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Simple Summary: Previous studies from our laboratory have shown that chronic ethanol exposure-
induced increase in apoptotic hepatocellular death is closely related to the ethanol-induced impair-
ment in asialoglycoprotein receptor, a major component of liver sugar recognition system. The aim
of this study was to examine whether the absence of this receptor confers increased susceptibil-
ity to fulminant liver failure induced by lipopolysaccharide/galactosamine. We further investi-
gated whether treatment with betaine, a naturally occurring tertiary amine, prior to lipopolysaccha-
ride/galactosamine injection is protective. Lipopolysaccharide/galactosamine injection caused a
more pronounced liver damage in asialoglycoprotein receptor-deficient compared with the wild-type
control mice. In addition, prior administration of betaine was found to significantly attenuate the
lipopolysaccharide/galactosamine-induced increases in several liver injury parameters. Our work
underscores the importance of normal functioning of asialoglycoprotein receptor in preventing
severe liver damage and signifies a therapeutic role of betaine in prevention of liver injuries from
toxin-induced fulminant liver failure.

Abstract: Background: Work from our laboratory has shown that the ethanol-induced increase in
apoptotic hepatocellular death is closely related to the impairment in the ability of the asialoglycoprotein
receptor (ASGP-R) to remove neighboring apoptotic cells. In this study, we assessed the role of ASGP-R
in fulminant liver failure and investigated whether prior treatment with betaine (a naturally occurring
tertiary amine) is protective. Methods: Lipopolysaccharide (LPS; 50 µg/kg BW) and galactosamine
(GalN; 350 mg/kg BW) were injected together to wild-type and ASGP-R-deficient mice that were
treated for two weeks prior with or without 2% betaine in drinking water. The mice were sacrificed
1.5, 3, or 4.5 h post-injection, and tissue samples were collected. Results: LPS/GalN injection generate
distinct molecular processes, which includes increased production of tumor necrosis factor-α (TNF-α)
and interleukin-6 (IL-6), thus causing apoptosis as evident by increased caspase-3 activity. ASGP-R
deficient animals showed increased liver caspase activities, serum TNF-α and IL-6 levels, as well as
more pronounced liver damage compared with the wild-type control animals after intraperitoneal
injection of LPS/GalN. In addition, prior administration of betaine was found to significantly attenuate
the LPS/GalN-induced increases in liver injury parameters. Conclusion: Our work underscores the im-
portance of normal functioning of ASGP-R in preventing severe liver damage and signifies a therapeutic
role of betaine in prevention of liver injuries from toxin-induced fulminant liver failure.
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1. Introduction

Fulminant liver failure results from massive hepatocyte death and severely impairs
liver functions. This clinical syndrome has a high mortality rate despite several options
available such as liver support systems and liver transplantation [1–4].

A well-established and widely used experimental model of fulminant hepatic failure is
the combined administration of lipopolysaccharide (LPS) and galactosamine (GalN) [5–8].
Both inflammation and apoptosis are consistently observed in a number of inbred and
outbred strains tested with this model [9,10]. Further, distinct molecular processes have
been identified in LPS/GalN liver injury. It has been shown that the metabolism of GalN
leads to hepatotoxicity through inhibition of mRNA and protein synthesis; this occurs
due to the concurrent accumulation of UDP-GalN derivatives and a depletion of hepatic
UTP [11]. This GalN “priming” leads to the potentiation of the toxic effects of LPS to
produce typical hepatic cell injury followed by fulminant liver failure within 4–6 h of
LPS/GalN administration [12,13]. In particular, TNF-α production by the LPS-activated
Kupffer cells (KC) that primarily causes apoptosis of GalN-“primed” hepatocytes at an
early stage in LPS/GalN-induced liver injury [14,15]. TNF-α is also responsible for the
upregulation of the adhesion molecules, CXC chemokine formation, the activation of poly-
morphonuclear neutrophils (PMNs), and their sinusoidal accumulation [16]. GalN/TNF-α
also induces gap formation in endothelial cells, which allows PMNs to recognize apoptotic
hepatocytes. This is the trigger for PMN extravasation and attack on injured cells. These
events aggravate and accelerate parenchymal cell injury leading to necrosis of hepatocytes
at a later stage [17,18]. In addition, the failure of the sinusoidal endothelial cells (SEC)
barrier causes hemorrhage in the liver resulting in hypovolemic shock, which eventually
kills the animal [19].

It has been shown that even if CXC chemokine formation and the PMN attack is
prevented, the apoptosis continues to increase and eventually similar extent of injury is
observed [16,20], signifying apoptosis as being germane to LPS/GalN-induced fulminant
liver failure.

Our previous research has shown that the function of the asialoglycoprotein receptor
(ASGP-R), a major component of liver sugar recognition system, is impaired following
chronic exposure to ethanol. Further work in our laboratory has shown that the increase
in hepatocellular apoptosis observed after ethanol consumption is closely related to the
impaired ability of the ASGP-R to remove apoptotic cells; one of the most important
physiological ligands of this receptor [21,22]. The generation of the ASGP-R deficient
mouse strain has provided us with a tool to understand the physiological role of ASGP-R.
Since hepatocellular apoptosis has been shown to be a major player in LPS/GalN injury,
one of the aims of this study is to assess if the loss of ASGP-R makes these mice more
susceptible than wild-type controls to LPS/GalN-induced fulminant liver failure.

Only 14% of patients diagnosed with fulminant liver failure recover with medical
therapy. While orthotopic liver transplantation has improved the chances of survival of pa-
tients with fulminant liver failure, there is a high risk associated with immunosuppressive
agents used in transplant patients [1,2]. Therefore, there is a need to identify anti-apoptotic
agents that could be effectively used to treat fulminant liver failure. Several studies con-
ducted in our and other laboratories have shown that betaine can mitigate liver diseases of
diverse etiology such as alcohol [23–34], carbon tetrachloride exposure [35–38], high-caloric
intake, and metabolic syndrome related [39–45]. There are also numerous publications
demonstrating betaine’s protective role in apoptosis [24,46–48]. Thus, we also wanted to
examine whether prior administration of betaine could protect these ASGP-R-deficient
mice from developing severe liver injury following LPS/GalN injection.

2. Materials and Methods
2.1. Animals

Wild-type C57Bl6/129SV F2 cross mice (WT) and ASGP-R-deficient (RD) mice of the
same strain were obtained from Jackson Laboratories (Bar Harbor, ME, USA). As described
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in our earlier publications, RD mouse was developed by abolishing MHL-2 gene that
encodes the minor subunit of ASGP receptor [49,50]. RD mice do not show any phenotypic
abnormalities. Female mice (20–22 g) were fed with 2% betaine in drinking water or water
alone for 2 weeks and then randomized to be injected intraperitoneally with either saline or
a solution of LPS (E.coli 026:B6, Sigma# L2654; 50 µg/kg BW) and GalN (350 mg/Kg BW).
The mice were sacrificed 1.5, 3, or 4.5 h post-injection [5,6]. At necroscopy, the liver was
removed, and portions were either immediately processed for histological examination or
snap frozen in liquid nitrogen and stored at −70 ◦C for caspase enzyme analysis. Blood
samples were collected via the axillary artery and the prepared sera were stored at −70 ◦C
until analyzed for AST/ALT activities and cytokine levels. The care and use of these mice
and the procedures performed on them were approved by the Institutional Animal Care
and Use Committee at the Omaha Veterans Affairs Medical Center.

2.2. Serum Transaminase

Serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels were
determined using the VITROS 5.1 FS Chemistry System (Ortho Clinical Diagnostics, Raritan,
NJ, USA).

2.3. Serum Cytokine Levels

Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were measured us-
ing the BD OptEIA Mouse TNF-α and IL-6 ELISA kit purchased from BD Biosciences,
San Diego, CA, USA.

2.4. Histopatholog

Paraffin-embedded liver tissue sections were processed for hematoxylin/eosin stain-
ing for histological evaluation. The severity of liver injury was assessed by evaluating
portal inflammation, hepatocellular necrosis, inflammatory cell infiltration, and loss of cell
architecture.

2.5. TUNEL Assay

The formalin-fixed liver tissue was also processed and stained with terminal deoxynu-
cleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). The number of apoptotic
hepatocytes was quantified based on positive TUNEL staining and morphological crite-
ria. Apoptotic hepatocytes were counted individually for five independent sections and
expressed as the average number of TUNEL-positive cells per microscopic field.

2.6. Caspase-3 Activation Assay

Portions of frozen livers were processed and then assayed for specific caspase activities
following manufacturers’ instructions using commercially available caspase-3 fluorogenic
substrate, Ac-DEVD-AMC (BD Biosciences, San Diego, CA, USA). Caspase activity was
evaluated by measuring the release of AMC (7-Amino-4-methylcoumarin) obtained by the
cleavage of the defined synthetic peptide sequence by caspase-3, using a Perkin Elmer Lu-
minescence Spectrophotometer LS 50B. Free AMC obtained from Sigma-Aldrich (St Louis,
MO, USA) was used as the standard. Protein was determined using the BCA Protein Assay
kit from Pierce. The caspase-3 activity was expressed as pmoles of AMC produced per mg
liver protein.

2.7. Statistical Analyses

The results were presented as mean ± SEM. Data were analyzed by one-way ANOVA,
followed by Tukey test. A p value < 0.05 was regarded as statistically significant.
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3. Results
3.1. Histological Changes

Histological analysis of WT mice injected with saline or sub-lethal dose of LPS/GalN
revealed a normal liver lobular architecture. (Figure 1). The same features were also seen
in RD mice injected with saline. However, the mice injected with LPS/GalN showed
areas of portal inflammation and apoptotic hepatocytes, which was randomly distributed
throughout the parenchyma. These mice also had a moderate increase in inflammatory
cell infiltration and hemorrhage. These pathological changes were ameliorated by betaine
pretreatment.
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Figure 1. Histology of livers from wild-type (WT) and asialoglycoprotein (ASGP) receptor-deficient (RD) mice. Paraffin
embedded sections were prepared and stained with hematoxylin and eosin stain (H & E). Photographs (200× magnification)
show representative liver sections of saline or lipopolysaccharide (LPS)/galactosamine (GalN)-injected WT and RD mice.
After 4.5 h of LPS/GalN injection, RD mice showed increased apoptotic hepatocytes (arrows) and areas of hemorrhage,
which were reduced with betaine pretreatment.

3.2. Serum ALT and AST Levels

ALT and AST levels, serum markers of hepatocyte injury, were within normal range in
the saline-treated WT and RD mice at all time-points examined. Both WT and RD animals
injected with LPS/GalN showed increases in serum liver injury markers only at 4.5 h
post-injection. Whereas the WT exhibited a modest (< than 2-fold) increase in AST levels
only, RD mice showed an over4-fold increase in both AST and ALT levels compared to
saline-injected miceBetaine pretreatment significantly attenuated the AST and ALT levels
in LPS/GalN-injected RD mice (Figure 2).

Biology 2021, 10, x FOR PEER REVIEW 5 of 11 
 

 

 
Figure 2. Effect of LPS/GalN and betaine on (A) serum alanine aminotransferase (ALT) and (B) 
aspartate aminotransferase (AST) levels. Values are means ± SEM (n = 8). Values not sharing a 
common letter are statistically different, p < 0.05. 

3.3. Cytokine Levels 
We observed TNF-α serum levels peaked at 1.5 h post-LPS/GalN injection and RD 

mice showed significantly higher TNF-α compared to the WT mice under the same con-
ditions. These levels declined at 3 h in both WT and RD mice and reached to baseline at 
4.5 h post LPS/GalN injection in WT animals but not in RD animals. Betaine treatment did 
not attenuate the LPS/GalN induced increase in TNF-α levels in either the RD or WT mice 
(Figure 3). 

 
Figure 3. Effect of LPS/GalN and betaine on serum TNF-α levels. ELISA analysis of TNF-α concentration changes in serum 
at 1.5, 3, and 4.5 h after saline or LPS/GalN injection. Values are means ± SEM (n = 8). Values not sharing a common letter 
are statistically different, p < 0.05. 

Contrary to the serum TNF-α profile, the increases in serum IL-6 levels were sus-
tained for a longer period after LPS/GalN injection in both the WT and RD mice. However, 

0
20
40
60
80

100
100
600

1100
1600
2100
2600

WT
RD

                    Saline                               LPS/GalN                          LPS/GalN                             LPS/GalN
              -                   +                    -                   +                    -                    +                    -                    +Betaine

1.5h
3h 4.5h

aaa a

b c b
c

d e

a a

dd d d d

TN
F-

α
 (p

g/
m

l)

Figure 2. Effect of LPS/GalN and betaine on (A) serum alanine aminotransferase (ALT) and (B) aspartate aminotransferase
(AST) levels. Values are means ± SEM (n = 8). Values not sharing a common letter are statistically different, p < 0.05.
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3.3. Cytokine Levels

We observed TNF-α serum levels peaked at 1.5 h post-LPS/GalN injection and RD
mice showed significantly higher TNF-α compared to the WT mice under the same con-
ditions. These levels declined at 3 h in both WT and RD mice and reached to baseline at
4.5 h post LPS/GalN injection in WT animals but not in RD animals. Betaine treatment did
not attenuate the LPS/GalN induced increase in TNF-α levels in either the RD or WT mice
(Figure 3).
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Figure 3. Effect of LPS/GalN and betaine on serum TNF-α levels. ELISA analysis of TNF-α concentration changes in serum
at 1.5, 3, and 4.5 h after saline or LPS/GalN injection. Values are means ± SEM (n = 8). Values not sharing a common letter
are statistically different, p < 0.05.

Contrary to the serum TNF-α profile, the increases in serum IL-6 levels were sustained
for a longer period after LPS/GalN injection in both the WT and RD mice. However,
the levels of IL-6 were higher in RD mice at 3 and 4.5 h after LPS/GalN injection relative to
the levels observed in WT mice under the same conditions. Betaine partially attenuated
the IL-6 release in RD mice at these later time points (Figure 4).
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Figure 4. Effect of LPS/GalN and betaine on serum IL-6 levels in WT and RD mice. ELISA analysis of IL-6 concentration in
serum at 1.5, 3, and 4.5 h after saline or LPS/GalN administration in WT and RD mice with or without betaine pretreatment
were measured. Values are means ± SEM (n = 8). Values not sharing a common letter are statistically different, p < 0.05.

3.4. Hepatocyte Apoptosis

Caspase-3 activity was at baseline at all times in the liver of saline-injected WT and RD
mice. A significant increase in caspase 3 activity was noted in RD mice only at 4.5 h after
LPS/GalN injection. In contrast, only a modest increase in caspase-3 activity in WT mice



Biology 2021, 10, 19 6 of 11

injected with LPS/GalN at 4.5 h post-injection. This increase was attenuated in betaine
pretreated RD mice (Figure 5).
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Figure 5. Caspase-3 activation in WT and RD mice at 4.5 h post injection. WT and RD mice treated with or without betaine
treatment were injected with saline or LPS/GalN. Hepatic caspase-3 activity was evaluated by measuring the release
of 7-amino-4-methylcoumarin (AMC) obtained by the cleavage of the synthetic peptide sequence by caspase-3 in liver
homogenate. Values are means ± SEM (n = 8). Values not sharing a common letter are statistically different, p < 0.05.

Apoptotic nuclei were also detected by TUNEL staining. No TUNEL staining was seen
in liver slices of WT mice injected with saline or LPS/GalN at 1.5, 3, or 4.5 h post-injection.
Further, no staining was observed in RD mice injected with saline at all time points studied
or following LPS/GalN injection at 1.5 or 3 h post-injection. However, many TUNEL
positive hepatocytes were observed in RD mouse liver tissue 4.5 h post-injection with
LPS/GalN. A few positive cells were seen in livers form the mice pretreated with betaine
(Figure 6).
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Figure 6. Apoptosis in livers of WT and in RD mice after 4.5 h post-LPS/GalN injection. Apoptosis was detected by terminal
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4. Discussion

The cascades of events that occur following LPS-GalN administration are well doc-
umented. This model of liver injury takes advantage of the ability of the GalN to inhibit
transcription and thus to potentiate the toxic effects of LPS to produce typical hepatic cell
injury followed by fulminant liver failure within 4–6 h of LPS/GalN administration [51,52].
In particular, hepatocellular apoptosis has been shown to be an integral part of LPS/GalN-
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induced liver injury [53]. In this study, we utilized LPS/GalN model of liver injury to
study the physiological role of ASGP-R. Several features of ASGP-R function prognosticate
its therapeutic role in the context of chronic liver diseases. Most important is its role in
the phagocytosis of apoptotic bodies [21,22], which by precluding their uptake by the non-
parenchymal cells, prevents activation of Kupffer/hepatic stellate cells and liver damage
progression [54,55].

In this study, we used a sub-lethal dose of LPS/GalN, which was half of what has been
used routinely for inducing fulminant liver failure. While this dose of LPS/GalN induced
a TNF-α peak 1.5 h post injection in WT mice, we observed modest liver injury in this
strain of mice by numerous criteria employed in this study. In contrast, the RD mice were
susceptible to this sub-lethal dose of LPS/GalN and exhibited considerable liver injury
only at 4.5 h post-injection. This was evidenced by several parameters such as elevated
levels of plasma AST and ALT levels (Figure 2), increased liver caspase-3 activity (Figure 5),
and considerable cell injury at histological examination by TUNEL-positive test (Figure 6).
Further, there appeared to be a temporal sequence of events with TNF-α being the trigger
(peak circulating levels of TNF-α was observed 1.5 h post-injection) to induce apoptosis
of GalN-primed hepatocytes and the ensuing liver damage in RD mice. Recognizing that
apoptosis is the major player in LPS/GalN-induced liver injury [53] and that ASGP-R
plays an important role in removing apoptotic bodies [21,22], these results underscore the
physiological importance of ASGP-R in maintaining homeostasis in the liver to prevent the
cascade of events that generate liver damage. The dose of LPS/GalN used in this study
produced only modest liver injury in WT mice despite a robust peak observed of TNF-α and
IL-6 at 1.5 h post-injection of LPS/GalN. This is because the normally functioning ASGP-R
prevented the buildup of apoptotic bodies and thereby also prevented the initiation of the
cascade of events to produce fulminant liver failure. However, in RD mice, the absence of
functional ASGP-R makes these mice susceptible to the sub-lethal dose of LPS-GalN.

Our laboratory has been studying the protective effects of betaine in a variety of
animal and cell-culture models [24–26,28–32]. Betaine can prevent/protect against apop-
tosis induced by an array of agents [24,46–48]. Strategies increasing the anti-apoptotic
armamentarium of hepatocytes have been shown to beneficially impact the outcome of
fulminant hepatic failure [56–62]. In this study, we show that betaine is also effective in
protecting against LPS-GalN-induced apoptosis in RD mice. While significant attenuation
in caspase-3 activation, AST, and ALT levels were observed in RD mice pretreated with
betaine, we observed no change in toxin-induced increases in serum TNF-α level. This indi-
cated that the protective effects of betaine are downstream of TNF-α action. Similar results
have also been reported by other investigators who showed the while glycrrhizin or A20
expression protected the livers from LPS/GalN induced liver damage, this occurs in the
absence of significant differences in cytokine levels including TNF-α [56,63]. While the
deleterious effects of TNF-α as a proximal mediator of hepatotoxicity are demonstrated
in several models of liver injury including LPS/GalN [8,53], it also a co-mitogen required
for proliferation of hepatocytes during liver regeneration, which emphasizes its benefi-
cial effects. Thus, it is possible that maintaining high levels of TNF-α while protecting
hepatocytes from apoptosis must be beneficial for liver regeneration and recovery.

To explore the mechanism of betaine action, we looked at the levels of metabolites of
the methionine metabolic pathway in the livers of the WT and RD mice with or without
betaine treatment and found no difference in the ratios of two important metabolites S-
adenosylmethione (SAM) and S-adenosylhomocystiene (SAH), which is reflective of the
methylation potential [25,29,31]. However, it appeared that the SAM levels were depleted
faster in the RD mice as compared to RD mice that were pretreated with betaine (data not
shown). SAM is the primary methyl donor in anabolic metabolism, serves as a precursor
for glutathione (GSH), and is synthesized by the enzyme methionine adenosyltransferase
(MAT) [64]. It has been reported that GalN treatment produces a substantial decrease
in cellular SAM levels in hepatocytes by inhibiting MAT activity [65,66]. We have previ-
ously shown that betaine feeding can dramatically increase SAM levels in livers of rat [25].
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We believe that betaine pretreatment prevents SAM depletion and thereby prevents the
hypomethylation of ribosomal RNA induced by GalN treatment and the “priming” of hep-
atocytes to subsequent damage [67,68]. While many agents have been used to ameliorate
LPS/GalN liver damage [56–63,69–72], betaine is inexpensive, bioavailable [73,74], and has
no consistent relation with cancer, cardiovascular risk, or risk factors [75], making it a safe
therapeutic.

5. Conclusions

To summarize, this study underscores the importance of normal ASGP-R function in
liver homeostasis. By removing the apoptotic bodies effectively, ASGP-R thereby prevents
the cascade of events leading to severe liver injury. Further in the event of impaired ASGP-
R function, the administration of betaine can prevent the progression of the severe liver
injury by preventing the activation of caspase-3.
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