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Abstract

Tissue regeneration is a highly coordinated process with sequential events including

immune cell infiltration, clearance of damaged tissues, and immune‐supported
regrowth of the tissue. Aging has a well‐documented negative impact on this pro-

cess globally; however, whether changes in immune cells per se are contributing to

the decline in the body’s ability to regenerate tissues with aging is not clearly under-

stood. Here, we set out to characterize the dynamics of macrophage infiltration and

their functional contribution to muscle regeneration by comparing young and aged

animals upon acute sterile injury. Injured muscle of old mice showed markedly ele-

vated number of macrophages, with a predominance for Ly6Chigh pro‐inflammatory

macrophages and a lower ratio of the Ly6Clow repair macrophages. Of interest, a

recently identified repair macrophage‐derived cytokine, growth differentiation factor

3 (GDF3), was markedly downregulated in injured muscle of old relative to young

mice. Supplementation of recombinant GDF3 in aged mice ameliorated the ineffi-

cient regenerative response. Together, these results uncover a deficiency in the

quantity and quality of infiltrating macrophages during aging and suggest that

in vivo administration of GDF3 could be an effective therapeutic approach.

1 | INTRODUCTION, RESULTS,
DISCUSSION

Skeletal muscle mass, function, and capacity to repair upon injury,

all progressively decline with aging resulting in restrictions to mobil-

ity, voluntary function, metabolism, and eventually quality of life. In

adult tissues, satellite cells are kept in a quiescent state until they

are activated to regenerate damaged muscle through cycles of self‐

renewal divisions (reviewed in (Montarras, L'Honoré, & Buckingham,

2013)). The ability of satellite cells to repair injured muscle mark-

edly declines with aging (Cheung & Rando, 2013). Aside from

reduced numbers of satellite cells (Garcia‐Prat, Sousa‐Victor, &

Munoz‐Canoves, 2013; Shefer, Mark, Richardson, & Yablonka‐Reu-
veni, 2006), the differentiation capacity of satellite cells is also

reduced with aging. Moreover, the number of differentiating
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satellite cells is decreased in aged mice, as shown by downregula-

tion of differentiation markers such as desmin and myogenin

(Charge, Brack, & Hughes, 2002; Collins, Zammit, Ruiz, Morgan, &

Partridge, 2007). In addition to satellite cells, there is clear evidence

supporting the essential role of immune cells both in the clearance

of damaged tissue and enhancing tissue regeneration upon injury

(Tidball, 2017). However, age‐related changes in the immune cell

functions and its therapeutic potential remain elusive. Here, we

demonstrate that innate immune cells are an important component

of age‐related delay in muscle regeneration. As a proof of concept,

we show that the number of reparative macrophages and the level

of growth differentiation factor 3 (GDF3) produced by these cells

are severely decreased with aging in regenerating muscles, leading

to delayed repair. Supplementation of the cytokine alone can

restore the normal recovery time following acute injury, and thus, it

provides a new therapeutic approach to treat muscle injury in

elderly people.

In line with previous studies (Bernet et al., 2014; Brack et al.,

2007; Chakkalakal, Jones, Basson, & Brack, 2012; Conboy, Conboy,

Smythe, & Rando, 2003; Cosgrove et al., 2014; Lee et al., 2013;

Shavlakadze, McGeachie, & Grounds, 2010; Sousa‐Victor et al.,

2014), we found that muscle regeneration after cardiotoxin (CTX)

injury is delayed in male aged animals (Figure 1a–c), as shown by the

distribution of the cross‐sectional area (CSA; Supporting information

Figure S1A–D), the mean CSA (Figure 1b), the increase in necrotic

fiber content at Day 8 post‐CTX (Figure 1c), and the muscle mass

alterations during the regeneration process (Figure 1d).

To test, whether innate immune responses, in addition to previ-

ously identified age‐related changes in satellite cell function, could

also contribute to impairment in muscle regeneration, we set out to

characterize the cellular dynamics of the myeloid cell infiltration in

uninjured tissues and during muscle regeneration. We could detect

increased expression level of macrophage activation markers in aged

uninjured and regenerating muscles compared to young controls

(Figure 1f). Next, we isolated myeloid cells from CTX‐injured TA

muscles at Days 0, 1, 2, 4, and 6 after the injury. In an interesting

manner, we found a statistically significant increase in the number of

invading myeloid cells (CD45+) in the aged versus young muscles at

Day 4 (repair phase; Figure 1e). These findings suggested the exis-

tence of age‐related changes in the cellular composition and

differentiation profile of the infiltrating myeloid cells. Indeed, the

ratio of Ly6Chigh F4/80low (inflammatory) macrophages to Ly6Clow

F4/80high (repair) macrophages in injured muscle between young ver-

sus aged animals showed remarkable differences (Figure 1g–h), sug-
gesting a delay in the phenotypic transition of infiltrating myeloid

cells to repair macrophages in the aged muscles.

Several members of the TGFβ family (Egerman et al., 2015) are

known regulators of muscle regeneration, whose members are

secreted by repair macrophages acting in a paracrine manner (Mas-

sague, Cheifetz, Endo, & Nadal‐Ginard, 1986; McPherron, Lawler, &

Lee, 1997), including GDF3 (Varga et al., 2016). We selected GDF3

for a proof‐of‐concept experiment to evaluate whether the observed

impaired phenotypic transition in macrophage phenotype from

inflammatory to repair type (Patsalos et al., 2017) can contribute to

age‐related delay in muscle regeneration. In line with previous find-

ings (Varga et al., 2016), GDF3 protein expression in whole‐muscle

lysates of CTX‐injured young mice showed a pronounced induction,

which peaked at Day 4 (Figure 2a), at the time when inflammation

subsides, and regenerative processes start to dominate within the

injured muscle. In controlled in vitro conditions, addition of recombi-

nant GDF3 (using either an in‐house recombinant protein or a com-

mercially available one) in primary myoblasts induced a robust effect

in myotube formation (Figure 2b upper panel) and a pronounced

increase in their fusion index (Figure 2b lower panel). These results

confirmed the positive impact of GDF3 on the muscle regeneration

process. In an important way, and in line with the delayed macro-

phage phenotype transition (Figure 1g–h), we found decreased

GDF3 protein levels at Day 4 post‐CTX in the aged mice compared

to young controls validating our initial hypothesis (Figure 2c). In an

important way, GDF3 expression was detectable only in the CD45‐
positive (hematopoietic) compartment of aged muscles (Figure 2d),

suggesting that the repair macrophages from aged mice are the pre-

dominant source of GDF‐3.
To determine whether introducing recombinant GDF3 back into

the aged animals can restore regeneration, we used a single intra-

muscular dose of 300 ng rGDF3 at Day 4 post‐CTX. To a remarkable

degree, this treatment restores the morphological features of the

aged muscle at Day 8 (Figure 2e,f) while treating young mice with

rGDF3 had no obvious enhancing effect (myofiber size increase or

faster regeneration; Figure 2f). These findings suggest that the

F IGURE 1 Impaired skeletal muscle regeneration and delayed phenotypic transition of infiltrating myeloid cells in aged animals following
CTX injury. (a) Representative images of H&E‐stained skeletal muscle from young adult (2‐month‐old) and aged (23‐month‐old) male mice at
Days 0, 8, 12, and 16 post‐CTX‐induced injury. Scale bars in the upper left represent 100 μm. (b) Mean myofiber cross‐sectional area (CSA) of
regenerating muscles in young adult (2‐month‐old) and aged (23‐month‐old) mice (number of fibers counted > 20,000) at Days 0, 8, 12, and 16
post‐CTX‐induced injury (n = 6 per group). (c) The ratio of necrotic fibers relative to regeneration area (in mm2) at Day 8 of regeneration in
young adult (2‐month‐old) and aged (23‐month‐old) muscle sections is shown. (d) Normalized tibialis anterior (TA) muscle mass‐to‐body weight
ratio from young adult (2‐month‐old) and aged (23‐month‐old) mice at indicated time points following CTX injury (n = 6 per group). (e) Number
of infiltrating myeloid (CD45+) cells in regenerating muscle from young (2‐month‐old) or aged (28‐month‐old) muscles at indicated time points
prior and post‐CTX injury (n = 8 muscles per group). (f) Heatmap representations of atrophy and macrophage‐related genes (measured by
qPCR) from young and old uninjured (left panel) and regenerating (Day 8 post‐CTX; right panel) TA muscles. Relative mRNA expression
(calculated using the 2‐ΔΔCT method) is shown as log10(fold change) (n = 6 muscles per group). (g and h) Percentage of inflammatory (Ly6Chigh

F4/80low) and repair (Ly6Clow F4/80high) MFs from young (2‐month‐old) or aged (28‐month‐old) muscles at indicated time points following CTX
injury (n = 8 mice per group). In all bar and line graphs, bars and data points represent mean ± SEM
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endogenous physiological levels of GDF3 are sufficient for proper

regeneration, and regeneration must be impaired in order for the

rGDF3 treatment to have an effect. Taken together, these results

highlight that GDF3 alone could compensate for the age‐related
decrease in repair macrophage and improve the kinetics of muscle

repair.

In conclusion, our findings suggest that aging has a negative

effect on the ability of macrophages to perform their phenotypic

transition, leading to reduced production of growth factors (including

GDF3), and this impacts the muscle regeneration potential. This

work provides strong evidence that the immune axis should be con-

sidered for future therapeutic interventions.
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