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Abstract
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pul-

monary disease in humans, resulting in over 1.5 million deaths per year. Building on the

premise that genetic factors influence the instance, progression, and defense of infectious

disease, we undertook a systems biology approach to investigate relationships among

genetic factors that may play a role in increased susceptibility or control of mycobacterial

infections. We combined literature and database mining with network analysis and pathway

enrichment analysis to examine genes, pathways, and networks, involved in the human

response toMycobacterium tuberculosis and nontuberculous mycobacterial infections.

This approach allowed us to examine functional relationships among reported genes, and

to identify novel genes and enriched pathways that may play a role in mycobacterial sus-

ceptibility or control. Our findings suggest that the primary pathways and genes influencing

mycobacterial infection control involve an interplay between innate and adaptive immune

proteins and pathways. Signaling pathways involved in autoimmune disease were signifi-

cantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks

were also examined within the context of gene-chemical relationships, in order to identify

putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacte-

rial effects.

Introduction
Tuberculosis (TB), an airborne infectious disease caused by the bacteriumMycobacterium
tuberculosis (MTB), is an ongoing global health crisis [1,2] resulting in over 9 million illnesses
and 1.5 million deaths each year [3]. In contrast, nontuberculous mycobacterial (NTM) dis-
ease, caused by phylogenetically related environmental mycobacteria [4], has emerged as an
increasingly prevalent infectious disease, particularly over the last two decades [5–8].

Although exposure to TB is common in certain regions of the world, a relatively small pro-
portion of exposed people progress to develop active pulmonary disease. As an example, one
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third of the world’s population is latently infected with MTB, but only 10% of those individuals
will ever progress to become ill with active TB. Similarly, many individuals come into contact
with NTM through soil or municipal water sources [4], but few develop pulmonary NTM dis-
ease. Certain clinical conditions, including immunodeficiencies and individuals with compro-
mised lungs, increase susceptibility, but most TB and NTM disease occur in otherwise healthy
people [3,9]. We hypothesized that a systems biology approach would help reveal critical
human pathways involved in mycobacterial susceptibility, and help elucidate why some indi-
viduals progress to active disease while most do not.

Accumulating evidence suggests that host genetic factors influence the susceptibility to
MTB and NTM infection. Research studies utilizing twin design [10,11], linkage analysis
[12,13], candidate gene association [14–17], genome-wide association analysis [18–21], and
fine mapping studies [22] have implicated numerous human genetic markers as contributing
factors to the susceptibility of MTB infection. Although fewer studies have examined the
human genetic contribution to NTM susceptibility, familial clustering of pulmonary NTM [23]
and candidate gene association studies have implicated certain genetic factors [24–26] and sup-
port the hypothesis of a genetic predisposition to NTM in some individuals.

In this study, we examine genes critical to the human response to TB and NTM infection, as
well as highlight enriched biological pathways and networks that may play a critical role in
mycobacterial susceptibility. We explore whether there is any commonality between TB and
NTM susceptibility genes and the functional implications of these shared genes and pathways.
Shared susceptibility genes or pathways may suggest related mechanisms for the response or
control of TB and NTM disease. Furthermore, we examined the resulting networks in order to
identify drugs and nutrients with potential immunomodulatory or anti-mycobacterial effects.

Materials and Methods

Data sources & gene selection
We identified genes associated with TB and NTM utilizing three publically available databases:
the Online Mendelian Inheritance in Man (OMIM) [27, 28] database, the Comparative Toxico-
genomics Database (CTD) [29], and the Human Genome Epidemiology encyclopedia (HuGE
Navigator) [30]. The Online Mendelian Inheritance in Man (OMIM) database [27] is consid-
ered to be the best curated resource of genotype-phenotype relationships [28]. The Comparative
Toxicogenomics Database (CTD) [29] curates relationships between chemicals, genes and
human diseases, and is unique because it integrates chemical and gene/protein-disease relation-
ships with the goal of understanding the effects of environmental chemicals on human health.
In CTD, disease-gene associations are reported as curated or inferred. We selected only curated
associations due to a higher confidence than inferred associations. Lastly, we used the Human
Genome Epidemiology encyclopedia (HuGE Navigator) [30] which mines the scientific litera-
ture on human gene-disease associations and maintains a comprehensive database of popula-
tion-based epidemiologic studies of human genes [31]. We selected these databases because of
their unique approach, breadth, and depth to cataloguing human disease-gene associations.

TB key word search.

1. For searches of OMIM, we used the key words: “Mycobacterium tuberculosis, susceptibility
to” which resulted in 11 genes associated withMycobacterium tuberculosis susceptibility or
protection.

2. For searches of CTD, we used the key words “Mycobacterium tuberculosis, susceptibility to
infection by”, which resulted in 15 genes associated withMycobacterium tuberculosis
susceptibility.
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3. For searches of the HuGE Navigator, we searched using key words “mycobacterium infec-
tions”. Tuberculosis was defined by disease phenotypes, such as, “Tuberculosis, Gastrointes-
tinal”, “Tuberculosis, Pleural”, or “Tuberculosis, Pulmonary”. We therefore chose to use
“Tuberculosis, Pulmonary” as our search term, since our focus for TB and NTM disease in
this study is related to lung disease. We excluded genes that have been implicated in hepato-
toxicity and other adverse reactions, rather than susceptibility to infection. None of these
excluded genes were later identified in the network analyses. In the HuGE database, we
found 154 genes that were associated with pulmonary tuberculosis. We further refined this
list and selected only genes with at least 3 references. This restricted our list to 42 genes that
were associated with pulmonary tuberculosis. Three of the excluded genes were identified
from other databases and thus included in the overall gene list.

NTM key word search.

1. For searches of OMIM, we searched using the key words “mycobacterium infection, nontu-
berculous, familial”. Three separate phenotypes, “Atypical mycobacteriosis, familial”, Atypi-
cal mycobacteriosis, familial, x-linked”, “Atypical mycobacteriosis, familial, x-linked 2”,
were associated with 7 genes.

2. For searches of CTD, we searched using key words “mycobacterium infections, nontubercu-
lous”, identifying 6 genes.

3. For searches of the HuGE Navigator, we searched using key words “mycobacterium infec-
tions”, and then selected “Mycobacterium avium-intracellulare infection” identifying 10
genes and “Mycobacterium Infections, Atypical” identifying 10 genes.

From each of the three databases, we compiled lists of genes that were associated with sus-
ceptibility to TB and NTM infection. All subsequent analyses included 50 TB-associated genes
and 15 NTM-associated genes (Fig 1). In the overall TB list, ten genes were identified in more
than 1 database, and seven genes in the overall NTM list were identified in more than 1
database.

Fig 1. Database-derived TB and NTM-associated genes.

doi:10.1371/journal.pone.0146585.g001
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Pathway and network analysis
We utilized the Ingenuity Pathway Analysis (IPA), a web-based software application (Ingenu-
ity Systems, www.ingenuity.com), to investigate gene-gene relationships within the context of
networks and pathway enrichment. IPA uses a database of human, mouse, and rat genes/pro-
teins, as well as other biological and chemical targets of interest, to find interactions between
genes, proteins, related networks, functions/diseases, and canonical pathways. IPA uses a man-
ually curated database, mined from over 300 top journals using the full text, from over 3,600
journals using abstracts, as well as interaction data from third party databases such as GNF,
IntAct, BIND, DIP, MINT, MIPS, BIOGRID, COGNIA, GNF, GO, Entrez Gene, OMIM,
RefSeq, ClinVar, COSMIC, GWAS Database, HMDB, clinicaltrials.gov, TarBase, TargetScan,
miRecords, DrugBank, HSDB, CCRIS, (www.ingenuity.com), [32]. IPA’s data analysis allows
for understanding the significance of genes or gene products of interest within a larger biologi-
cal system.

We generated TB and NTM-associated gene networks with the IPA Core Analysis function
using 50 TB focus genes and 15 NTM focus genes (Fig 1). Focus genes are genes that were iden-
tified in our initial OMIM, CTD, and HuGE database queries. Focus genes represented in net-
works must interact with at least one other gene in the database. Interactions between genes
are represented as nodes connected by edges during network generation. Non-focus genes are
genes that were not in our initial database derived search, but are connected in the resulting
networks. We also refer to these as “network-suggested genes”. We trimmed the resulting gene
networks such that nodes with four or fewer edges were removed to facilitate visualization of
the most highly connected nodes and networks.

Gene-chemical network. Our list of input genes for the gene-chemical network analysis
was obtained by combining genes from the union of networks depicted in Figs 2 & 3. We
defined our threshold for gene inclusion as the top 50% of all connections between genes. This
corresponded to 9 or more edges per node in the union network 1, and 5 or more edges per
node in the union network 2. The complete list of input genes included: BCR (complex), CCL2,

Fig 2. Union of TB and NTM gene sets: network 1.Grey: Network identified genes; Blue: TB or NTM focus
genes.

doi:10.1371/journal.pone.0146585.g002
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CCL5, IKBKG, IL10, IL12 (complex), IL1B, IL1RN, IL4, IL6, Immunoglobulin,MMP1, NFkB
(complex), TLR1, TLR2, TLR 4, TLR 9, TNF, Vegf. The final list of genes corresponds to only
those that mapped in CTD (this excluded: BCR, IL12, Immunoglobulin, and TNF). The chemi-
cal-gene network was constructed using data from CTD [29] and DrugBank [33]. Chemicals
listed in CTD were excluded if they did not have a synonymous drug name in DrugBank.
Gene-gene interactions and gene-chemical interactions were extracted from CTD based on our
gene list. In this network analysis, gene-gene interactions represent a variety of interaction or
relational types, including genes encoding proteins that physically interact or participate in
sequential steps of a biochemical pathway. This analysis builds upon our previous work on dis-
ease-gene-chemical networks [34].

Chemical exclusion criteria were based upon literature evaluation in that any intervention
deemed potentially harmful to a patient would not be considered in these networks. Therefore,
we excluded: known toxins (ie. alcohols and arsenic), drugs with obvious negative side effects
(ie. anticonvulsants, warfarin, opiods/opiates, mood stabilizers, narcotics), drugs with known
negative side effects (ie. NSAIDs, immune suppressing steroids/hormones), non-concise chem-
icals that are generally seen as harmful (ie. dust, CTD definition: “Earth or other dry matter in
fine, dry particles”), anti-retrovirals due to frequent HIV-TB co-infection, their use in HIV
treatment and concern for development of drug resistance, as well as antibiotics that are effec-
tive against the bacteria but detrimental to the patient. The remaining chemicals included: stat-
ins/fibrates, select group of antibiotics, and vitamins. Macrolides and Gemfibrozil were
grouped together because of their potential to positively alter the human immunological
response to infection as well as both being pharmaceutical drugs. Gene networks and gene-
chemical networks were recreated using Cytoscape [35].

Results and Discussion
Many studies using conventional genetic methods have identified single genes/loci influencing
the susceptibility to TB or NTM infection and control of disease [12–22,24–26]. Despite these
reports, little has been done to examine these reported loci within the context of biological net-
works. Since the progression to active TB and NTM disease are influenced by multiple genetic
factors, genes identified through single gene approaches, in and of themselves, may provide an
incomplete etiological story [36,37]. As a result, we undertook a comprehensive network and
pathway analysis of human genes associated with TB and NTM infection susceptibility. Using

Fig 3. Union of TB and NTM gene sets: network 2.Grey: Network identified genes; Blue: TB or NTM focus
genes.

doi:10.1371/journal.pone.0146585.g003
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this approach we identify new candidate genes, as well as investigate the overlap of genes and
pathways involved in both TB and NTM susceptibility and control.

Based on our database search, we identified 50 TB-associated focus genes and 15 NTM-
associated focus genes (Fig 1). We generated 10 TB-associated networks, 1 NTM-associated
network, and 1 network using the intersection of TB- and NTM-associated focus genes. Five
networks were generated using the union of TB- and NTM-associated genes (Tables 1–4). In
the following text, we discuss the most statistically significant networks from each gene set.

Gene Network Analyses
Using the IPA enrichment algorithm, five networks were generated using the union of TB and
NTM genes. The most statistically significant network (p = 10−33) included 17 focus genes
implicated in either infection (Table 4, Fig 2). The second network (p = 10−30) included 16
focus genes in a 35 gene network (Table 4, Fig 3).

Table 1. Network associated with TB.

Molecules in Network Score* Focus
Molecules

Top Diseases and Functions

BCR (complex), caspase, CISH, Fcger3, HLA-A, HLA-B, HLA-C,
HLA-DQB1, HLA-DRB1, IFN Beta, IFNG, lga, Ikb, IL12 (family), IL12RB1,
IL1B, IL1RN, Immunoglobulin, Interferon alpha, KIR, KIR2DL1/KIR2DL3,
KIR2DS4, LTA, MBL2, MMP1, NFkB (complex), P2RX7, PTPN22, Ras,
SAA, TCR, TIRAP, TLR1, TLR9, Vegf

42 20 Cell-To-Cell Signaling and Interaction,
Immunological Disease, Connective Tissue
Disorders

Bold: TB focus genes.

*Score: -log(Fisher’s Exact p-value)

doi:10.1371/journal.pone.0146585.t001

Table 2. Network associated with NTM.

Molecules in Network Score* Focus
Molecules

Top Diseases and Functions

CLEC11A, CYBB, DUOX2, ERK1/2, FXN, GRM1, Gsk3, HLA-A, HLA-B, HLA-DRB1,
lfn gamma, IFNGR1, IFNGR2, IKBKG, IL12B, IL12RB1, IL36A, Immunoglobulin, IRAK,
MBL2, MICA, NEU1, NFkB (complex), NLRP2, P38 MAPK, PASK, SH3GLB2, STAT1,
SUMO4, TCR, TFG, TLR2, TLR10, USP21, VDR

36 14 Cancer, Cell Death and Survival,
Cellular Compromise

Bold: NTM focus genes.

*Score: -log(Fisher’s Exact p-value)

doi:10.1371/journal.pone.0146585.t002

Table 3. Network associated with the intersection of TB and NTM genes.

Molecules in Network Score* Focus
Molecules

Top Diseases and Functions

CCL8, CCL26, CD6, CLEC11A, ERK1/2, FXN, HLA-A, HLA-B,
HLA-DRB1, IFNGR1, IL25, IL10RA, IL12B, IL12RB1, IL36A,
Immunoglobulin, IRAK, KIR, LILRB1, MAP3K10, MBL2, MED28, NEU1,
NFkB (complex), NOD1, P2RY6, P38 MAPK, PTPN12, SH3GLB2,
SUMO4, TLR2, TLR10, TNIP3, UNC93B1, VDR

22 9 Inflammatory Response, Hematological System
Development and Function, Tissue Morphology

Bold: TB and NTM focus genes.

*Score: -log(Fisher’s Exact p-value)

doi:10.1371/journal.pone.0146585.t003
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The top TB network was highly significant (p = 10−42) and included 20 focus genes implicated
in susceptibility toMycobacteria tuberculosis infection in a 35 gene network (Table 1, Fig 4).

The top NTM network was also highly significant (p = 10−36). This 35 gene network
included 14 focus genes, which have been previously implicated in susceptibility to NTM infec-
tion (Table 2, Fig 5).

Using the intersection of TB- and NTM-associated genes, one network was generated
(p = 10−22). From the 10 focus genes common to both infections, 9 genes were implicated in
this 35 gene network (Table 3, Fig 6).

Discussion of network-central genes
Networks using the union of TB and NTM gene sets. The two most statistically signifi-

cant networks demonstrated that NTM-associated focus genes were the most peripheral, while
the TB-associated focus genes and the focus genes common to both TB and NTM infection
were the more central and connected nodes in the network. When comparing the two networks
(Figs 2 and 3), different genes appear to be most central and interconnected. In network 1 (Fig
2), the most central and highly connected genes are the TB- associated focus genes (blue), IL4,
IL10, TNF, CCL2, CCL5, and TLR4 as well as the focus genes common to both TB and NTM
(blue) IL12B, and TLR2. While in network 2 (Fig 3), different TB- associated focus genes

Fig 4. TB network.Grey: Network identified genes; Blue: TB focus genes.

doi:10.1371/journal.pone.0146585.g004

Table 4. Networks associated with the union of TB and NTM genes.

Molecules in Network Score* Focus
Molecules

Top Diseases and Functions

CCL2, CCL5 CD14, CTSZ, CYBB, Fcer1, Fcgr2, Gm-csf, Gsk3,
HLA-DQ, HLA-DR, lfn gamma, IFNGR1, IFNGR2, lge, IgG1, IL4, IL10,
IL18, IL23, IL12 (complex), IL12B, lymphotoxin-alpha1-beta2, MHC
Class II (complex), NOD2, NOS2, Nr1h, SCAVENGER receptor
CLASS A, Sod, Tlr, TLR2, TLR4, TLR6, TNF, U1 snRNP

33 17 Cellular Function and Maintenance, Hematological
System Development and Function, Infectious
Disease

26s Proteasome, BCR (complex), caspase, CD209, Cdk, Collagen
type 1, Eotaxin, Fcgr3, HLA-DQB1, Hsp27, Iga, Ikb, IKBKG, IL1, IL6,
IL12 (family), IL1B, IL1RN, Immunoglobulin, JK, LTA, MBL2, MICA,
MMP1, N-cor, NFkB(complex), P2RX7, PTPN22, Ras homolog, SAA,
TIRAP, TLR1, TLR9, VDR, Vegf

33 16 Cell-To-Cell Signaling and Interaction, Hematological
System Development and Function, Immunological
Disease

Bold: TB and NTM focus genes.

*Score: -log(Fisher’s Exact p-value)

doi:10.1371/journal.pone.0146585.t004
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(blue), IL6 and IL1B, are the most central and highly connected, while genes common to both
TB and NTM infection are not central or highly connected nodes. Among the genes putatively
associated with TB or NTM identified via network analysis, Gm-csf (Fig 2) and NFkB complex
(Fig 3) are the most central and highly connected nodes. Overall, NTM-associated genes
appear the most peripheral, while the TB-associated focus genes seem to play a more central
role in these networks.

Focus genes. TLR2: TLR2 stands out as being one of the most central and highly intercon-
nected nodes in all the networks. Toll Like Receptors (TLRs) can recognize molecular patterns
of MTB and initiate signaling pathways to activate the innate and adaptive immune responses
[38]. The major receptors for MTB and those most critical in the recognition process are TLR-
1, -2, and -6. Because of the TLR’s essential role in MTB recognition, many studies have exam-
ined associations of TLR polymorphisms and TB, however results have been inconsistent. In a
recent meta-analysis [38], authors reported a positive association between a TLR2 polymor-
phism and TB risk, especially among Asians and Europeans. Yim et al. demonstrated that a GT
repeat microsatellite polymorphism in intron II of TLR2 contributes to the development of
NTM lung disease, especially forM. avium-intracellulare complex (MAC) infection [39],
although another study from Korea did not find an association between TLR2 and NTM sus-
ceptibility [40]. Supported by previous studies, our network analyses highlight the important
role that TLR2may play in the immune response to both TB and NTM infection.

IL12B: The IL12B gene encodes the p40 subunit of IL-12 and IL-23 cytokines, which play
important roles in bridging the innate and adaptive immune systems. Interleukin 12 (IL-12) is
a proinflammatory cytokine and acts as a key regulator in determining the T helper 1 or 2
immune response [41]. IL12B polymorphisms have been associated with increased susceptibil-
ity to TB [42], as well as toMycobacterium leprae [43], but findings have been inconsistent
[44,45]. IL12B has also been implicated in the development of autoimmune disease. A recent
meta-analysis demonstrated a significant association between IL12B polymorphisms and risk
of psoriasis [46]. IL12B has also been implicated [47] as a susceptibility gene for leprosy and
inflammatory bowel disease. This may imply a shared genetic susceptibility to inflammation
and infectious disease.

IFNG: Interferon-gamma (IFNG) binds to its own receptor made of transmembrane pro-
teins, IFNGR1 and IFNGR2, to induce antimicrobial mechanisms and upregulates antigen pro-
cessing and presentation pathways [48]. Consequently, IFNG is central to innate and adaptive
cell-mediated immunity against intracellular pathogens and thus crucial to controlling MTB
replication. Studies have shown that low production of IFNG has been associated with active

Fig 5. NTM network.Grey: Network identified genes; Blue: NTM focus genes.

doi:10.1371/journal.pone.0146585.g005
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TB [49–51]. A recent meta-analysis reported a statistically significant protective association of
an IFNG polymorphism and pulmonary/extrapulmonary TB in different ethnicities [52]. Poly-
morphisms in this gene may be good genetic markers for TB resistance.

Network-suggested genes. NFkB complex: Among the putatively associated genes identi-
fied via network analysis, the nuclear factor-kB (NFkB) complex stands out as one of the most
highly central and interconnected nodes in all our networks. The NFkB family of transcription
factors plays a key role in the regulation of genes involved in immune and inflammatory
responses [53,54]. A wide range of stimuli, including viral and bacterial products, can lead to
the activation of NFkB. It regulates gene expression in many different cell types during develop-
ment in response to injury and infection, thus it is often referred to as a central mediator of the
immune response [53–55]. Research has demonstrated that activation of NFkB enhances
immunity against certain microbial pathogens [56,57], however some NFkB pathways can be
exploited to promote pathogen survival [56]. A recent study demonstrated that inhibiting
NFkB reduced MTB survival in human macrophages [58], emphasizing the complex role of
NFkB in MTB infection. While the human immune response against NTM infection is not well
understood, many studies have shown that the role of the NFkB is a crucial step in the regula-
tion of genes involved in the killing of NTM. One study [59] focused on the role of NFkB in the
innate immune response of macrophages. The authors reported thatM. smegmatis, a non-
pathogenic mycobacteria, induces NFkB activation and is killed by macrophages, whileM.
avium, a pathogenic mycobacteria, represses NFkB activation and survives within macro-
phages. Additional cell, mouse and bovine studies [60–63] have also examined the influence of
NFkB on the response to infection. These studies demonstrated that NFkB is involved in the
initiation of a proinflammatory cytokine response in the macrophage and is rapidly activated
by the interaction of host cell and bacterium [60,63]. However, the mechanisms and sequence
of events underlying NFkB activation and cytokine response to NTM infection remains
unclear.

ERK1/2 & p38 MAPK: In response to invading pathogens, innate immune cells, such as
macrophages/monocytes and dendritic cells, use pattern recognition receptors (PRRs) to rec-
ognize bacteria, which in turn, leads to the activation of signaling pathways, such as the mito-
gen-activated protein (MAP) kinase pathway [64–66]. The NTM gene network (Fig 5) and the
network using the intersection of TB and NTM gene sets (Fig 6) identify ERK1/2 and p38
MAPK, both members of the MAP kinases, as highly central and interconnected nodes.
Depending on the stimulus, activation of ERK1/2 together with p38 can have contrasting func-
tions. A greater amount of ERK activity relative to p38 can promote cell proliferation and sur-
vival, whereas a greater amount of p38 activity relative to ERK can trigger cell death and
apoptosis [67,68]. In an in vitro study using primary human monocytes, authors reported that
Mycobacterium avium-intracellulare (MAI) infection activates both ERK and p38. While ERK

Fig 6. Intersection of TB and NTM gene sets.Grey: Network identified genes; Blue: TB and NTM focus
genes.

doi:10.1371/journal.pone.0146585.g006
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appears to regulate pathogenic MAI replication in human monocytes, p38 influences cytokine
release more than ERK does [69].

VEGF: Vascular endothelial growth factor (VEGF) is a key regulator of normal angiogenesis.
It promotes endothelial cell survival, growth and migration, in addition to being implicated in
pathological angiogenesis associated with tumor growth [70]. VEGF has been also studied as a
prognostic biomarker for infectious diseases but studies have yielded inconsistent results. In
sepsis infection, some studies found higher VEGF levels in survivors compared with non-survi-
vors, while other studies found the opposite [71,72]. Some studies examining dengue infection
have reported significantly higher VEGF levels in patients with dengue hemorrhagic fever com-
pared with dengue fever [73,74], other studies have reported a lack of association between
VEGF and illness severity [75]. Similarly, several TB studies have reported elevated plasma
VEGF levels in active TB [76–78]. And in a separate TB study, authors found that plasma
VEGF concentrations were significantly reduced upon TB treatment and could potentially rep-
resent a surrogate marker to monitor sputum culture conversion [79].

Pathway Enrichment Analysis
Canonical Pathway Analysis using IPA. For TB, the top two canonical pathways most

significantly associated with this gene set were “altered T cell and B cell signaling in rheumatoid
arthritis” and “communication between innate and adaptive immune cells” (Table 5). For
NTM, the top two pathways most significantly associated with this gene set were “type 1 diabe-
tes mellitus signaling” and “T Helper cell differentiation” (Table 6). Examining the intersection
of the TB and NTM gene sets, pathway analysis revealed that the top two canonical pathways
were “communication between Innate and Adaptive Immune Cells” and “type 1 diabetes melli-
tus signaling” (Table 7). Examining the union of TB and NTM gene sets, pathway analysis
revealed that the top two canonical pathways were “altered T cell and B cell signaling in rheu-
matoid arthritis” and “communication between innate and adaptive immune cells” (Table 8).

Signaling pathways for autoimmune disease and communication or differentiation of
immune cells are overrepresented in our pathway enrichment analyses. This may indicate simi-
lar susceptibility or pathogenic mechanisms for TB and NTM infections.

The top canonical pathway for the TB gene set and the union of TB and NTM gene sets
includes “altered T cell and B cell signaling in rheumatoid arthritis” (RA). Our analysis has
identified a signaling pathway specific to RA, which has been confirmed in the literature. The
relationship between mycobacterial infection and autoimmune disease, in particular, Inflam-
matory Bowel Disease (IBD) and RA, has been reported previously [80–84]. Studies have
shown that persons with RA are at increased risk for TB and NTM disease, independent of
immunosuppressive medications used in RA treatment [85,86]. The link between specific
genes, for example SLC11A1 (NRAMP1) and susceptibility to autoimmune disease and infec-
tious disease has been widely explored. Shaw et al (1996) demonstrated genetic linkage of
NRAMP1 and RA. Searle & Blackwell (1999) found that high expression of NRAMP1 allele 3

Table 5. Top canonical pathways associated with TB gene set.

Pathways p-value Ratio* Molecules in pathway

Altered T Cell and B Cell Signaling in
Rheumatoid Arthritis

1.14E-
33

19/81
(0.235)

HLA-DQA1, HLA-DQB1, HLA-DRB1, IFNG, IL4, IL6, IL10, IL18, IL12B, IL1B, IL1RN,
LTA, TGFB1, TLR1, TLR2, TLR4, TLR6, TLR9, TNF

Communication between Innate and
Adaptive Immune Cells

1.48E-
33

19/82
(0.232)

CCL5, HLA-A, HLA-B, HLA-C, HLA-DRB1, IFNG, IL4, IL6, IL10, IL18, IL12B, IL1B,
IL1RN, TLR1, TLR2, TLR4, TLR6, TLR9, TNF

*Ratio: number of genes from our dataset that map to a canonical pathway divided by the total number of genes in that pathway.

doi:10.1371/journal.pone.0146585.t005
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contributes to autoimmune susceptibility, specifically to RA [80]. This association was also
found in diabetes patients with a first or second degree relative with RA [87]. Conversely, low
expression of NRAMP1 allele 2 was found to contribute to infectious disease, specifically tuber-
culosis [88,89]. Interestingly, Mobley (2004) demonstrated similarity in the epidemiology of
RA and the epidemiology of tuberculosis deaths from 2 centuries ago [90]. The author sug-
gested the possibility that genetic factors influencing tuberculosis survival may now be influ-
encing susceptibility to the development of RA. Other genetic associations have reported
between mycobacterial infection and chronic inflammation. IL12B, for example, has been iden-
tified as a susceptibility gene for leprosy, psoriasis and IBD [46,47]. Similarly, the IRGM autop-
hagy gene, a strong mediator of inflammation, has also been associated with an increased risk
to leprosy [91], Crohn’s disease and IBD [92,93].

“Type 1 diabetes mellitus signaling” was also ranked among the top canonical pathways for
both the NTM gene set and the intersection of TB and NTM gene sets. Diabetes mellitus (DM)
has been associated with increased risk of progression to TB, increased TB severity and with
poor TB treatment outcomes [94,95]. While some studies hypothesize that DM impairs the
immune responses necessary to control mycobacterial replication [96], the exact mechanisms
by which DM increases TB risk have not yet been elucidated.

Network-identified immune-modulating chemicals
Pro-immune altering chemicals remain an understudied and underutilized area of disease
treatment. Within our gene-chemical network, there were three macrolides (Azithromycin,
Clarithromycin, and Roxithromycin) and a fibrate (Gemfibrozil) that are known to have

Table 6. Top canonical pathways associated with NTM gene set.

Pathways p-value Ratio* Molecules in pathway

Type 1 Diabetes Mellitus Signaling 9.08E-15 8/106 (0.075) HLA-A, HLA-B, HLA-DRB1, IFNGR1, IFNGR2, IKBKG, IL12B, STAT1

T Helper Cell Differentiation 1.27E-11 6/67 (0.09) HLA-DRB1, IFNGR1, IFNGR2, IL12B, IL12RB1, STAT1

*Ratio: number of genes from our dataset that map to a canonical pathway divided by the total number of genes in that pathway.

doi:10.1371/journal.pone.0146585.t006

Table 7. Top canonical pathways associated with the intersection of TB and NTM gene sets.

Pathways p-value Ratio* Molecules in pathway

Communication between Innate and Adaptive Immune Cells 5.11E-10 5/82 (0.047) HLA-A, HLA-B, HLA-DRB1, IFNGR1, IL12B,

Type 1 Diabetes Mellitus Signaling 1.89E-09 5/106 (0.047) HLA-A, HLA-B, HLA-DRB1, IFNGR1, IL12B,

*Ratio: number of genes from our dataset that map to a canonical pathway divided by the total number of genes in that pathway.

doi:10.1371/journal.pone.0146585.t007

Table 8. Top canonical pathways associated with the union of TB and NTM gene sets.

Pathways p-value Ratio* Molecules in pathway

Altered T Cell and B Cell Signaling in
Rheumatoid Arthritis

6.25E-
33

19/81
(0.235)

HLA-DQA1, HLA-DQB1, HLA-DRB1, IFNG, IL4, IL6, IL10, IL18, IL12B, IL1B, IL1RN,
LTA, TGFB1, TLR1, TLR2, TLR4, TLR6, TLR9, TNF

Communication between Innate and
Adaptive Immune Cells

8.13E-
33

19/82
(0.232)

CCL5, HLA-A, HLA-B, HLA-C, HLA-DRB1, IFNG, IL4, IL6, IL10, IL18, IL12B, IL1B,
IL1RN, TLR1, TLR2, TLR4, TLR6, TLR9, TNF

*Ratio: number of genes from our dataset that map to a canonical pathway divided by the total number of genes in that pathway.

doi:10.1371/journal.pone.0146585.t008
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immune altering effects (Fig 7). Although macrolides play a central role in the treatment of
NTM infection [97,98], they are not commonly used to treat TB. There is conflicting evidence
regarding the implications of potential macrolide induced alterations in macrophage activation
[99–101] and immune cell composition [102] during the course of infection in humans. In
mice models, it has been hypothesized that azithromycin may contribute to NTM infection by
decreasing autophagy [103], despite evidence showing azithromycin successfully treats NTM
infections in mice with chronic pulmonary infection [104]. In humans with COPD, azithromy-
cin increases phagocytosis [105,106], which suggests a beneficial effect on macrophages-medi-
ated degradation of microorganisms. It has been shown that TB can inhibit phagosome
maturation by using mannose receptors to mediate transport to phagosomes with limited
fusion capabilities [107], the same receptors that are greatly increased by azithromycin treat-
ment [106]. However, given that mycobacteria often reside in inactivated macrophages [108]
and that azithromycin promotes altered activation of macrophages [99], this altered immune
response may be beneficial to treating TB [34], even though direct macrolide effects are incon-
sistently seen in vitro [109–114]. Gemfibrozil represents a novel drug for both NTM and TB
treatment. This drug inhibited 27 strains of MTB grown in macrophages by decreasing their
ability to acquire fatty acids from macrophages [115], leading to novel mechanisms for aiding
the host in combating active TB.

Network-identified nutrients
Nutrients play an important role in both basic immune health and pathogen virulence. There
is a correlation between malnutrition and active TB; malnutrition increases the likelihood of
progressing to TB and TB causes a decrease in available nutrients [116]. There are guidelines
for providing nutrient supplementation in malnourished individuals and pregnant women;
however, there are no guidelines for additional supplementation in individuals receiving ade-
quate food intake [116]. The overall chemical-gene network contains a variety of vitamins (A,
B, C, D, E, K, lycopene), suggesting the importance of micronutrients in both immune regula-
tion and mycobacterial infection (Fig 8). While there is clear support for nutrient supplementa-
tion in malnourished individuals, particularly in treating malaria [117], there is some evidence
that nutrient modulation in healthy individuals may improve response to infection. Vitamin A
mediates anti-microbial activity, which may be beneficial in MTB treatment [118]. MTB is
highly sensitive to vitamin C induced Fenton reaction [119]. This reaction generates hydroxyl
radicals, chemicals that promote eradication of actively growing MTB [120]. Vitamin D

Fig 7. Network-identified immune-modulating chemicals.Grey: Network identified chemicals; Blue:
Network identified genes.

doi:10.1371/journal.pone.0146585.g007
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supplementation improved treatment response among patients with specific vitamin D recep-
tor mutations who were infected with MTB [121]. Vitamin D deficiency has also been associ-
ated with susceptibility to NTM infection [122]. However, based on the evidence from
randomized controlled trials, vitamin D supplementation has not shown benefit in the general
population of TB patients [121,123]. Further, a Cochrane Review concludes that “there is cur-
rently no reliable evidence that routinely supplementing at or above recommended daily
amounts has clinical benefits” [124].

Just as nutrients can help augment host response, nutrients also represent key chemicals for
regulating the pathogen. As iron is a necessary molecule for NTM and TB survival and viru-
lence [125], the human host is the main source of iron acquisition during infection [125,126].
The heme acquisition system offers a possible target for drugs [126] by limiting mycobacterial
nutrient uptake and preserving these essential nutrients for the host. The folate pathway repre-
sents another potential target for therapeutics against mycobacterium [127]. Folate cofactors
are an essential carbon donor used for amino acid and DNA synthesis [127] and inhibition can
possibly disrupt bacterial growth and replication.

Conclusion
Our findings suggest that the genetic contribution to MTB and NTM infection operates
through similar genes and pathways, providing insight into the underlying pathogenesis and
human immune response to mycobacterial disease. Genes involved in bridging the innate and
adaptive immune responses are central to both TB and NTM infection susceptibility and con-
trol. Genes in these processes are essential to host protection, thus providing an important
basis for further research. TB and NTM disease gene sets were also overrepresented in autoim-
mune signaling pathways. This implies that overlapping physiological mechanisms and path-
ways influence susceptibility to mycobacterial infection and the development of autoimmune
disease, suggesting another avenue for future research.

We identified drugs and nutrients via network analysis that interact with genes of interest,
and suggest potential therapeutics with immune modulating effects. Our network findings sug-
gest that three well-known macrolides and a fibrate may target our genes of interest and may
boost human immune response to infection. While research examining the effectiveness of
these treatments on mycobacterial disease is inconclusive, our findings suggest that further

Fig 8. Network-identified nutrients.Grey: Network identified vitamins; Blue: Network identified genes.

doi:10.1371/journal.pone.0146585.g008
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research may be warranted to expand the repertoire of treatment options for mycobacterial dis-
ease. Lastly, we identified nutrients that target our genes of interest, which may improve
response to infection even in healthy individuals. If vitamins A, B, C, D, E, K, and lycopene
positively impact response to infection, then nutrient supplementation may be a simple inter-
vention to reduce the incidence and prevalence of mycobacterial disease worldwide.

Although literature dependent network analyses are often limited by an incomplete knowl-
edge base, by relying on what has been published in the literature, network inferences can sug-
gest important pathways involved in disease and lead to novel hypotheses. In our study, for
example, our TB input gene list was larger compared with the NTM gene list, as a result of TB
being a more extensively studied disease. The fact that a gene is associated with risk of TB but
not NTMmay either be due to a true functional difference, or alternatively, may result as a
byproduct of a smaller pool of published NTM literature. Nonetheless, our network analysis
examines two important categories of mycobacterial disease, TB and NTM, and the resulting
networks provide a visually intuitive and statistically sound methodology for data interpreta-
tion and examination. The resulting network and pathway analysis offers a powerful and com-
plementary approach to other methods, to help identify underlying mechanisms and pathways
involved in complex diseases where multiple genes and gene products interact.

In summary, this analysis explores the connectivity between TB and NTM-associated genes,
susceptibility to infection, and possible therapeutics. It also provides a foundation for further
examination of these target genes among infected and uninfected individuals.
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