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A B S T R A C T

The rapid spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) - coronavirus disease 2019
(COVID-19) has raised a severe global public health issue and creates a pandemic situation. The present work
aims to study the molecular -docking and dynamic of three pertinent medicinal plants i.e. Eurycoma harmandiana,
Sophora flavescens and Andrographis paniculata phyto-compounds against SARS-COV-2 papain-like protease (PLpro)
and main protease (Mpro)/3-chymotrypsin-like protease (3CLpro). The interaction of protein targets and ligands
was performed through AutoDock-Vina visualized using PyMOL and BIOVIA-Discovery Studio 2020. Molecular
docking with canthin-6-one 9-O-beta-glucopyranoside showed highest binding affinity and less binding energy
with both PLpro and Mpro/3CLpro proteases and was subjected to molecular dynamic (MD) simulations for a period
of 100ns. Stability of the protein-ligand complexes was evaluated by different analyses. The binding free energy
calculated using MM-PBSA and the results showed that the molecule must have stable interactions with the
protein binding site. ADMET analysis of the compounds suggested that it is having drug-like properties like high
gastrointestinal (GI) absorption, no blood-brain barrier permeability and high lipophilicity. The outcome revealed
that canthin-6-one 9-O-beta-glucopyranoside can be used as a potential natural drug against COVID-19 protease.
1. Introduction

The illness caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) is named coronavirus disease 2019 (COVID-19) (Zhang
et al., 2020a; Mohamed and Fatima, 2020; Chaudhary and Janmeda,
2020). By 24th April 2021, beyond one hundred forty-four million
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sufferers were documented globally, with greater than three million
sixty-six thousands of demises (223 countries, areas or territories with
cases) which resume to rising, majorly in India, USA, Western Pacific,
South-east Asia, Europe, Africa, and Eastern Mediterranean, as these are
nations with a huge fragment of elderly inhabitants who have been
infected with the SARS-CoV-2 (WHO, 2020; https://www.who.int/emer
gencies/diseases/novel-coronavirus-2019). SARS-CoV-2 is a
non-segmented, enveloped, and positive-sense RNA virus. Structurally,
SARS-CoV-2 comprises of four structural proteins including nucleocapsid
protein (N), membrane glycol protein (M), small envelope glycoprotein
(E), and spike protein (S). S protein generates homotrimers which are
protruding on the surface of the virus and facilitate its binding to host
cells by attracting angiotensin-converting enzyme 2 presented in lower
respiratory tract cells. N protein is involved in the interaction with the
viral genome andM protein and in virion assembly. M protein determines
021
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Fig. 1. Interactions established after docking the
secondary metabolite against SARS-CoV-2 PLpro Pro-
tein (6W9C). The interacting residues of the protein
are labeled in purple and the docking scores are listed
under each of the complex, respectively. The receptor-
ligand interaction is represented on a 3D diagram
(Right) and 2D diagram (Left). Drugs are in cyan and
interacting atoms of protein are represented red in the
diagram, while green dotted lines represent the con-
ventional h-bond interactions, light green dotted line
represents weak van der Waals interactions. Addi-
tionally, dotted lines in sky blue display the pi-donor
hydrogen bond, pi-sigma interaction is shown as vio-
let dashed lines, pink dotted lines show alkyl and pi-
alkyl interactions, respectively.
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the shape of the viral envelope. Basically, it stabilizes the N protein and
allows the completion of viral assembly by stabilizing the N protein-RNA
complex. The last structural protein is E protein which plays an important
role in the maturation and production of the virus (Astuti and Ysrafil,
2020). After successful fusion and entry, the viral genome is released and
ORF1a and ORF1b of genomic RNA are translated in two kinds of big
polyproteins (pp1a and pp1 ab) that are cleaved in several functional
viral proteins by viral proteases, main protease or 3-chymotrypsin-like
protease (Mpro/3CLpro) and papain-like proteases (PLpro) that are enco-
ded in nsp5 and nsp 3. (Mitra et al., 2021; de Oliveira et al., 2020; Khan
et al., 2020). pp1a and pp1ab are cleaved in into nonstructural proteins
(1–11 and 1–10, and 12–16) which play an important role in various
processes during the virus life cycle (V’Kovski et al., 2020). Mpro is
recognized for its significant role in enzymatic activity which leads to
post-translational processing of replicase protein. It consists of 306 amino
acids and shows a great resemblance with SARS-CoV-2 Mpro. It also
comprises of three domains (C-terminal domain-III, N-terminal
domain-II, and N-terminal domain-I) and two catalytic dyads (H41 and
C145) (Amin et al., 2021). PLpro is one of the main components of the
SARS-CoV-2 replicase-transcriptase complex and its topological structure
is divided into ubiquitin-like fingers, palm, and thumb. Basically, it
carries out the processing of viral protein by identifying the
Leu-X-Gly-Gly tertrapeptide motif and functions as de-ISGylating and
de-ubiquitinating enzyme that inhibits the inflammatory signaling in the
host cell (Li et al., 2021). Because of the pivotal roles and crucial func-
tion, the proteases perform in the life-cycle of the virus, they are a crucial
target for the discovery of antiviral agents for SARS-CoV-2 (Arya et al.,
2020; Kumar and Singh, 2020; Zhang et al., 2020b). At present, no drug
has been invented, and hence because of the risk factors related to this
illness, there is a critical requirement for a treatment (Enayatkhani et al.,
2020). Currently, the idea of drug reuse is popularly utilized for the cure
of variable disorders as it lessens the time, cost, and uncertainty of the
2

drug generation operation by using a rapid computational perspective
(Boopathi et al., 2019; Muralidharan et al., 2020).

Eurycoma harmandiana Pierre is a small plant, belongs to the Simar-
oubaceae family, allocated in the dividing line between Laos and
Thailand (Kanchanapoom et al., 2001). Two alkaloids, 7-hydrox-
y-β-carboline 1-propionic acid and canthin-6-one 9-O-beta-glucopyrano-
side from the root part of E. harmandiana used as anti-viral agents
(Kanchanapoom et al., 2001). Docking study of canthin-6-one 9-O-beta--
glucopyranoside with NS1 protease to find out its effectiveness against
the dengue virus, showed hydrogen bonds with the backbone and a side
chain of SER80 and to THR87 and ASN130 side chains (ul Qamar et al.,
2019). Sophora flavescens is a small Fabaceous plant, related to the
Sophora genus. The roots of S. flavescens are termed as Kushen. It is
broadly distributed in the regions of the Pacific Islands, Oceanica and the
Asia, and has been greatly utilized as conventional herbal medication for
the therapy of pain, scabies, myocarditis, cancer, dysentery, fever, and
viral hepatitis (Kim et al., 2018). Many of the compounds were isolated
from the roots of S. flavescens but out of them, kushenolW and kushenol K
are utilized for carried the study of molecular docking in case of dengue
virus. Andrographis paniculata (Burm. F) Nees, is an herbaceous plant,
belongs to the Acanthaceae family. It has conventionally been utilized in
China, Sri Lanka, India, and some other Southeast Asian countries. This
plant is broadly acknowledged for its anti-inflammatory action against
the infection of an upper respiratory tract (Mussard et al., 2019). Several
compounds such as 3α, 14, 15, 18-Tetrahydroxy-5β, 9βH, 10α-labda-8,
12-dien-16-oic acid γ-lactone, deoxyandrographolide, neo-
andrographolide, 14-deoxy-11, 12-didehydroandrographolide, deoxy-
andrographolide19β-d-glucoside, 5,7,20,30-tetramethoxyflavanone, 5-Hy
droxy-7,20,30-trimethoxyflavone, 14-Deoxy-11-oxoandrographolide,
5-Hydroxy-7,8,20,30-Tetramethoxyflavone, 5-Hydroxy-7,8,20-Trimethox-
yflavone, andrographine, panicoline, paniculide-A, paniculide-B, and
paniculide-C have been reported from A. paniculata. According to
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JayaKumar et al. (2013) many of the physicians have manufactured
several derivatives of andrographolide, which manifests remarkable
remedial activities such as antiviral, antifeedant, anti-HIV, antidiabetic,
antitumor, antibacterial, and anti-inflammatory. The concentration and
composition of chemical constituents in plants are greatly affected by
variable factors like harvesting condition, growth condition, genetic
factors, types of extraction solvent, and concentration of solvents (Rafi
et al., 2020). So, the present investigation is concentrated on the iden-
tification of natural composite with an exclusive objective to speed up the
recognition of particular medication for the treatment of SARS-CoV-2.

2. Materials and methods

2.1. Medicinal plant and their natural components

A. paniculata, E. harmandiana and S. flavescens are highly valuable
medicinal plants as reported by many researchers (ul Qamar et al., 2019;
Mussard et al., 2019; JayaKumar et al., 2013; Rafi et al., 2020). They are
3

mainly used as an herbal remedy for the treatments of lung, sore throat,
flu and upper respiratory tract infections, and possess inhibitors activity
of NS1, NS3/NS2B and NS5 proteins of dengue virus and
anti-inflammatory, anti-tumor, anti-HIV, antibacterial, antifeedant,
antidiabetic, antiviral & other pharmacological activities. The molecular
properties of the natural components of three pertinent medicinal plants
were retrieved from the PubChem database (https://pubchem.ncbi.nlm
.nih.gov/) as listed in Supplementary Table 1 (Kim et al., 2016).

2.2. Protein preparation

The crystal structure of papain-like protease (PLpro), and 3-chymo-
trypsin-like protease (3CL pro/M pro) with PDB IDs 6W9C and 6M2N,
respectively were retrieved from the Research Collaboratory for Struc-
tural Bioinformatics Protein Databank (RCSB PDB), https://www.rcsb.
org/(Berman et al., 2000). All the crystal structures were prepared by
removing existing ligands and water molecules by PyMOLv2.3.3, which
is comprehensive molecular visualization software that enables users to

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.rcsb.org/
https://www.rcsb.org/


Fig. 1. (continued).

D. Verma et al. Current Research in Pharmacology and Drug Discovery 2 (2021) 100038
observe the three-dimensional (3D) structures of the compounds
(PyMOL, 2020; https://pymol.org/2/).

2.3. Ligand preparation

The 3D structures of phytochemicals and drugs were retrieved from the
PubChem database, www.pubchem.ncbi.nlm.nih.gov (Kim et al., 2016).
The ligands were then further converted into the.pdbqt format using an
open babel tool for molecular docking (Dallakyan and Olson, 2015).

2.4. Protein-molecular docking and building complexes

Molecular docking approaches are the best techniques for forecasting
the reactions between drugs and macromolecules. The blind docking
process includes a quest for binding sites on the entire surface of the
4

macromolecule. The blind molecular docking of some recognized medi-
cations was screened with SARS-CoV-2 proteases along with some
bioactive natural compounds. Docking of the protein targets and ligands
was carried out by using Auto-Dock Vina (Trott and Olson, 2010) and the
interaction of the protein-ligand complex was visualized using PyMOL
and BIOVIA Discovery Studio 2020 (Dassault Syst�emes BIOVIA, 2020).
2.5. Absorption, distribution, metabolism, excretion and toxicity (ADMET)

The prediction of the ADMET properties plays an important role in
drug discovery and development. Properties such as ADMET of com-
pounds were determined using SWISS ADME (http://www.swissadme.ch
/) and are represented in supplementary table 2. The 2D representation
of the compounds was downloaded from the PubChem database (Berman
et al., 2000).

https://pymol.org/2/
http://www.pubchem.ncbi.nlm.nih.gov
http://www.swissadme.ch/
http://www.swissadme.ch/
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3. Ligand parameterization

Before performing the molecular dynamics simulation of protein-
ligand complex, parameterization of ligand molecule is necessary to
generate its topology and parameter files which would be used during the
simulation of the complex system. For the parameterization of ligand,
PRODRG2 server was used (Schüttelkopf and van Aalten, 2004).

4. Molecular dynamics (MD) simulation

Two complex structures containing canthin-6-one 9-O-beta-glucopyr-
anoside (ligand) bound with 3-chymotrypsin-like protease (Mpro/3CLpro)
and papain-like protease (PLpro) of SARS-COV-2 were taken to perform
the MD simulation. All MD simulations were conducted using the GRO-
MACS 5.12 MD (P�all et al., 2015) and GROMOS96 43a1 force field (van
Gunsteren et al., 1996) implemented on Intel Xeon Quad CoreW3530 2.8
8 M 1366 Processor with LINUX environment. The Mpro/3CLpro –ligand
complex was solvated in a cubic box with a dimension of 9.96146 X
9.96146� 9.96146 nm3 while the PLpro-ligand complex was solvated in a
box with a dimension of 10.85766 X 10.85766 � 10.85766 nm3. The
simulation box of two complexes, Mpro/3CLpro –ligand and PLpro-ligand
showed to contain 31154 and 40531 SPC216 water molecules respec-
tively (Miyamoto and Kollman, 1992). Four water molecules were
replaced by Na þ to neutralize the net charge of the complex system
Mpro/3CLpro –ligand while for the neutralization of PLpro-ligand complex
3 Cl- were needed to replace solvent molecules. All protein atoms were
maintained at a distance equal to 1.0 nm from the solvate box edges. The
solvated systems were subjected to energy minimization for a maximum
of 50000 steps by the steepest descent minimization method. After per-
forming the energy minimization, both the minimized systems were
equilibrated for 100 ps at 300K temperature by position restrained MD
simulation in order to maintain the pressure and temperature of systems.
Following equilibration, both the systems were subjected to a final
5

production run of 100ns MD simulations at 300K temperatures. Periodic
boundary conditions were applied under isothermal and isobaric condi-
tions using Berendsen Coupling algorithm with a relaxation time of 0.1
and 0.2 ps, respectively (Weber et al., 2000). In both the systems, bond
length was constrained using the LINCS algorithm at a time step of 2 fs
(Hess et al., 1997). Particle Mesh Ewald method was used for the
analyzing the electrostatic interactions. van der Waals and coulombic
interactions were calculated with a cutoff at 1.0 nm (Darden et al., 1999).
The tools provided by GROMACS program package such as RMSD, RMSF
were utilized to analyse the MD trajectories. XMGrace (Vaught et al.,
1996bib_Vaught_1996bib_Vaught_1996bib_Vaught_1996) program
implemented in GROMACS was used to prepare the graphs.

5. Calculation of binding free energy

Binding affinity of the ligand canthin-6-one 9-O-beta-glucopyrano-
side in the docked complexes with the enzymes Mpro/3CLpro and PLpro

has been individually computed using a parallelized metadocking
method implemented in the DINC server (Antunes, 2017). Coordinates of
protein-ligand complexes as obtained from the MD simulation trajec-
tories at an interval of 10 ns time scale were used for the calculation of
binding energy. The working principle of the DINC server is based on the
algorithm used in AutoDock-Vina. The grid center and dimension
determined for each protein-ligand complex from the previous Autodock
grid parameterization have been used during the calculation of binding
energy.

6. MM-PBSA calculation

Molecular mechanics Poisson–Boltzmann surface area (MM-PBSA)
calculation was performed for the canthin-6-one 9-O-beta-glucopyrano-
side bound Mpro/3CLpro and PLpro system using the mmpbsa.py pack-
age implemented in GROMACS version 2018.1 (Kumari et al., 2014).
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7. Result and Discussion

The novel coronavirus has a viral genome that encodes for the several
proteins, which includes two proteases PLpro and Mpro/3CLpro that play a
crucial role in the viral life cycle and gained tremendous attention as a
drug target. In the current study, these two proteases have been taken as a
potential target. Eighteen phyto-compounds from the three medicinal
plants viz. E. harmandiana, S. flavescens and A. paniculatewere considered
for the molecular docking analysis (Supplementary table 1). Chloro-
quine, oseltamivir, remdesivir and ribavirin has been used as a control.
These drugs have been recently used in the treatment of COVID-19 pa-
tients and have been evaluated in clinical trials. There is no potential
drug molecule approved by the FDA and this is the only reason that these
repurposed drugs have been taken as a control in the current study.
Oseltamivir in combination with hydroxychloroquine is also found to
inhibit the coronavirus to some extent (Mitj�a and Clotet, 2020; Wu et al.,
2020). Remdesivir and ribavirin are the FDA-approved anti-RdRp drugs
that were found through molecular docking approach (Pirzada et al.,
2021; Hasan et al., 2021). Binding energies of various above-mentioned
6

naturally occurring phytochemicals were obtained through Auto-Dock
Vina. The interaction of inhibitor and protein receptor was predicted in
2D and 3D, with the help of BIOVIA Discovery study visualizer. The
docked poses clearly showed that drug molecules and phyto-compounds
bound to the active sites of SARS-COV-2 macromolecule structures.

7.1. Interaction with PLpro

Panicoline bound firmly with the residue GLY160 through a conven-
tional hydrogen bond, GLN269 through carbon-hydrogen bond and
GLY160 via. van der Waals interactions with the surrounding residues of
the PLpro protein of SARS-CoV-2 (Fig. 1a). The 14-Deoxy-11,12-didehy-
droandrographolide stabilized the active site through conventional
hydrogen bond (GLN269), carbon-hydrogen bond (GLY160) and van der
Waals interactions with the rest of the residues (Fig. 1b). Canthin-6-one
9-O-beta-glucopyranoside appended within the active site of SARS-CoV-2
through pi-anion interaction with residues GLU161, conventional
hydrogen bond with residue LEU162, GLY160, ASN109, Pi donor hydrogen
bond with LEU162 and van der Waals interactions with the rest of the
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residues (Fig. 1c). Andrographine secured the active sites with amide-pi
stacked interaction with residues GLY161, conventional hydrogen bond
with ASN109, carbon hydrogen bond with ASP108, pi-alkyl, alkyl inter-
action with the residues LEU162, HIS89, VAL159 and van der Waals in-
teractions with the surrounding residues (Fig. 1d). Andrographolide
interacted with the active sites through conventional hydrogen bonds
(VAL159 and GLN269) and with van der Waals interactions with the rest of
the residues as shown in Fig. 1e. 5-Hydroxy-7,8,20,30-Tetramethoxy-
flavone firmly stabilized the active sites through amide pi-stacked
interaction with residues GLY160, conventional hydrogen bond with
ASN109, carbon hydrogen bond with ASP108, GLN269, further it un-
derwent alkyl, pi-alkyl interactions with residues LEU162, VAL159, HIS89

and through van der Waals interactions with the rest of the residues
(Fig. 1f). Neoandrographolide bound with the active sites through con-
ventional hydrogen bonds (ASN109, GLN269, VA159) and carbon hydrogen
bond (GLY160, THR158) (Fig. 1g). Paniculide-A stabilized the active site of
the PLpro through alkyl interactions with residues VAL159 and conven-
tional hydrogen bond with residues ASN109 (Fig. 1h). The 5-Hydroxy-
7

7,20,30-Trimethoxyflavone bound with the active sites with residues
LEU162, VAL159, HIS89 through alkyl, pi-alkyl interactions, pi-anion in-
teractions with residue GLY160, conventional hydrogen bonds with resi-
dues THR158, ASN109 and carbon-hydrogen bond with residues ASN109

and with rest of the residues through van der Waals interactions as shown
in Fig. 1i. 5,7,20,30-tetramethoxyflavanone formed several noncovalent
interactions at the active site, it formed a conventional hydrogen bond
with THR158, ASN109, carbon-hydrogen bond with residue GLN269, alkyl
and pi-alkyl bond with LEU162, HIS89, VAL159 and pi-anion interaction
with residue GLU161 (Fig. 1j). Deoxyandrographolide stabilized the
active site only through a single conventional hydrogen bond (GLN269)
and surrounding residues with van der Waals interaction (Fig. 1k).
Kushenol W formed pi-sigma interactions with GLU161, pi alkyl bond
with LEU162, conventional hydrogen bond with GLY160, carbon-
hydrogen bonds with residues ASP108 and GLY160 (Figure 1l). The
kushenol K formed conventional hydrogen bonds with LEU162, and
ASN109, carbon-hydrogen bond with VAL159 and van der Waals in-
teractions with the surrounding residues (Figure 1m). 5-Hydroxy-7,8,20-
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Table 1
Tabulated total free energy (kcal/mol) of docked protein PLpro.

Compound name Binding affinity (kcal/mol)

Canthin-6-one 9-O-beta-glucopyranoside �9.4
5-Hydroxy-7,8,20-trimethoxyflavone 5-glucoside �8.8
14-Deoxy-11-oxoandrographolide �8.7
Kushenol K �8.6
Neoandrographolide �8.6
Kushenol W �8.4
14-Deoxy-11,12-didehydroandrographolide �8.2
Deoxyandrographolide �8.1
Paniculine �8.0
Andrographolide �7.9
Deoxyandrographolide19β-D-glucoside �7.9
5-Hydroxy-7,8,20,30-Tetramethoxyflavone �7.6
Andrographine �7.6
5,7,20,30-tetramethoxyflavanone �7.5
5-Hydroxy-7,20,30-Trimethoxyflavone �7.5
Paniculide-A �7.1
Paniculide-B �7.2
Paniculide-C �6.7
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trimethoxyflavone 5-glucoside secured the active site through amide pi
stacked interactions with residues GLY160, pi-anion interaction with
GLU161 and conventional hydrogen bond with GLN269, and ASN109

(Figure 1n).
Deoxyandrographolide19β-D-glucoside bound active sites through a

conventional hydrogen bond with residue THR158, carbon hydrogen
bonds with residues GLY160, ASP108 and alkyl bond with residue LEU162

and it is depicted in form of 2D representation in Fig. 1o. Paniculide-B
formed alkyl bond with VAL159, conventional hydrogen bond with
8

ASN109, GLY160, and GLN269, and carbon hydrogen bond with GLN269

and where paniculide-C secured the active sites with alkyl (LEU162), and
conventional hydrogen bond (ASN109) (Figure 1p and q). The interaction
analysis of 14-Deoxy-11-oxoandrographolide depicted that it bound the
active sites through conventional bond with residues LEU162, ASN109 and
GLN269 (Figure 1r).

Van der wall interactions and hydrogen bonds played a major role in
the binding process. van der Waals interaction is the weakest intermo-
lecular attraction between two molecules. Though it is the weakest bond
between two atoms, a lot of van der Waals forces can make the interac-
tion very strong (Barratt et al., 2005). In the protein-ligand interactions,
the hydrogen bond helped the ligand to stabilize but there are also other
interactions such as hydrophobic or van der Waals interactions that
helped in stabilization of the nonpolar ligands too. An analysis of the
structure of ligands and docked poses usually helped in understanding
the interactions and the binding energy of the compounds. Based on
these basics, the molecular docking program is the most widely used tool
in the drug discovery process as the result suggested the potential drug
compound based on the less affinity (Meng et al., 2011). The comparison
of the estimated free energy of binding (ΔG) or binding affinity inferred
that the canthin-6-one 9-O-beta-glucopyranoside (�9.4 kcal/mol) have
the less affinity among the studied plant natural components and can be
used as a potential drug candidate against the PLpro of SARS-CoV-2
(Table 1).

The analysis of binding energies suggested that all the binding energy
falls between �6.7 and 9.4 kcal/mol and 2D interaction in Fig. 1a-r
depicted that the studied phyto-compounds have a lot of hydrogen bonds
and van der Waals interactions that suggested that the ligands are sta-
bilized within the complex.



Fig. 2. Interactions established after docking the
secondary metabolite against SARS-CoV-2 Mpro/
3CLpro Protein (6M2N). The interacting residues of the
protein are labeled in purple and the docking scores
are listed under each of the complex, respectively. The
receptor-ligand interaction is represented on a 3D
diagram (Right) and 2D diagram (Left). Drugs are in
cyan and interacting atoms of protein are represented
red in the diagram, while green dotted lines represent
the conventional h-bond interactions, light green
dotted line represents weak van der Waals in-
teractions. Additionally, dotted lines in sky blue
display the pi-donor hydrogen bond, pi-sigma inter-
action is shown as violet dashed lines, pink dotted
lines show alkyl and pi-alkyl interactions,
respectively.
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7.2. Interaction with Mpro/3CLpro

Paniculine bound the active site of the main proteases (Mpro or
3CLpro) through hydrogen bonds and carbon hydrogen bonds with resi-
dues ASN151, THR111, GLN110, SER158 and ILE152, respectively (Fig. 2a).
The 14-deoxy-11,12-didehydroandrographolide formed a hydrogen
bond with residues THR111 and pi-alkyl interaction with ILE249 and van
der Waals interaction with the surrounding residues (Fig. 2b). Canthin-6-
one 9-O-beta-glucopyranoside firmly bound with the active site through
conventional hydrogen bonds with residues THR111, ASP295, and THR292

and a pi-alkyl bond with VAL202 (Fig. 2c). Andrographine bound within
the active sites through conventional hydrogen bond with the residue
THR292, pi-pi stacked interaction with the residue PHE294 and pi-alkyl
bonds with PRO293 and ILE294 (Fig. 2d). Andrographolide formed con-
ventional hydrogen bond with residue ASN151, pi-sigma bond with res-
idue PHE294 and van der Waals interaction with the surrounding residues
(Fig. 2e). Neoandrographolide formed conventional hydrogen bond with
the residues ASP295, THR111 and pi alkyl interaction with residues
VAL202, PRO293 and ILE249 (Fig. 2f). Paniculide-A bound the active sites
of the main protease (MPRO or 3CLPRO) with conventional hydrogen bond
and alkyl, pi-alkyl interactions with the residues GLN110, THR111, THR292

and ILE249, PHE294, PHE8, respectively (Fig. 2g). 5-Hydroxy-7,8,20,30-
Tetramethoxyflavone adhered to the active sites through conventional
hydrogen bonds (ASN151 and THR111), pi donor hydrogen bond
(THR292), pi-pi-stacked (PHE294), pi-alkyl interactions with residues
9

PRO293, ILE294, and PHE294, depicted in Fig. 2h. 5,7,20,30-tetramethoxy-
flavanone formed Pi alkyl interactions, conventional hydrogen bonds pi-
pi stacked interactions with residues ILE249, THR111 and PHE294,
respectively (Fig. 2i). 5-Hydroxy-7,20,30-Trimethoxyflavone stabilized
the active sites through conventional hydrogen bonds (ASN151 and
THE111), pi donor hydrogen bond (THR292), pi-pi stacked interaction
(PHE294), alkyl, pi-alkyl interaction (PHE294, ILE249, HIS246 and PRO293)
and van der Waals interactions with the surrounding residues and the
interactions can be seen in Fig. 2j. With a good efficiency of binding,
deoxyandrographolide formed conventional hydrogen bond with ASN151

and pi-alkyl with PHE249 (Fig. 2k). Kushenol W bound with active sites
residues THR111 through conventional hydrogen bond, pi-pi stacked
interaction (PHE294) and pi alkyl interactions (ILE249 and PRO293)
(Figure 2l). 5-Hydroxy-7,8,20-trimethoxyflavone 5-glucoside formed
conventional hydrogen bond with residue GLN110, pi-sigma interaction
(PHE294), pi-pi interaction with PHE294, alkyl, pi-alkyl interaction with
VAL297, PRO293, ILE249 and carbon hydrogen bond with ILE249

(Figure 2m). Kushenol K stabilized the active site with residues PHE294

through pi-pi stacked interaction, pi-pi sigma interaction (ILE249) and pi-
alkyl interactions (PRO293 and PHE294) (Figure 2n). The deoxy-
andrographolide19β-d-glucoside formed conventional hydrogen bond
with residue THR21, THR26, GLN69, ILE249 and carbon hydrogen bond
with ASP245 (Figure 2o). Paniculide-B bound with the active sites
through conventional hydrogen bonds (THR292, THR111 and GLN110) and
alkyl interaction (PHE8 and PHE294) whereas paniculide-C formed
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conventional hydrogen bonds with THR111 and GLN110; alkyl and pi alkyl
interactions with PRO293, HIS246, ILE249, VAL202 and the interactions are
depicted in Fig. 2(p and q). In the case of 14-Deoxy-11-oxoandrographo-
lide, it stabilized the active sites with residue GLN269, ASN109 and LEU162

through conventional hydrogen bond, alkyl bond with ILE249 and
through van der Waals interaction with the rest of the residues
(Figure 2r). The lower affinity of canthin-6-One 9-O-Beta-glucopyrano-
side (�8.5 kcal/mol) obtained from molecular docking study suggested
10
that the molecule have good binding affinity against the Mpro/3CLpro

(Table 2). The 2D and 3D interaction are depicted in Fig. 2 (a-r).

7.3. Interaction with control drugs

The docked pose of minimum energies conformers of four control
drugs viz. chloroquine, oseltamivir, remdesivir and ribavirin [Fig. 3 (a-
d)] showed chloroquine binds firmly with PLpro active site and formed a
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conventional hydrogen bond with THR158 residue and carbon-hydrogen
bonds with residue GLU161 and VAL159. Oseltamivir bound within the
active site through conventional bonds with residue ASN109, carbon-
hydrogen bond with residue GLY160 and alkyl interaction with residue
LEU162. Remdesivir bound the active site through pi-anion (GLU161),
amide-pi stacked interaction (VAL159 and GLY160), conventional a
hydrogen bond (ASN109) and pi-alkyl interaction (LEU162). Ribavirin
formed conventional hydrogen bond with residue GLY160, GLN269,
LEU162, and ASN109, carbon-hydrogen bond with residue GLN269, and
ASN109 and among all the interactions van der waals interaction plays a
major role. The comparison of binding affinity or estimated free energy
(ΔG value) of binding showed that the remedisivir (�8.4 kcal/mol) have
lower affinity with active sites of the PLpro. The order of binding energy
11
of other drugs with PLpro is as follows: ribavirin (�6.8 kcal/mol) >

oseltamivir (�6.4 kcal/mol) > chloroquine (�6.3 kcal/mol).
Interactions of the drugs with the Mpro/3CLpro showed that chloro-

quine firmly bound within the active sites through pi-anion interaction
with the residues ASP295, pi-pi stacked interaction with residues PHE294

and pi-alkyl interaction with residue PHE294 and carbon-hydrogen bond
with residue THR111. It did not form any hydrogen bonds within the
active site. Ribavirin formed a conventional hydrogen bond with residues
GLN110, PHE294, THR111, and THR292. Oseltamivir stabilized the pi-alkyl
interaction with PHE294 and conventional hydrogen bonds with residues
GLN110, THR111 and ASN151. Remdesivir bound the active site through
conventional hydrogen bonds (GLN110, ASN151 and PHE294) and pi-alkyl
interaction (ILE249, PRO252, VAL297 and PRO293) with the active sites of
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Mpro/3CLpro. The pi-interaction played a major role instability of a
particular drug within the active site (Arthur and Uzairu, 2019). The
binding affinity of the drugs with Mpro/3CLpro suggested that the
remdesivir have high affinity to inhibit the protein with most negative
ΔG value i.e. - 8.3 kcal/mol and all the other studied drugs showed
similar ΔG value i.e. �5.8 kcal/mol, the 3D and 2D interactions of drugs
with the active sites of Mpro/3CLpro are depicted in Fig. 4 (a-d).

7.4. Pharmacokinetics

The prediction of the absorption, distribution, metabolism, excretion
and toxicity (ADMET) properties played an important role in drug dis-
covery and development. The absorption of drugs depends on membrane
permeability, intestinal absorption, skin permeability levels, P-glyco-
protein substrate or inhibitor. The distribution of drugs depends on fac-
tors that include the blood–brain barrier (logBB), central nervous system
(CNS) permeability, and the volume of distribution (VDss). Metabolism is
12
predicted based on the CYP models for substrate or inhibitors (CYP2D6,
CYP3A4, CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4). Excretion
is predicted which is based on the total clearance model and renal OCT2
substrate. The toxicity of drugs is predicted based on Ames toxicity,
human ether-a-go-go-related gene (hERG) inhibition, hepatotoxicity, and
skin sensitization. These parameters were calculated and checked for
compliance with their standard ranges (Han et al., 2019). Properties such
as ADMET profiling of compounds were determined using SwissADME,
http://www.swissadme.ch/(Daina et al., 2017). Intestinal epithelium
barrier/gut–blood barrier is a barrier that is a crucial barrier for all the
compounds to overcome. Intestinal epithelium barrier regulates nutrients
absorption, water and ion fluxes, and denotes the first defensive barrier
against toxins and enteric pathogens and the gut-blood barrier (GBB)
controls the passage of drugs from intestinal lumen to the bloodstream.
Except, kushenol K, GI absorption of all the phytochemicals was high
which means that it was predicted to be absorbed easily in gut and in-
testine epithelium. Distribution of compounds through various

http://www.swissadme.ch/
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compartments of the body was accessed using its blood-brain barrier
(BBB) penetration (Daneman and Prat, 2015). Among all the phyto-
compounds, only panculide-A, andrographine, deoxyandrographolide, 5,
7,20,30-tetramethoxyflavanone, 5-Hydroxy-7,20,30-Trimethoxyflavone
were predicted to have blood brain barriers penetration. P-glycoprotein
is a drug transporter having broad substrate specificity, drugs that are
substrates of P-gp are subject to low intestinal absorption, low
blood-brain barrier permeability, and face the risk of increased meta-
bolism in intestinal cells. 14-deoxy-11,12-didehydroandrographolide,
5-hydroxy-7,8,20-trimethoxyflavone 5-glucoside, andrographolide, pan-
iculine A, neoandrographolide, kushenol K, 14-deoxy-11-oxoandrogra-
pholide, and deoxyandrographolide were predicted to have affinity for
p-glycoprotein. The Result showed that except these phytochemicals, rest
of the other phytochemicals may act as a non-substrate of p-glycoprotein
(Pajouhesh and Lenz, 2005). Metabolism mainly depends on the CYP450
enzyme and its iso forms which are CYP 3A4, 2D6, 1A2, 2C9 and 2C19.
These enzymes are responsible for the detoxification of drugs passing the
liver. Therefore, any compound blocking P450 can cause toxicity. Out of
all the 18 phyto-compounds, 5-hydroxy-7,8,20-trimethoxyflavone
13
5-glucoside, neoandrographolide, kushenol W, kushenol K, androgra-
phine, 5-Hydroxy-7,8,20,30-tetramethoxyflavone, 14-deoxy-11,12-dide-
hydroandrographolide, 5,7,20,30-tetramethoxyflavanone, and
5-hydroxy-7,20,30-trimethoxyflavone compounds blocked the enzyme
responsible for detoxification and hence, can be responsible for the
toxicity. Skin permeation coefficient (log Kp) is the measure of skin to
absorb a certain drug or chemical. In the given supplementary table 2, log
kp of skin permeation of all the compounds lies between the standard
value of log Kp �8.0 to �1.0 cm/s except 5-Hydroxy-7,8,20-trimethoxy-
flavone 5-glucoside, deoxyandrographolide19β-D-glucoside, and pan-
iculine, which showed that these possess an ability to absorb less in the
membrane (Chen et al., 2018).

ADMET study of all these molecules suggested that the molecules
canthin-6-one 9-O-beta-glucopyranoside, deoxyandrographolide 19β-d-
glucoside or diterpene glucoside, paniculide-B, and paniculide-C have
passed all the barriers of ADMET and indicated that these molecules can
be a successful drug molecule. All these compounds have high gastro-
intestinal absorption which is an important and decision making stan-
dard of oral dosing, this implied that the phyto-compounds can be used as
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an oral drug. These drugs also passed the blood brain barrier (BBB)
permeability test, therefore, these compounds qualify a fundamental
index of drug distribution. High negative value of log Kp suggested that
the phyto-compounds have less skin permeation. Binding of CYP450
enzyme may cause degradation of phyto-compounds inside the body and
can lead to toxicity. Bioavailability of these compounds are high and it
indicated high potential as drug molecule. The above mentioned pa-
rameters for all these molecules are in the range found for successful drug
molecule (Supplementary table 2).

7.5. Potential drug against COVID 19

The molecular docking studies have been carried out using 18 phyto-
compounds that might act as potential drug against SARS-CoV-2 Mpro/
14
3CLpro and PLpro. The analysis of molecular interaction between the
active sites of the studied protein and the phyto-compounds suggested
that these compounds can inhibit the protein and will block the viral
replication. The active site of Mpro/3CLpro consists of residues THR21,
THR26, GLN69, GLN110, THR111, ASN151, HIS246, ILE249, THR292 and
ASP295 whereas the active site residues for PLpro are ASN109, THR158,
VAL159, GLY160, LEU162 and GLN269 (Supplementary table 3). The
canthin-6-one 9-O-beta-glucopyranoside in comparison with the control
drugs, showed lower affinity with active sites of both the target proteins
i.e. Mpro/3CLpro and PLpro. The distance between the ligand and catalytic
residues of the protein showed that the canthin-6-one 9-O-beta-glucopyr-
anoside interacted within the active site of the protease proteins and have
high affinity of binding. The ADMET study also suggested that the
canthin-6-one 9-O-beta-glucopyranoside have all the drug like properties
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Table 2
Tabulated total free energy (kcal/mol) of docked protein Mpro/3CLpro.

Compound name Binding affinity (kcal/mol)

Canthin-6-One 9-O-Beta-Glucopyranoside �8.5
Neoandrographolide �8.4
Kushenol W �7.3
14-deoxy-11,12-didehydroandrographolide �7.1
14-deoxy-11-oxoandrographolide �7.1
5-hydroxy-7,8,20-trimethoxyflavone 5-glucoside �6.9
Andrographolide �6.9
5-hydroxy-7,20,30-trimethoxyflavone �6.8
5,7,20,30-tetramethoxyflavanone �6.5
5-hydroxy-7,8,20,30-tetramethoxyflavone �6.5
Andrographine �6.5
Paniculine �6.5
Kushenol K �6.4
Deoxyandrographolide19β-d-glucoside �6.2
Diterpene glucoside �6.2
Paniculide-A �6.1
Paniculide-B �5.9
Paniculide-C �6.0
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and can be considered as a potential drug against the infection caused by
SARS-CoV-2.

8. MD simulation

8.1. Root mean Square deviation (RMSD)

Structural changes specifically the deviation between two structures
can be best interpreted by using the graph obtained after calculating
RMSD from the MD simulation trajectories. This calculation can deter-
mine the spatial differences between the backbone atoms present in the
protein throughout the simulation time. The differences are calculated in
respect with the initial structure at the start of the simulation. The
smaller the differences, the more spatially equivalents the compared
structures are, whereas more distantly related structures are defined by
comparatively greater RMSD values. Thus, a greater RMSD value in-
dicates the instability of a protein system.

Comparative RMSD pattern analysis between canthin-6-One 9-O-
beta-Glucopyranoside bound Mpro/3CLpro and PLpro protein complexes
demonstrated that, both complexes showed a more or less similar RMSD
values up to first 19 ns of MD trajectory. After 19 ns of MD simulation,
there is a comparative more deviation observed in case of PLpro protein
thanMpro/3CLpro up to 32 ns time scale of MD simulation. After 32 ns and
up to next 3 ns time scale of MD trajectory, relatively less RMSD has been
recorded for PLpro protein than from Mpro/3CLpro when interacting with
15
canthin-6-One 9-O-beta-Glucopyranoside. Again a greater RMSD value of
PLpro protein backbone has been shown for next 13 ns and up to 48 ns of
MD simulation compared to Mpro/3CLpro protein. From 48 ns to 100 ns of
MD simulation, the backbone of PLpro protein deviated less than in case of
Mpro/3CLpro protein (Supplementary Figure 1). The Result indicated that
Mpro/3CLpro and PLpro protein have the occasional backbone stability
throughout the MD simulation while bound with the ligand Canthin-6-
One 9-O-beta-Glucopyranoside.

8.2. Root mean Square Fluctuation (RMSF)

A more detailed view of differences in residue mobility in both the
Mpro/3CLpro protein and PLpro bound with ligand canthin-6-One 9-O-
beta-Glucopyranoside has been obtained from the RMSF graph calcu-
lated for the Cα atoms in comparison with the respective average struc-
ture of the two complexes throughout the simulation. RMSF values
increases with the depletion of secondary structure of a protein that
sometime may be caused due to the decline in binding affinity between
the protein and ligand. It has been noted that the ligand binding residue
in Mpro/3CLpro Asn203 has the minimum RMSF value of 0.0881 among
the 5 interacting residues of canthin-6-One 9-O-beta-Glucopyranoside
while in PLpro protein, the residue Asn109 has the minimum RMSF
value of 0.1038 among the 3 interacting residues with the ligand (Sup-
plementary Figure 2; Supplementary table 4).

This relative Result from RMSF analysis revealed that Asn203 residue
of the protein Mpro/3CLpro might have greater impact for a tight binding
with the ligand canthin-6-One 9-O-beta-Glucopyranoside in compare
with the residue Asn109 in PLpro protein as the residue Asn203 has
comparatively lower RMSF value than that of Asn109. Bharatiy et al.
(2016) has studied some stabilizing and destabilizing saltbridge forming
residues of two homologues mesophilic and thermophilic α-carbonic
anhydrase (α-CA) from Neisseria gonorrhoeae and Sulfurihydrogenibium sp.
on aspect of their respective RMSF value. Likewise, as the result from the
present study, Bhartiy et al. (2016) also reported about some salt bridge
residues having notably less RMSF values in maintaining higher
conformational stability of Sulfurihydrogenibium sp. α-CA at higher tem-
perature compared to its mesophilic counterpart.

8.3. Free energy calculations

Comparative binding calculation between Mpro/3CLpro and PLpro

bound with ligand Canthin-6-One 9-O-beta-Glucopyranoside throughout
the 100 ns MD simulation presented that, the protein Mpro/3CLpro has
comparatively more affinity with the ligand in relation to PLpro at most of
the time scale in MD simulation. Binding energy calculation at the start of
the simulation between two complexes of canthin-6-One 9-O-beta-



Fig. 3. Interactions established after docking the
drugs against SARS-CoV-2 PLpro protein (6W9C). The
receptor-ligand interaction is represented on a 3D
diagram (Right) and 2D diagram (Left). The interact-
ing residues of the protein are labeled in purple and
the docking scores are listed under each of the com-
plex, respectively. Drugs are in cyan and interacting
atoms of protein are represented red in the diagram,
while green dotted lines represent the conventional h-
bond interactions, light green dotted lined represents
weak van der Waals interactions. Additionally, dotted
lines in sky blue display the pi-donor hydrogen bond,
pi-sigma interaction is shown as violet dashed lines,
pink dotted lines show alkyl and pi-alkyl interactions,
respectively.
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Glucopyranoside bound Mpro/3CLpro and PLpro revealed that the Mpro/
3CLpro protein has an affinity value of �8.70 kcal/mol which is much
higher than that of PLpro with a value of �4.80 kcal/mol. While at the
next two 10 ns time scale intervals, PLpro showed higher binding affinity
(�8.20 and �5.40 kcal/mol) with the ligand in comparison to Mpro/
3CLpro (�5.80 and �4.20 kcal/mol). Interestingly, at 30 ns and 40 ns of
time scale in MD simulation, again Mpro/3CLpro protein exhibited
comparative greater binding affinity (�5.00 and �5.20 kcal/mol)
compared to PLpro (�3.40 and �4.90 kcal/mol). At 50 ns, a relatively
higher binding energy towards ligand has been recorded for PLpro with a
value of �8.10 kcal/mol than in the case of Mpro/3CLpro with a value of
�7.60 kcal/mol. Significant difference in binding energy between Mpro/
3CLpro and PLpro has been reported while interacting with the ligand at
the time scale of 60 ns, 80 ns and 90 ns in MD simulation. For the protein
Mpro/3CLpro binding energy values of �9.80, �9.00 and �10.50 kcal/
mol has been calculated in place of�3.40,�3.60 and�3.60 kcal/mol for
PLpro respectively at those three time scales. After the completion of the
100 ns MD simulation, a greater binding energy of �10.00 kcal/mol has
been documented for Mpro/3CLpro towards the ligand canthin-6-one 9-O-
beta-glucopyranoside while for PLpro a value of �8.20 kcal/mol was
recorded (Fig. 5).

Binding energy vs. RMSD plots have been graphically represented for
Mpro/3CLpro and PLpro while interacting with the ligand canthin-6-one 9-
O-beta-glucopyranoside at 10 ns time interval up to 100 ns MD simula-
tion (Fig. 6). Comparative higher binding affinity of Mpro/3CLpro with the
ligand than PLpro is also might be resulted from the relatively less flexible
16
residue Asn203 present in the protein Mpro/3CLpro which has lower
RMSF value as compare to Asn109 of PLpro that was determined previ-
ously. Thus, the overall Result from this binding energy analysis sug-
gested that, Mpro/3CLpro has remarkably greater binding affinity and
hence stronger interaction with the ligand canthin-6-one 9-O-beta-gluco-
pyranoside than PLpro throughout most of the time scales in their dy-
namics state.
8.4. MM-PBSA interaction energy

From the MM-PBSA calculation, it can be observed that in case of
canthin-6-One 9-O-beta-Glucopyranoside bound with Mpro/3CLpro, there
is comparatively higher degree of energy contribution than in the case of
PLpro bound complex of the same ligand (Fig. 7). This observation is in
agreement with the Result found from the previously performed RMSD
vs. binding energy plots for the two protein complexes where Mpro/
3CLpro presented higher binding affinity towards the ligand canthin-6-
One 9-O-beta-Glucopyranoside. Shahbaaz et al. (2017), in their study
has performed the same kind of MM-PBSA analysis for the protein Rab21
GTPase during the interaction with both the GDP and GTP through 50ns
MD simulation. In their study, comparatively greater energy contribution
has been recorded for the ligand GTP than the GDP during their inter-
action with Rab21 GTPase.

Das et al. (2020) studied 33 molecules through the help of docking
approach, and find out that these molecules could bind near the Cys145

and His41 (catalytic residue) of the main protease. Salim and Noureddine
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(2020) reported that α-hederin and nigellidine are the major phyto-
chemical obtained from Nigella sativa which are capable of restricting
SARS-CoV-2 with great energy score as compared to clinical drugs based
on molecular docking. Muralidharan et al. (2020) performed MD simu-
lations to evaluate the interconnection among the protein and three
drugs. The RMSD of interconnection is found to be 3 Å and remain firm
while the simulations. Therefore, the amalgam of ritonavir, lopinavir,
and oseltamivir are greatly efficacious against the protease of
SARS-CoV-2, and these agents can be surveyed further for drug reusing
purposes for the victorious restriction of SARS-CoV-2. Joshi et al. (2020)
identified some natural compounds such as phyllaemblicin B, hesperidin,
biorobin, afzelin, nympholide A, lacticopicrin 15-oxalate, myricitrin,
nympholide A, and d-viniferin from the screening of ~7100 molecules
which proved as a strong binders not only for proteases but also for other
targets (RNA dependent RNA polymerase, and human
angiotensin-converting enzyme of SARS-CoV-2. Adeoye et al. (2020)
determined the inhibitory potentiality of chloroquine, lopinavir,
remdesivir, ribavirin, azithromycin, and oseltamir towards viral pro-
teases, V-ATPase, SARS-CoV spike glycoprotein/ACE-2 complex, and
protein kinase A. It was evaluated that, lopinavir has the greatest affin-
ities for the 3-chymotrypsin like protease, cyclic AMP-dependent protein
kinase A, and SARS-CoV spike glycoprotein/ACE-2 complex whereas
remdesivir has shown affinities for papain-like proteins, and vacuolar
proton-translocating (V-ATPase), and chloroquine has affinities for cyclic
AMP-dependent protein kinase A, and 3-chymotrypsin-like protease in
comparison to ribavirin and oseltamivir (McKee et al., 2020). Aanouz
et al. (2020) used the docking process for examining the interaction type
17
and affinity at the binding site among the 67 compounds and the
SARS-CoV-2 proteases. The results showed that, only three molecules
(b-eudesmol, crocin, and digitoxigenin) are found as inhibitors in the
control of SARS-CoV-2. Enmozhi et al. (2020) evaluated andrographolide
from A. paniculata as a main protease inhibitor in case of SARS-CoV-2
through in silico studies. Kumar et al. (2020a, b) carried out molecular
docking study of FDA approved drugs that are used in the cure of
different viral ailments in order to investigate their binding affinity for
the active site of Mpro (Lobo-Galo et al., 2020). Docking studies deter-
mined that drugs raltegravir, tipranavir, and lopinavir-ritonavir among
others particularly binds to the proteases with similar affinity as of the
α-ketoamide inhibitors (Muralidharan et al., 2020). From the earlier
time, herbal plant products are successfully employed for the cure of
several viral disorders (Mukhtar et al., 2008; Lin et al., 2014). Many of
the promising lead natural compounds of our investigation are anti-viral,
therefore, there is a big probability that these bioactive constituents
would be appropriate in the control of SARS-CoV-2 and could be helpful
for the discovery of multi-targeted agent against the SARS-CoV-2 infec-
tion (Sharma et al., 2020; Jyotisha et al., 2020; Vimal et al., 2020; Rib-
audo et al., 2020).

The hunt for plant-derived antiviral for the control of SARS-CoV-2 is
hopeful, as many plants have been reported to be effective against beta
coronaviruses (Mitra et al., 2021; Tallei et al., 2020; Chowdhury et al.,
2020; Babar et al., 2020; Gideon A. Gyebi et al., 2020; Yepes-P�erez et al.,
2020; Lakshmi et al., 2020; Razzaghi-Asl et al., 2020; Subhomoi and
Banerjee, 2020). Many reports to recognize the promising inhibitors of
SARS-CoV-2 from plants have been published by using a computational



Fig. 4. Interactions established after docking the
drugs against SARS-CoV-2 Mpro/3CLpro Protein
(6M2N). The interacting residues of the protein are
labeled in purple and the docking scores are listed
under each of the complex, respectively. The receptor-
ligand interaction is represented on a 3D diagram
(right) and 2D diagram (left). Drugs are in cyan and
interacting atoms of protein are represented red in the
diagram, while green dotted lines represent the con-
ventional h-bond interactions, light green dotted lined
represents weak van der Waals interactions. Addi-
tionally, dotted lines in sky blue display the pi-donor
hydrogen bond, pi-sigma interaction is shown as vio-
let dashed lines, pink dotted lines show alkyl and pi-
alkyl interactions, respectively.
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approach (Pant et al., 2020; Elmezayen et al., 2020; Ghosh et al., 2020;
Das et al., 2020; Maroli et al., 2020; Shree et al., 2020; Saravanan et al.,
2020; Toluwase Hezekiah Fatoki et al., 2020; Rolta et al., 2020; Aanouz
et al., 2020; Vimal et al., 2020). In the present study, after evaluating the
multiple medicinal properties of the natural products, a total 18 com-
pounds (canthin-6-one 9-O-beta-glucopyranoside from E. harmandian;
kushenol W, and kushenol K from S. flavescens; and 3α, 14, 15, 18-Tet-
rahydroxy-5β, 9βH, 10α-labda-8, 12-dien-16-oic acid γ-lactone, deoxy-
andrographolide, neoandrographolide, 14-deoxy-11, 12-didehy
droandrographolide, deoxyandrographolide19β-d-glucoside, 5,7,20,
30-tetramethoxyflavanone, 5-hydroxy-7,20,30-trimethoxyflavone, 14-deo
xy-11-oxoandrographolide, 5-hydroxy-7,8,20,30-tetramethoxyflavone,
5-hydroxy-7,8,20, trimethoxyflavone, andrographine, panicoline,
paniculide-A, paniculide-B, and paniculide-C from A. paniculate) were
screened out to determine their inhibitory potentiality against Mpro and
PLpro by molecular docking analysis.

9. Conclusion

The current study is a screening-based study performed with the
assistance of molecular docking and ADMET analysis tools/server and is
now subject of matter to examine the activity of the compound potency of
canthin-6-one 9-O-beta-glucopyranoside in inhibiting SARS-CoV-2 Mpro/
3CLpro and PLpro. The results of the MD simulation and binding free en-
ergy calculations indicated that canthin-6-one 9-O-beta-glucopyranoside
18
compound interacted with the Mpro and PLpro and can also be proposed as
a potential natural drug molecule for the treatment of SARS CoV-2
(COVID 19).

10. Summary points

� SARS-CoV-2 is a beta coronavirus that spreads coronavirus disease
2019 (COVID-19) in the world leading to 74.29 million persons
infected and 1.66 million death worldwide (222 countries, areas or
territories with cases). The rapid spread of SARS-CoV-2 (COVID-19)
has raised a severe global public health issue and creates a pandemic
situation.

� The continuing SARS-CoV-2 pandemic makes us worryingly noticed
that our present choices for nursing against deadly coronavirus dis-
ease are very restricted. Therefore, there is an instant need for the
discovery of novel inhibitors attacking the vital viral proteins.

� The compounds of the three plants viz. E. harmandiana, S. flavescens
and A. paniculata were screened for antiviral activity against the
proteases of the 2019-nCov or SARS CoV-2.

� The molecular docking and ADMET analysis suggested that with less
affinity and drug-likeness properties, canthin-6-one 9-O-beta-gluco-
pyranoside is a potential molecule that binds to the Mpro/3CLpro

and PLpro and can inhibit the activity of replication and transcription
of the virus and finally stop the multiplication of the virus. MD
Simulation used to find best interaction and binding energy between



Fig. 4. (continued).

Fig. 5. Comparative binding energy of canthin-6-one 9-O-beta-glucopyranoside
with Mpro/3CLpro and PLpro (*energy values are the smaller in Mpro/3CLpro and
PLpro in respective time scale).
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the canthin-6-one 9-O-beta-glucopyranoside and Mpro/3CLpro and
PLpro proteases of COVID19.
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