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Abstract: We introduce the bioconjugation of polymers
synthesized by RAFT polymerization, bearing no specific
functional end group, by means of hetero-Diels–Alder cyclo-
addition through their inherent terminal thiocarbonylthio
moiety with a diene-modified model protein. Quantitative
conjugation occurs over the course of a few hours, at ambient
temperature and neutral pH, and in the absence of any catalyst.
Our technology platform affords thermoresponsive bioconju-
gates, whose aggregation is solely controlled by the polymer
chains.

Proteins are essential compounds in modern medicine and
biotechnology. However, their physicochemical character-
istics brings about critical limitations, particularly in terms of
solubility and stability.[1] One of the most important ways of
addressing these issues relies on the attachment of synthetic
polymer chains, in order to produce so-called protein-
polymer conjugates (PPCs).[2–6] The pioneering and so far
most employed polymer for PPCs is polyethylene glycol
(PEG). Yet, utilizing other polymers than PEG gives access to
a wider range of properties and may elude some shortcomings
of PEG,[7–12] notably its immunogenicity.[13, 14] In this context,
reversible addition-fragmentation transfer (RAFT) polymer-
ization is one the most powerful synthetic techniques to access
macromolecules with defined chain length and (end-group)
functionality.[15–17] One of the methods to achieve RAFT-

based PPCs involves reacting one end of the synthetic
polymer with one or several residues on the protein surface.
The reactive end of the RAFT polymer is typically introduced
through the reinitiating fragment—the so-called R group—of
a specifically designed chain transfer agent (CTA).[12] The
RAFT-hetero-Diels–Alder cycloaddition (RAFT-HDA)
emerged about a decade ago as a complementary and
highly efficient method for chain-end conjugation of RAFT
polymers without the need for introducing functional R
groups.[18–22]

RAFT-HDA relies on RAFT agents possessing a C=S
double bond with a specifically adjusted electron deficiency.
The latter should be sufficiently high to enable HDA with
a range of dienes, yet not too high in order for a well-
controlled RAFT polymerization to take place. While RAFT-
HDA in organic solvents requires heat, catalysts, or highly
active diene partners (e.g., cyclopentadiene or o-quinodi-
methanes),[18–22] we have previously demonstrated that a fast
RAFT-HDA is achieved in aqueous solutions simply by
mixing the components at ambient temperature and in the
absence of a catalyst, even with less reactive dienes.[23] Such
mild conditions seem ideal for the functionalization of
proteins, which are generally sensitive to heat or additives.
Importantly, most if not all cycloadditions are biorthogonal,
thus offer an ideal platform to specifically conjugate polymers
to biomolecules.[24] In the present contribution, we report the
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first protein-polymer conjugates obtained through the RAFT-
HDA pathway (Scheme 1).

A range of water-soluble acrylic polymers based on
ethylene glycol side chains were first synthesized: (i) homo-
polymers of triethylene glycol methyl ether acrylate
(PmTEGA) and (ii) copolymers of diethylene glycol ethyl
ether acrylate and oligoethylene glycol methyl ether acrylate
(P(eDEGA-co-mOEGA)). PmTEGA is water-soluble in the
useful temperature range of PPCs (< 55–70 8C)[25–28] and may
impart a stealth character and improved solubility to proteins.
P(eDEGA-co-mOEGA)s exhibit a lower critical solution
temperature (LCST), which depends on the exact comono-
mer ratio,[29, 30] and will lead to thermoresponsive PPCs at
possibly useful temperatures. Responsive PPCs[31, 32] are
particularly interesting for control of biomolecular activity,[33]

triggered reversible self-assembly into biohybrid nanostruc-
tures[34–38] and fast removal/recovery of proteins from solu-
tion.[39, 40] Interestingly, similar polymers with short oligo-
ethylene glycol side chains were shown not to exhibit the non-
desired antigenicity of PEG.[41] 2-cyanoprop-2-yl diethoxy-
phosphoryldithioformate (CPDPDT) was employed as CTA
because it simultaneously enables the controlled polymeri-
zation of acrylates and the synthesis of polymers with
a terminal C=S bond sufficiently electron-deficient for
a rapid HDA cycloaddition to occur.[23] As seen in Figure 1,
PmTEGAs with number-average molar masses Mn of 2000

and 6000 gmol�1 and narrow dispersities (� = 1.1–1.2) were
obtained (noted as PmTEGA2000 and PmTEGA6000,
respectively). Similarly, P(eDEGA-co-mOEGA)s
CoP15 000 and CoP18000, with Mn of 15000 and
18000 gmol�1 (� = 1.3), respectively, were produced by
CPDPDT-mediated RAFT copolymerization. All polymers
displayed the classic maximum of absorption at 327 nm
(Figure S8), characteristic of the p ! p* transition in the
diethoxyphosphoryldithioformate end group.

For conjugation reactions not based on natural amino
acids, reactive proteins can be obtained either by genetic
engineering[42] or simple post-translational chemical modifi-
cation.[43] Here, we have chosen the latter for its ease of
implementation. To introduce diene moieties, the difunctional
linker 2,5-dioxopyrrolidin-1-yl (hexa-2,4-dien-1-yl)succinate
DSS (see Supporting Information), consisting of a sorbyl
group and a succinimidyl ester on either side, was readily
synthesized in two steps and reacted with the lysine residues
of the model protein bovin serum albumin (BSA). The diene-
functionalized BSA (dBSA) remained fully soluble in aque-
ous medium and did not show any significant change in
circular dichroism (CD) (Figure S14). Mass spectrometry
analysis showed the incorporation of an average of 6–7 diene

Scheme 1. Synthesis of bovin serum albumin polymer conjugates by
RAFT-HDA, as described in the current contribution. Figure 1. (Top) Synthetic route for oligoethylene glycol-based polyacry-

lates by RAFT polymerization in the presence of 2-cyanoprop-2-yl
diethoxyphosphoryldithioformate (CPDPDT). (i) mTEGA, AIBN, etha-
nol, 60 8C. (ii) eDEGA:mOEGA 80/20 mol/mol, AIBN, ethanol, 60 8C.
(Bottom) Corresponding SEC traces.
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tags per protein molecule, that is, x = 6–7 in Scheme 1
(Figure S10).

Protein-polymer conjugation was performed by simple
incubation of dBSA with the RAFT polymers in aqueous
buffers, in the absence of catalyst and at room temperature.
During initial experiments, it was observed that the character-
istic purple color of the RAFT polymer stock solutions in
aqueous media faded with time. It is known that RAFT end
groups are sensitive to a range of reagents, mostly primary
amines and basic conditions[44] and that discoloration of
RAFT polymers implies end-group loss. For this reason, we
monitored this phenomenon by UV/Vis spectroscopic meas-
urements of PmTEGA6000 solutions in various aqueous
buffers. As expected, basic conditions led to the fastest
decrease in absorption at 327 nm and consequently the fastest
deactivation (Figure S11). Particularly, incubation in bicar-
bonate buffer at pH 9.15 or Tris buffer at pH 8.1 led to
instantaneous full degradation. Phosphate buffer at the same
pH was less damaging. Decreasing pH further led to
significantly slower degradation. Eventually, sodium phos-
phate buffer (50 mM at pH 6.0) was chosen for bioconju-
gation as it offered the best compromise between the slow
degradation and close-to-neutral conditions. Before protein-
polymer conjugation was addressed, model HDA conjugation
reactions with DSS were performed. It was observed that
absorption at 327 nm decreased significantly faster in reaction
mixtures of PmTEGA6000 and DSS compared to the
polymer alone (Figure S12). Higher amounts of DSS (2 and
3 equivalents) led to faster disappearance of the characteristic
RAFT moiety absorption, a clear sign of the HDA reaction
occurring at the C=S double bond.[23]

A range of conditions were assessed in order to determine
the optimum conditions for polymer bioconjugation. Mix-
tures with various PmTEGA6000 :dBSA molar ratios were
prepared in sodium phosphate buffer at pH 6.0 for overnight
reactions. As observed in gels obtained by SDS-PAGE and
the corresponding intensity plots (Figure 2A), higher poly-
mer:protein ratios generated species with higher molar
masses. With 80 equiv. and above, conjugates with an average
of 6 to 7 grafted polymer chains were obtained, as deduced
from the � 40 kDa shift. It can thus be assumed that in these
conditions all accessible diene groups within the protein have
been coupled via HDA reaction. Moreover, the kinetics of the
reaction was monitored using a 100-fold molar excess of
polymer (Figure 2B). The reaction was arrested at various
incubation times by removing the non-reacted PmTEGA6000
by size-exclusion centrifugation. We observed that the con-
jugation of the first two polymer chains to dBSA occurred
within just 1–2 h, with the fully conjugated protein obtained
after 6 h. The first easily reachable diene moities might react
fast, while the attachment of further polymer chains is
certainly slowed down for more buried dienes and due to
the increasing steric constraints imposed by already grafted
polymer chains. Moreover, the successful preparation of
dBSA-PmTEGA2000 and dBSA-PmTEGA6000 conjugates
was also confirmed by a shift in the hydrodynamic diameter
distribution compared to that of the free protein, as measured
by dynamic light scattering (DLS) (Figure S13). Again, the
secondary structure of the protein was not affected by the

modification, as demonstrated by CD (Figure S14). Albeit not
an enzyme, BSA possesses an esterase activity that can be
exploited to further assess modifications. In a colorimetric
glyceryl acetate-based esterase assay (Figure S16), no signifi-
cant difference between BSA and dBSA-PmTEGA6000 were
observed, which confirms the conservation of the protein
structure and stability.

The conjugation of functional polymers to proteins leads
to PPCs with specific properties. Here, the RAFT-HDA
conjugation was carried out with the thermoresponsive
P(eDEGA-co-mOEGA) copolymers CoP15000 and
CoP18000 (see Figure 1). DLS measurements revealed a sig-
nificant increase of the average hydrodynamic diameter from
6.5� 0.8 nm for dBSA to 7.9� 1.2 and 9.1� 1.5 nm after the
conjugation reaction with CoP15000 and CoP18000, respec-
tively (Figure 3), confirming successful conjugation. As for
PmTEGA6000, CD measurements revealed no alteration in
the secondary structure of BSA through the grafting of
CoP15000 and CoP18000 (Figure S15).

The thermoresponsive behavior of the newly generated
BSA conjugates was subsequently evaluated. P(eDEGA-co-
mOEGA) copolymers typically exhibit a tunable thermores-
ponsive behavior over the 25–75 8C range, depending on their
comonomer composition and molar mass.[29, 30] The thermal
transition is readily detectable via an increase in the turbidity

Figure 2. Coomassie-stained SDS-PAGE gels of BSA conjugates
obtained by RAFT-HDA with PmTEGA6000 (up) and corresponding
electrophoretograms (bottom). (A) Variation of the [PmTEGA6000]:-
[dBSA] ratio for a fixed reaction time of 12 h: 25 (c), 50 (d), 80 (e), and
100 (f). (B) Variation of the reaction time for a fixed [PmTEGA6000]:-
[dBSA] ratio of 100: 1 h (g), 2 h (h), 4 h (i), 6 h (j), and 8 h (k).
Molecular weight protein ladder (a) and control sample (b, dBSA) are
added as references.
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of the sample, which can be measured within a UV/Vis
spectrophotometer (Figure 4A). We applied a heating ramp
from 40 to 55 8C to aqueous solutions of CoP15000 and
CoP18000 polymers and monitored the absorbance at
670 nm, a wavelength at which no interference with possible
chromophores may occur. We observed that while CoP18000
showed turbidity at temperatures higher than 45 8C, the
turbidity of CoP15000 sample was detected only above 48 8C.

We measured cloud points (temperature at 50% of the
maximal absorbance) of 49.5 and 46.5 8C for CoP15000 and
CoP18000 polymers, respectively.

Finally, we assessed how the thermoresponsive properties
of P(eDEGA-co-mOEGA) copolymers transferred to their
corresponding BSA conjugates. Note that BSA was previ-
ously shown to be stable in the considered temperature range
(i.e., below 60 8C)[45, 46] and that one could in any case
modulate the transition temperatures by varying the compo-
sitions of the copolymers. As the turbidity of the medium
implied the temperature-induced aggregation of the poly-
meric components, the overall size of the PPCs is expected to
increase at temperatures higher than LCST, with the protein
component stabilizing the aggregates.[34] Purified PPCs were
thus subjected to a heating ramp and the hydrodynamic
diameter of the particles was simultaneously measured. As
shown in Figure 4 B, the average hydrodynamic diameter
increased from 7.9� 1.2 and 9.1� 1.5 nm at 40 8C to 69� 5
and 77� 4 nm at 55 8C for dBSA-CoP15000 and dBSA-
CoP18000 conjugates, respectively. Interestingly, the onsets of
aggregation of the PPCs match well those measured for the
polymers alone, and the cloud points only slightly decrease:
48.6 and 45.8 8C for dBSA-CoP15000 and dBSA-CoP18000,
respectively, versus 49.5 and 46.5 8C for their corresponding
free polymers. The polymers are physically bound to the
protein counterpart and the protein does not seem to
significantly interfere in the temperature-induced physical
aggregation of the polymers.

In conclusion, we introduce the application of the RAFT-
HDA chemistry for catalyst-free protein-polymer conjugation
under mild conditions (ambient temperature, near-neutral
pH). Using this method, we have decorated the surface of
BSA with up to 7 hydrophilic polymer chains, as well as with
thermoresponsive polymers. The reaction of the diene-
functionalized protein with the RAFT-derived diethoxyphos-
phoryldithioester polymer is relatively fast, pH-dependent,
and can be monitored by UV/Vis spectroscopy and SDS-
PAGE. Finally, we demonstrate that the thermoresponsive
properties of the polymers are transferred to the protein-
polymer conjugates, showing similar phase-separation tem-
peratures. The current procedure entails pre-conditioning of
the protein through covalent anchoring of reactive diene tags.
Further control of the bioconjugation degree and location is
certainly achievable by the introduction of genetically en-
coded unnatural aminoacid containing the diene group.[42,47]
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