uncertainty.

To assess the dependency of the phase velocity on porosity, weighted linear regressions

were calculated for each of the pore characteristics under investigation (pore size, radial pore

number, axial pore number), using the inverses of the estimated overall uncertainties as the

weights.

Timoshenko beam theory was used to model the wave propagation in the bone phantoms

[49]: the dispersion equation for harmonic waves was then given by

E I
rA

g4 �
I
A

1þ
E

G k

� �

g4c2 � g2c2 þ
rI

G A k
g4c4 ¼ 0; ð4Þ

where E is the elastic modulus, G is the shear modulus, I is the area-moment of inertia for the

cross-section, A is the cross-sectional area, ρ is the density, c is the phase velocity, κ is the

Timoshenko shear coefficient (0.847 for this study), and γ = 2π/λ with λ being the wavelength.

From Eq 4 the phase velocity c was calculated as a function of frequency using the material

constants supplied by the manufacturer: ρ = 0.970 g/cm3, E = 1500 MPa, G = 532 MPa, and the

geometry of the phantoms.

Fig 2. Illustration of the analysis procedure.

https://doi.org/10.1371/journal.pone.0182617.g002
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Results

No differences in wave propagation were found either due to manufacturing direction or due

to the angular testing orientation of the phantom. The laser sintered phantoms without

Fig 3. Phase velocity as a function of porosity (pore volume fraction), caused by an increase in pore size (left), radial pore number (middle), or

axial pore number (right). Note the varying abscissae.

https://doi.org/10.1371/journal.pone.0182617.g003

Table 2. Optimized parameters, standard errors (SE), and statistics for the phase velocity as determined by weighted linear regression c = c1 �

porosity + c0.

Frequency c0 SE c0 c1 SE c1 R2 p-value

Size

(2900, 3000) 437.19 3.44 -2.47 0.50 0.858 <0.01

(3100, 3200) 454.04 4.23 -2.79 0.61 0.84 0.01

(3300, 3400) 472.42 4.23 -2.67 0.61 0.82 0.01

(3500, 3600) 490.73 6.44 -3.40 0.93 0.77 0.02

Axial

(2900,3000) 439.16 1.79 -1.89 0.80 0. 0.65 0.09

(3100,3200) 460.38 4.17 -4.13 1.86 0.62 0.11

(3300,3400) 479.43 8.27 -4.63 3.69 0.34 0.30

(3500, 3600) 500.99 15.16 -6.76 6.77 0.25 0.39

Radial

(2900, 3000) 438.12 1.93 -2.87 0.69 0.81 0.01

(3100, 3200) 457.97 2.35 -4.49 0.84 0.88 <0.01

(3300, 3400) 475.21 3.24 -3.40 1.16 0.69 0.04

(3500, 3600) 492.60 7.06 -3.61 2.52 0.34 0.02

https://doi.org/10.1371/journal.pone.0182617.t002
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porosity and the extruded phantoms all exhibited wave propagation consistent with the values

predicted by Timoshenko-beam theory for the respective materials [49]: Timoshenko wave

theory predicted a wave velocity value of 397 m/s (at 3kHz) and 430 m/s (at 3.6 kHz) for the

laser-sintered phantoms without porosity, corresponding to wavelengths of 13.2 cm (at 3kHz)

and 11.9 cm (at 3.6 kHz). These predictions agreed with the experimentally found increase of

the 0th order fitting parameter c0 with frequency to within 10% of the absolute values.

The overall uncertainties of the phase velocities were estimated as 10.3 m/s, 7.6m/s, 6.7m/s,

and 6.4 m/s, for the frequency bands 2900-3000Hz, 3100-3200Hz, 3300-3400Hz, and 3500-

3600Hz respectively. The contribution of the uncertainties attributable to the fitting procedure

derived from Eq 3 were about 5% of the overall uncertainty and thus considered negligible

with respect to other error sources.

Wave speed exhibited a clear dependency on porosity, as caused by a variation in pore size,

radial pore number, and axial pore number (Fig 3): For increasing pore size the wave velocity

decreased by 2.47–3.40 m/s per percent of porosity; for increasing radial pore number the

wave velocity decreased by -2.87–4.49 m/s per percent of porosity; and for increasing axial

pore number the corresponding p-values were all greater than 0.1, which we did not consider

statistically significant (Table 2).

Discussion

Cortical porosity is a key characteristic governing the mechanical and structural behaviour of

bone and its quantification is therefore critical for understanding and monitoring the develop-

ment of various osteopathologies such as osteoporosis [5,9–11,13]. However, non-invasive

methods to assess porosity and thereby aid clinical decision-making and medical research

remain severely lacking. This study has therefore investigated the ability of low-frequency ax-

QA to quantify porosity, and has demonstrated for the first time the sensitivity of phase veloc-

ity of acoustic waves to overall porosity as well as individual pore characteristics (pore size,

radial pore number, axial pore number). The presented work on porosity is the first step of a

structured approach to systematically investigate the influence of individual material proper-

ties using laser sintered bone phantoms to develop ax-QA techniques able to measure these

individual properties. This work therefore contributes an important milestone towards the sys-

tematic development of a comprehensive multi-frequency, multi-mode assessment of human

cortical bone for use in clinical applications and bone research [16,23].

The employment of a 2D-FFT approach allowed the analysis of the full wave signal, as

opposed to conventional methods that only consider a small part of the wave signal (SOS, FAS,

ELA). Additionally, this approach permitted the differentiation between the reflections propa-

gating in the specimen, which is a critical aspect for successfully applying ax-QA in complex

systems such as relatively short human bones.

Due to the intrinsic sensitivity of low-frequency wave modes to geometry and material

properties, the bone phantoms had to be designed with simple geometry and material proper-

ties, while also varying the porosity. Laser sintering using PA12 was shown to be an efficient

way to fulfil these requirements, offering a high degree of controllability while showing no

influence due to manufacturing direction. While PA12 as a material is only approximately

similar to real cortical bone, which has higher elastic moduli and is both heterogeneous and

anisotropic, PA12 is very similar to materials that have successfully been used in other phan-

tom studies [23,34,35,38,50] and was therefore deemed appropriate for the presented phantom

study.

One critical aspect to consider is that laser sintering leaves residual powder in the pores,

and therefore completely vacant pores were not realisable in this study. As a consequence, it is
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possible that the actual amount of porosity exhibited by the phantoms was lower than planned,

indicating that the sensitivity of phase velocity to porosity could be even higher than estimated

by our results. Likewise, pores in real cortical bone are non-empty, and thought to be filled

with marrow–however, as the acoustic properties of the residual sintering material could not

be determined in this experiment, it remains to be investigated whether such partial, non-solid

filling can adequately reflect the situation occurring in real bone, with regards to e.g. imped-

ance mismatch.

The phase velocity results also showed a consistent deviation for individual phantoms when

compared to the corresponding regression lines across all frequency ranges, which might indi-

cate that the manufactured phantoms had slightly different porosities than specified by the

design parameters.

The overall measurement uncertainty remains a surprisingly underreported experimental

measure in the literature, with most experiments only reporting the uncertainty for the wave

excitation and analysis procedure, thus ignoring the effects of sensor and transducer position-

ing, as well as pressure between transducer/sensor and phantom. As the current and a previous

study [44] have shown, these effects are the dominant contributions to overall measurement

uncertainty in both in-vitro and in-vivo measurements—so any estimates that do not take

them into consideration will strongly underestimate their true values. In our study, the overall

uncertainty in determining the phase velocity was demonstrated to be sufficiently low for

applications to potentially differentiate between healthy and osteoporotic bone. However, fur-

ther improvements to the experimental procedure, such as transducer and sensor placement,

could allow for even higher sensitivities, making applications such as monitoring gradual

changes in bone properties in individuals possible.

A clear dependence of phase velocity on frequency and porosity produced by increasing

pore size or radial pore number was demonstrated, with the velocity decreasing by between

2.5–4.5 m/s per percent of additional porosity (m/(s %p)), with higher frequencies showing

stronger changes. This decrease corresponds to -0.5% to -1.0% of wave speed per percent of

additional porosity (%v/%p). While the change in phase velocity due to axial pore number was

consistent with the results due to pore size and radial pore number, the relative uncertainties

for the estimates were too high to draw any conclusions for this parameter. We attribute these

high relative uncertainties to the fact that the porosity range covered by changes in axial pore

number was only 4% and thus narrower than for the other parameters of porosity. It is there-

fore entirely plausible that the observed trends also hold true for axial pore number, but this

remains to be confirmed in further studies.

Predictions from Timoshenko beam theory agree with the experimentally determined

phase velocities, with a consistent 10% underestimation of the predicted absolute values at all

frequencies. We attribute this discrepancy to either the residual powder present in the pores

resulting from sintering process, or the uncertainty in the material properties of the phantom,

which were not nearer specified by the manufacturer, for example introduced through the

laser sintering process itself [51]. While the original Timoshenko theory does not explicitly

model porosity, porosity was included through a linear effect on the density and a cubic effect

on the elastic modulus [52]. Using these approximations, the model predicted a phase velocity

change of -1.87 m/(s %p) at 3kHz and -1.98 m/(s %p) at 3.6kHz, agreeing with the range of

measured values but predicting a weaker dependency on frequency than observed in our

experiment. While this crude approximation yields surprisingly good agreement with the

observed data, the inclusion of effects due to pore orientation and distribution might allow the

prediction of the mechanical behaviour to be further improved [53–55].

Unexpectedly, the relative changes in wave velocity due to porosity found in this study were

comparable to results of experimental and computational studies measuring FAS at high
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frequencies between 500kHz and 2MHz: An experimental study on 10 human radii found FAS

changes of -52 ± 12 m/(s %p), which corresponds to -1.5%v/%p [26], while two computational

studies predicted changes between -0.6 and -1.0%v/%p [27,28]. Compared to these studies,

limitations of the presented work (-0.5 to -1.5%v/%p) were the simple cylindrical shape, as

well as the large size and the regular distribution of pores in the tested phantoms. While the

goal of these phantoms was to approximate human cortical bone, it is clear that the direct

extrapolation of the presented results to in-vivo measurements in humans may be limited.

Through necessity, the systematic bottom-up approach employed in this study restricted the

phantom’s geometry to a simple cylinder, which had the additional advantages of being analyti-

cally tractable and avoiding potential step-artefacts from the sintering process. Furthermore,

although the pore diameter of human cortical bone is known to vary from 50μm to 100–300μm

[5,42,56], the achievable pore size in our simplified phantoms was restricted by the limitations

of the manufacturing process. However, it is likely that the interaction between pores of smaller

diameter d and higher frequencies f will follow the same rules as long as the factor d � f remains

constant. While this scaling effect might explain the good agreement between our results and

the aforementioned studies, the differences in assessed specimens, geometry, penetration depth,

porosity (anisotropy, distribution), and analysis method (FAS, vs full wave), make it likely that

the underlying processes are more intricate than suggested by such a simple scaling law.

Another study investigated the effect of cancellous bone porosity on direct transmission

velocity (i.e. non-axial) by means of Leeds bone phantoms, which are gelatine granules embed-

ded in an epoxy matrix, with a total porosity of 45–83%. Over this porosity range, the phase

velocity at 600 kHz decreased from 2200 m/s to 1600 m/s following a second-order polynomial

function, which for comparative purposes corresponds to a linear change of approximately -18

m/(s %p) or -1%v/%p [57]. While the underlying method and employed frequency are consid-

erably different to the studies discussed so far, these results could indicate a non-linear depen-

dency of the phase velocity on porosity at high porosity values.

Since our results indicate an increasing sensitivity to porosity with increasing frequency

below a frequency of 10kHz and results from other studies indicate a lower sensitivity at fre-

quencies above 1MHz, it seems probable that the frequency most sensitive to porosity can be

found within this frequency range. However, it remains unknown whether specific pore char-

acteristics (size, distribution, connectivity, orientation. . .) can be assessed independently from

one another, and which frequencies and wave modes are most appropriate. Therefore, we sug-

gest that further work should investigate the influence of such pore characteristics using multi-

ple wave modes with a focus on the frequency range between 10kHz and 1MHz. Coupled with

investigations extending previous work to assess the influence of locally varying cortical thick-

ness, such work would allow for the assessment of how open-celled porosity at the endosteal

surface affects wave propagation.

Together with the presented results, the insights gained from such studies could allow the

determination of the ideal wave modes and frequencies to measure clinically relevant porosity

and individual pore characteristics.
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