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Abstract: A mathematical framework and accompanying numerical algorithm exploiting the conti-
nuity equation for 4D reconstruction of spatiotemporal attenuation fields from multi-angle full-field
transmission measurements is presented. The algorithm is geared towards rotation-free dynamic
multi-beam X-ray tomography measurements, for which angular information is sparse but the tem-
poral information is rich. 3D attenuation maps are recovered by propagating an initial discretized
density volume in time according to the advection equations using the Finite Volumes method with
a total variation diminishing monotonic upstream-centered scheme (TVDMUSCL). The benefits
and limitations of the algorithm are explored using dynamic granular system phantoms modelled
via discrete elements and projected by an analytical ray model independent from the numerical
ray model used in the reconstruction scheme. Three phantom scenarios of increasing complexity
are presented and it is found that projections from only a few (unknowns:equations > 10) angles
can be sufficient for characterisation of the 3D attenuation field evolution in time. It is shown that
the artificial velocity field produced by the algorithm sub-iteration, which is used to propagate the
attenuation field, can to some extent approximate the true kinematics of the system. Furthermore, it is
found that the selection of a temporal interpolation scheme for projection data can have a significant
impact on error build up in the reconstructed attenuation field.

Keywords: tomography; 4D; temporal; dynamic; continuity equations

1. Introduction

X-ray tomography has become a standard experimental technique for revealing the
internal 3D structure of objects. For static samples, 3D volume reconstruction from a set of
2D projections is a well researched area and algorithms such as FBP, ART, SART, SIRT, to
name a few, have gained wide spread use, with optimised open source implementations
easily available, c.f. [1,2]. Over the past decade, attention has been drawn towards dynamic
tomography, with rapidly deforming or mutating sample volumes, c.f. [3]. The measured
quantity from a tomography experiment usually comes in a pixelated format, as a photon
count/intensity readout from a detector at discrete moments in time. The analytical form
of these measurements with respect to time is not known and, commonly, the sought
volume is reconstructed at individual instances of time. This imposes two competing
requirements on the experiment, namely that (I) the studied object remains approximately
constant over a measurement series and (II) that each measurement series be sufficiently
sampled spatially to uniquely recover the object. For single beam geometries studying
highly dynamic systems, characterised by continuous motion, these requirements may be
difficult to fulfil simultaneously. Limitations include detector readout speed, low beam
flux (resulting in a poor signal to noise ratio) and centrifugal and shear forces due to fast
sample rotations. Although these issues can, to some extent, be resolved by hardware
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solutions [4], well regularised reconstruction algorithms have played an important role in
recent advances, e.g., [5–8].

Attention towards multi-beam imaging systems has been increasing in recent years,
e.g., [9–15]. These systems can acquire, simultaneously, a sparse set of 2D projections
(∼10) of the studied sample, reducing the required sample rotation speed. For several
specialised cases, such as steady flow in granular media [12] and weakly deforming
solids [7], solutions in terms of hardware and algorithms have been found. Nevertheless,
rotation is still required for samples undergoing large deformations through unsteady flow
and the required rotation speed and associated centrifugal forces induced on the sample
volume will finally limit what physical processes can and can not be studied. In cases when
a sparse number of static projection angles is enough for the desired type of reconstruction,
temporal resolution is instead only limited by the rate at which projections can be acquired.
Compared to the synchrotron case of [3] this could push temporal resolution in 4D imaging
by at least an order of magnitude (from hHz to kHz). Likewise, if used in conjunction with
Free Electron Lasers, such as the European XFEL, temporal resolution in the MHz range
could be within reach. In addition, reconstruction schemes targeting static projection data
have an impact on a wider scene as they equip multi-source lab tomography devices with
high speed imaging capability.

We investigate a tomographic reconstruction scheme that operates from a sparse
angularly-static set of 2D projections, attempting to remove the need for rotations during
studies of dynamic processes by providing a solution strategy that is less specialised
compared to existing methods. Since such acquisitions are still performed only as pilot
experiments, with limited experimental data available, we use numerical simulations to
verify our method. By making use of the LIGGGHTS Discrete Elements Method (DEM)
software [16], together with an independent analytical ray model, we establish a routine
for generating physically realistic and challenging 4D phantoms of granular systems.
Although the presented reconstruction scheme is not limited to granular systems, these
phantoms serve to validate and illustrate our reconstruction method. As a side effect,
the established phantom generation procedure could be used to evaluate the feasibility
of granular flow experiments as well as to evaluate the accuracy of other reconstruction
algorithms, specifically geared towards granular flow.

The proposed reconstruction method uses a single, initial, well-sampled reconstruction
of the sample as the basis to track the time evolution of the sample. By enforcing the
sample evolution to obey the continuity-flow differential equations with a prescribed
reduced velocity basis, the problem is solved, despite the low angular sampling. Temporal
propagation of the sought volume is carried out by numerical time integration using
the Finite Volume Method resulting finally in a time series of 3D volumes of the density
distribution of the studied object together with an associated series of 3D velocity fields.
Similar to other tomographic reconstruction schemes our method relies on modelling
X-ray attenuation by line integrals and is thus applicable to multi-beam setups which can
establish such an approximation, either directly, or by some pre-processing of projections,
to, for instance, make wavelength corrections, c.f. [14], or to address phase effects [17].
Additionally, as our method enforces mass conservation via the continuity-flow equation,
we must require that no mass leaves the field of view of the imaging system, or, alternatively,
that the boundary flow conditions of the system are well defined.

The paper is divided into two parts, where the first half of the paper consists of
algorithmic details and the second part describes the numerical investigation for different
phantom scenarios. The first part starts in Section 2 by describing the mathematical
formulation of the inverse problem. In Sections 3 and 4 we introduce the Finite Volume
discretization and velocity basis used to solve the problem. The numerical time integration
scheme used is laid out in Section 5 and, finally, the temporal interpolation scheme is
described in Section 6. The first part of the paper is closed in Section 7 by an algorithm
summary. The second part of the paper starts in Section 8 with a general description
of how dynamic phantoms can be generated. Section 9 describes the phantoms used in
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the validation examples and the resulting reconstructions. In Section 10, we provide a
discussion on our findings. Finally, the paper is closed with conclusions in Section 11.

2. Problem Formulation

Consider an X-ray attenuation experiment in which transmitted photon intensities are
measured by a pixelated area detector. Let I0k denote the photon count of pixel number k
when no attenuating sample is placed between source and detector. Similarly let I1k denote
the photon count as the sample has been put in place. We define the absorbance along ray
number k as

Ak = log
(

I0k
I1k

)
. (1)

Let f (x, t) be an attenuation function of space, x =
[
x, y, z

]T , and time t. Assuming
that Beer’s law holds we may establish an approximate line integral model of the measured
absorbance at pixel k as

Ak(t) =
∫ Lk

0
f (pk + sr̂k, t)ds, (2)

where pk is the X-ray entry point at the sample boundary, s and Lk scalars, r̂k is the X-ray
propagation direction and pk + Lk r̂k is the X-ray exit point at the sample boundary.

For acquisitions featuring sample rotation, both r̂k, pk will be functions of time. In a
multi-beam setup, when the sample is kept fixed in position, r̂k and pk are static and the
temporal evolution of Ak(t) is driven solely by the internal dynamics of the studied sample.
We seek to reconstruct f from A for the latter of these cases. However, as the number of
measurements required to recover f uniquely is typically much larger than the available
data, we must make some additional model assumptions. If the sample forms a closed
system, the underlying mass density distribution of the sample, ρ(x, t), will follow the
partial differential equations of continuity,

∂ρ

∂t
+∇T(ρu) = 0, (3)

where uT =
[
u v w

]
is a velocity field and∇T =

[
∂/∂x ∂/∂y ∂/∂z

]
is the divergence

operator. The attenuation for X-rays is approximately proportional to the mass density of
the sample, ρ ≈ c f , and thus, by dividing (3) with the unknown scalar c, we expect

∂ f
∂t

+∇T( f u) = 0, (4)

which provides us with an additional constraint partly bridging the gap of missing data.
Typically, when studying dynamic processes over short time spans, the experimental

setup will involve a triggering system to initiate the desired internal sample processes.
This also means that the initial state of the sample will be static prior to any multi-beam
measurements taking place. Thus, we will further assume that it is possible to sample
f fully for at least a single time point, t0, by performing an initial classic single-beam,
full-rotation tomography of the sample.

By time differentiation of (2) we have

∂Ak(t)
∂t

=
∫ Lk

0

∂ f (pk + sr̂k, t)
∂t

ds =
∫
Rk

∂ f
∂t

dr, (5)
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where we have introduced the right hand side shorthand integral notation whereRk is the
line segment defining ray number k. Inserting (4) into (5) and collecting our results we may
now identify an initial value problem of the form

∂Ak(t)
∂t

= −
∫
Rk

∇T( f u)dr,

∂ f
∂t

= −∇T( f u),

f (x, t0) = f0.

(6)

We propose to reconstruct the sample attenuation, f , by finding solutions in time
to (6).

3. Finite Volume Discretization

Analytical solutions to the continuity equations (3) for arbitrary density and velocity
fields are not known. Numerically sophisticated Finite Volume Methods for propagating
these equations in time do, however, exist. Below we derive a discretized format of
the continuity equations needed for our algorithm. These results are standard and here
included with the purpose of clarifying our notation and aid the reader not familiar with
the Finite Volumes Method, for a general introduction to computational fluid dynamics
c.f. [18].

To make use of Finite Volume methods we must split space into identical cubic
domains, Ωi, each with volume ∆x3 and cell faces aligned with a Cartesian coordinate
system, as exemplified in Figure 1.

Figure 1. Schematic of the spatial Finite Volume discretization centered in y at cell number i.
Each cubic cell is associated with six faces featuring normals aligned with the Cartesian (x̂, ŷ, ẑ)
coordinate system.

To further easily refer to quantities associated to cell centroids or cell face centroids
we denote the cell centroid coordinate of cell number i as (xi, yi, zi) and define

xi+ = xi +
∆x
2

, xi+1 = xi + ∆x,

yi+ = yi +
∆x
2

, yi+1 = yi + ∆x,

zi+ = zi +
∆x
2

, zi+1 = zi + ∆x.

(7)

Furthermore, we denote the surface domain of any one cell as Si, which is defined as
the union of the six cell face surface domains;

Si =
d=3

∑
d=1

(sdi+ + sdi−), (8)
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where sdi+ and sdi− denote the forward and backwards cell face surface domains in a
dimension d = 1, 2, 3 corresponding x = 1, y = 2, z = 3.

Integrating (3) over a single cell yields

∂ρ̄i
∂t

= − 1
∆x3

∫
Ωi

∇T(ρu)dx, (9)

where (·̄) represents a cell average. Using the divergence theorem we may transform (9)
into a surface integral of the form

∂ρ̄i
∂t

= − 1
∆x3

∮
Si

ρuT n̂dS, (10)

where Si is the surface of the element region Ωi and n̂ is the unit normal vector of this
surface. We may now once again divide through with an unknown constant scaling factor
c to represent (10) in terms of attenuation

∂ f̄i
∂t

= − 1
∆x3

∮
Si

f uT n̂dS. (11)

Using the fact that the cell is cubic and aligned with the coordinate axes we may rewrite
(11) as

∂ f̄i
∂t

= − 1
∆x3

d=3

∑
d=1

( ∫
sdi+

f udds−
∫

sdi−
f udds

)
. (12)

The average density change in time is now easily identified as the sum of net fluxes
measured at the cell interfaces. Many Finite Volume schemes for approximating these
right hand side fluxes of (12) exist. Such schemes can produce excellent approximations
to the per cell average temporal derivative ∂ f̄ /∂t. However, we seek to solve an initial
value problem (6) involving not f̄ but f . This distinction is not a problem for our purposes.
In fact, due to the discrete nature of the measurements, Ak, any reconstruction of f will
always have limited resolution. Typically, in tomographic reconstruction, f is assumed to
be represented on a voxelated grid and numerical ray models, representing the integral
operator

∫
Rk

(·)dr, will already assume that f is piece-wise constant over a voxel. In state-
of-the art projection algorithms, this assumption is a crucial component to maintain a
computationally fast operator [2]. If we select the Finite Volume mesh to have cells that
coincide with the voxels of our initial reconstructed function f0 we may proceed by simply
stating that the approximation ∂ f̄ /∂t ≈ ∂ f /∂t is valid whenever the ray model is to be
executed upon ∂ f /∂t. When executing the Finite Volume scheme and approximating ∂ f̄ /∂t,
it will be important to distinguish f from f̄ in the sense that the value f at some necessary
evaluation coordinate in space must be extrapolated from f̄ .

To approximate the per cell temporal average attenuation evolution, ∂ f̄ /∂t, we have
opted to use the central scheme by Kurganov and Tadmor [19]. This is a so called Monotonic
Upstream-centered Scheme for Conservation Laws (MUSCL) which can provide accurate
solutions in the presence of sharp discontinuities in the solution field f . This selected
scheme can also be made to have a total variational diminishing (TVD) property if a
suitable accompanying temporal integration scheme is selected. These two properties
are especially desirable for dynamic systems where the constitutive particles exist in a
solid state and undergo translations, rotations and deformations. In such a system, at
the interface between constitutives, f may feature sharp gradients which must not be
smoothed as a result of temporal integration. It is possible that simpler schemes, of lower
order accuracy, may yield good results for many systems, but such a study is out of scope
for this paper.
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Explicitly, using the central scheme by Kurganov and Tadmor [19], the approximation
scheme described above renders (12) in discrete form as

∂ f̄i
∂t
≈ − 1

∆x

d=3

∑
d=1

(
Fdi+ − Fdi−

)
. (13)

Here the numerical fluxes at the cell faces are approximated as

Fdi− =
udi−

2

(
f R
di− + f L

di−

)
− |udi−|

2

(
f R
di− − f L

di−

)
,

Fdi+ =
udi+

2

(
f R
di+ + f L

di+

)
− |udi+|

2

(
f R
di+ − f L

di+

)
,

(14)

where | · | denotes absolute value and udi− and udi+ are the scalar velocity field compo-
nent values, (u, v, w), at the i-th backwards and forwards cell face centroid coordinate in
dimension d, i.e.,

u1i− = u(xi−, yi, zi), u1i+ = u(xi+, yi, zi),

u2i− = v(xi, yi+, zi), u2i+ = v(xi, yi+, zi),

u3i− = w(xi, yi, zi+), u3i+ = w(xi, yi, zi+).

(15)

The right ( f R
di+, f R

di−) and left ( f L
di+, f L

di−) extrapolated cell values are taken as

f R
di+ = f̄i+1 −

φ(ri+1)

2
( f̄i+2 − f̄i+1),

f R
di− = f̄i −

φ(ri)

2
( f̄i+1 − f̄i),

f L
di+ = f̄i +

φ(ri)

2
( f̄i+1 − f̄i),

f L
di− = f̄i−1 +

φ(ri−1)

2
( f̄i − f̄i−1),

(16)

with

ri =
f̄i − f̄i−1

f̄i+1 − f̄i
. (17)

The super-bee limiter function φ [20] introduced in (16) is defined as

φ(ri) =

{
2 if f̄i+1 − f̄i = 0
max

[
0, min(2ri, 1), min(ri, 2)

]
, otherwise,

(18)

and serves to limit the gradient of f at strong discontinuities. Limiter functions are
commonly used in higher order Finite Volume schemes to avoid spurious oscillations.

Before proceeding any further, to simplify notation, we introduce an operator FV [·]
representing the action of the finite volume scheme on f̄ and u together with a linear
operator P [·] representing the action of a numerical ray model on f̄ ,

FV [ f̄ , u] = − 1
∆x

d=3

∑
d=1

(
Fd+ − Fd−

)
, (19)

Pk[ f̄ ] =
∫ Lk

0
f (pk + sr̂k, t)ds. (20)

We use the ASTRA-toolbox [2] 3D-vector implementation of P [·]; this implementa-
tion features GPU acceleration via the Nvidia CUDA platform, which is necessary for
computational tractability of the method.
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With this notation we may write the modified initial value problem to solve as

∂Ak(t)
∂t

= Pk[FV [ f̄ , u]], (21a)

∂ f
∂t

= FV [ f̄ , u], (21b)

f̄ (x, t0) = f̄0, (21c)

where the reader may note that we have now reformulated the problem in terms of cell
average absorptivities, f̄ .

4. Velocity Representation

We must now define the velocity field to be evaluated at the cell face centroid coordi-
nates over the Finite Volume mesh. Importantly, we need a parametrisation of u that can
accurately represent the true velocity field of the system, and, at the same time, be fully
recoverable through solving the intermediate tomographic Equation (21a) for a fixed time
and fixed f̄ . We introduce a finite basis approximation of u as

u(x, t) =
j=M

∑
j=1

αj(t)ϕj(x), (22)

with αT
j =

[
αj β j γj

]
featuring three independent velocity coefficient components. In

this work, ϕj(x), is defined on a tetrahedral mesh in a Finite Element type style. We
consider element number e, connected to node number j, with an interior domain Ee, and
define the linear interpolation as

ϕj(x) = c(ej)
0 + c(ej)

1 x + c(ej)
2 y + c(ej)

3 z, x ∈ Ee, (23)

where the coefficients c(ej)
i are selected uniquely by requiring that ϕj(x) = 1 at node j and

ϕj(x) = 0 for all other nodes in the mesh.
We stress again that the basis should be selected to fulfil two competing requirements,

namely, that of being recoverable from (21a) for fixed t and f̄ , while, at the same time,
being generic enough to represent the true velocity field well throughout the duration
of the experiment. If no prior information on the velocity representation is known, this
fundamentally limits the scope of the method to study phenomena where a generic basis
selection, such as the above Finite Element basis, can capture the kinematics of the sample.
Depending on the number of available data it could be difficult to reconstruct processes
with high total variation in the velocity field. On the contrary, we note that the method
puts no restriction on the attenuation function, f̄ , itself which could have extremely rich
spatial patterns with sharp gradients and a high total variation.

The reader may now be tempted to think that we have only transferred the problem
of reconstructing the scalar field f̄ from too few data to the problem of reconstructing the
vector field u from the same data and equations. If this was the case, we would be at a
loss, since we have but multiplied the number of unknowns by a factor of three, leaving us
worse than we started out. However, we must recall that Equation (21a) is fundamentally
constrained by (I) f̄ being known and (II) the operator FV [·] representing continuous
flow. In other words the action of u upon f is severely restricted. For instance, a velocity
acting on an evacuated cell in the Finite Volume mesh will have no impact on the updated
attenuation field f . Similarly, it is not possible for u to increase the attenuation value of
a single cell in the mesh without also affecting the attenuation of the neighbours of that
cell. We raise this point to stress that the presented initial value problem is fundamentally
different from solving the tomography equations themselves.
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5. Time Integration and CFL Number

To propagate f̄ in time through (21) we need to select a temporal integration scheme.
To achieve TVD properties we have selected a Third-order Strong Stability Preserving
Runge–Kutta (SSPRK3) scheme [21].

Let D be an operator yielding the right hand side of the partial differential equation
in (21b),

D[tl , f̄ ] =
∂ f̄
∂t

. (24)

The SSPRK3 scheme is, thus, described by

k1 = D
[
tl , f̄ (tl)

]
,

k2 = D
[
tl + ∆t, f̄ (tl) + ∆tk1

]
,

k3 = D
[
tl +

∆t
2

, f̄ (tl) + ∆t
( k1

4
+

k2

4
)]

,

f̄ (tl+1) = f̄ (tl) +
∆t
6
(k1 + k2 + 4k3).

(25)

Importantly the selection of ∆t is ultimately limited by the Courant–Friedrichs–Lewy
(CFL) condition, which states that the CFL number, C, must fulfil the inequality

C =
(|ux|+ |uy|+ |uz|)∆t

∆x
≤ 1. (26)

Especially this means that when the cells of the Finite Volume discretization are
selected to match the lengths of the detector pixels the attenuation field, f , must feature
sub-pixel motion for meaningful results to be obtained.

When executing D[tl , f̄ ], the intermediate step of solving (21a) for u must yield a
solution that does not violate (26) such that, when u is used in (21b) by the flow model
FV [ f̄ , u], stability is preserved. Note that (21a) is an upper bound on the flow field, in
practice, to maintain TVD for the scheme, C will have to be smaller than unity.

We have implemented D[tl , f̄ ] by first solving (21a) in a least squares sense for the
velocity basis coefficients αj after which FV [ f̄ , u] can be executed using the resultant
velocity field. Specifically, we solve

Argminαj ∑
(
Pk[FV [ f̄ , u]]− ∂Ak(t)

∂t

)2
(27)

using the L-BFGS-B minimisation scheme [22]. To do this, we must compute the partial
derivatives of the flow model with respect to the free variables; analytical expressions
for these necessary gradients, ∂FV [ f̄ , u]/∂αj, are presented in Appendix B. The resulting
solution, α∗j , is then brought back into the feasible domain by setting

αj =


α∗j

C(α∗j )
, if C(α∗j ) > 1

α∗j , otherwise,
(28)

where

C(α∗j ) =
(|αjx|+ |αjy|+ |αjz|)∆t

∆x
. (29)

We can here also mention that, when solving (27) repeatedly for a sequence of time
points, it can be useful to start the minimisation at the previously located minima to speed
up convergence. If the velocity varies slowly between time steps optimal solutions may,
thus, be found in a few iterations.
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6. Temporal Measurement Interpolation Scheme

To execute the Runge–Kutta time integration scheme, the projected rates, ∂Ak(t)/∂t,
must be available. We must now decide how to interpolate Ak(t) from the available discrete
data series (Ak(t0), (Ak(t1), ..., Ak(tT)). We have selected a quadratic interpolation scheme
represented in a local basis such that

Ak(t) = a(l)0 q2 + a(l)1 q + a(l)2 , t ∈
[
tl , tl+1

]
, (30)

where tl is any time at which Ak was measured. The polynomial coefficients, a(l)i , are
determined by the data of the interval, Ak(tl), Ak(tl+1), and a continuity requirement on
∂Ak/∂t such that

a(l)0 t2
l + a(l)1 tl + a(l)1 = Ak(tl),

a(l)0 t2
l+1 + a(l)1 tl+1 + a(l)2 = Ak(tl+1),

lim
t→tl+

∂Ak
∂t

= lim
t→tl−

∂Ak
∂t

.

(31)

To close out the system of equations we require initially that

∂Ak
∂t

∣∣∣
t0
= 0, (32)

i.e., we require that the sample starts from a static state. The interpolation scheme of (30)
allows for evaluation of both Ak(t) as well as ∂A(t)/∂t at arbitrary time-points, t, and is
the lowest order polynomial interpolation scheme that gives continuous ∂A(t)/∂t. Since
the projection operator P [·] is linear, (30) implies that we expect f̄ to evolve quadratically
over a single timestep. If this approximation holds, the third order RK scheme could
theoretically produce an exact integration using a timestep ∆t = tl+1 − tl .

In practice, considering model errors from both ray and flow models, as well as noise
in the data, the integration will not be exact. Thus, the updated state f̄ (tl+1) will not match
the acquired projections P [ f̄ (tl+1)] 6= A(tl+1) perfectly. Nonetheless, when integration is
performed, the left hand side of (21a) is requested as a function of the current state f̄ (tl).
We must therefore make an interpretation of ∂A(t)/∂t for attenuation functions that do not
represent the true states of the sample, and thus do not lie on the interpolated path defined
by the measurements. Naively, we could set ∂A(t)/∂t to the original derivative found in the
quadratic interpolation scheme. This will, however, be sensitive to errors in f̄ , as any offset
from the original data path will be preserved and amplified throughout time integration. To
combat this we may perform, before each integration step, a re-interpolation, introducing
the current projected state of f̄ into the data series, replacing the current measurement.
This ensures an interpolation path that connects the current erroneous state with the true
data points. As a result the projection derivatives, ∂A(t)/∂t, on the interval tl to tl+1 will
be modified such that the projection of the updated state f̄ (tl+1) has a tendency to return
to the data path. Note that the re-interpolation is introduced to modify ∂A(t)/∂t and that
the data points, A(t), described by the re-interpolation are meaningless in themselves.

To illustrate these concepts we have considered three different re-interpolation strate-
gies as illustrated in Figure 2. Two of these strategies makes use of the current projected
state of f̄ while the third naively neglects this current state. Considering a situation when
f̄ is reconstructed at a current time point t = tl and we seek to integrate forward in time to
t = tl+1 the three strategies may be summarised as follows:

1. Interpolation using only the original data, i.e., neglecting the current projected state
of f̄ (tl) during interpolation. The boundary condition for interpolation is applied
statically (regardless of tl) at t0 as in Equation (32). This interpolation scheme will
naively disregard any information related to the current state tl .
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2. Re-interpolation using original data with the exception of replacing the current data
point at tl with the current projected state of f̄ (tl). The boundary condition for
interpolation is again applied statically (regardless of tl) at t0 as in Equation (32).

3. Re-interpolation using original data with the exception of replacing the current data
point at tl with the current projected state of f̄ (tl). The boundary condition for
interpolation is now applied locally to tt+1 as

∂Ak
∂t

∣∣∣
tl+1

=
∂A∗k
∂t

∣∣∣
tl+1

(33)

where A∗k represents an interpolation using strategy (1.). This means that starting
from t = tl+1 the re-interpolation is forced to join the original (t = t0) interpolation.

To visualise the meaning of the three above interpolation strategies, without yet
evaluating which is more accurate, we provide the illustration of Figure 2.

Figure 2. Resulting quadratic re-interpolation using; current projected state and a local boundary
condition (bottom), current projected state using a static boundary condition (middle), disregarding
current projected state and using static boundary condition, i.e., using the original interpolation (top).
As integration is executed from tl to tl+1 the derivatives used in the RK3 scheme will be sampled
from the fields illustrated in the right column.

To illustrate the impact of integration scheme upon the reconstructed time series we
consider a single spherical particle moving along a straight line in 3D space. We assign the
particle the velocity function

v(t) =
[
0 0 −z0 sin(πt/tend)

]T , (34)

where z0 is the initial position of the sphere and t goes from 0 to tend. The CFL number now
becomes variable in time, as

C(t) = z0sin(πt/tend)dt/dx, (35)
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reaching a prescribed maximum z0dt/dx = 0.5 at tend/2. Using simulated projections from 5
separate angles (described in detail in Sections 8 and 9) we may define a simulated data time
series. Reconstruction from these projection data is illustrated in Figure 3 where the root mean
squared error of both volume ( f̄ ) as well as projections (P [ f̄ ]) are shown as functions of time.
By acquiring full simulated reference scans at multiple selected time points and performing,
from these, classical tomographic reconstructions, the volume residuals can be analysed. To
provide some comparative value to the RMSE, we present, in Figure 3, also histograms over
the volume and sinogram values clipped at 1% of their maximum values.

Figure 3. Reconstructions by Algorithm 1 using three different re-interpolation schemes. The static
bc (green) and local bc (orange), which correspond to the second and third row of Figure 2 are seen
to produce better reconstructions than the original static bc scheme (blue). The sinogram residuals
(parallel beam at angle θ = 0) and thresholded volumes (at 1% of their maximum value) are illustrated
for the start and endpoints in time. The true sphere position is rendered on top of the reconstructed
attenuation volumes as a cerise mesh. Histograms over per-cell volume attenuation and sinogram
projected attenuation values are shown in the bottom row (clipped at 1% of their maximum value).
The final RMSE for each of the three interpolation schemes are illustrated as vertical lines in these
histograms.

Figure 3 indicates that it is desirable to include the current projected model state into
the interpolation, as this creates resilience against error build up in the reconstruction, as
the time integration will then be forced to return to the data path. In the following we select
to use the local boundary condition scheme (bottom row Figure 2 and orange markings
Figure 3). Although the selected re-interpolation scheme features some desirable properties,
we do not claim to have an optimal selection. A deeper exploration of re-interpolation
schemes is, however, out of scope for this paper.
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7. Algorithm Summary

In the previous sections, we have described the numerical computations involved in
the proposed time series reconstruction scheme. To make it clear in what sequence these
operations are performed, we give a complete algorithm summary (Algorithms 1 and 2) in
the form of pseudo-code below. Our current implementation of the algorithm is openly
available at https://github.com/AxelHenningsson/contomo, accessed on 14 April 2021.
This package also includes the modules used for phantom simulation, which are described
in Section 8.

Algorithm 1 Time series reconstruction scheme.
Input: f0, P [·], t0, t1, t2, .., A(t0), A(t1), A(t2), ..
tl ← t0
f̄ (tl)← f0
αinit

j ← 0
while tl < tend do

Replace measurement at tl by current state, A(tl)← P [ f̄ (tl)]
Interpolate measurements sequence A(t0), A(t1), A(t2), .. by Equation (30)
Define ALG2[·, ·] by Algorithm 2 with current interpolation, A(t), and αinit

j

k1, α1
j ← ALG2

[
tl , f̄ (tl)

]
k2, α2

j ← ALG2

[
tl + ∆t, f̄ (tl) + ∆tk1

]
k3, α3

j ← ALG2

[
tl +

∆t
2

, f̄ (tl) + ∆t
( k1

4
+

k2

4
)]

f̄ (tl)← f̄ (tl) +
∆t
6
(k1 + k2 + 4k3)

tl ← tl + ∆t
αinit

j ← α3
j

end while
Output: attenuation, f̄ , and velocity, u, at series of time points, t0, t1, t2, ..

Algorithm 2 Velocity recovery step (subroutine of Algorithm 1).

Input: t, f̄
uinit ← ∑

j=M
j=1 αinit

j ϕj(x)

α∗j ← Argminαj
∑
(
Pk[FV [ f̄ , u]]− ∂Ak(t)

∂t

)2
by L-BFGS-B and inital guess uinit

for j = 1, 2, .., M do
Cj ← (|α∗jx|+ |α∗jy|+ |α∗jz|)∆t/∆x
if Cj >= 1 then

αj ← α∗j /Cj
else

αj ← α∗j
end if

end for
u← ∑

j=M
j=1 αj ϕj(x)

∂ f̄
∂t
← FV [ f̄ , u]

Output:
∂ f̄
∂t

, αj

8. Framework for Phantom Data Generation

To provide a challenging and realistic phantom test case for the proposed reconstruc-
tion algorithm, featuring physically realistic motion, we have simulated ensembles of
spherical particles by the Discrete Element method, as implemented in LIGGGHTS [16].

https://github.com/AxelHenningsson/contomo
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The LIGGGHTS software package enables time series characterisation of a wide range of
kinematic data on the individual particles included in a simulation run. For this work,
DEM simulations featuring mixtures of uniform density spherical particles with varying
radii have been performed. To create projections from the ensemble state data available
from the DEM, we have computed the integral (2) analytically utilising the fact that the
constitutive particles are spherical. Detailed derivations of the resulting integral expression
can be found in Appendix A; here we only present the final used projection equations.

Let us consider a set of particles centred around the origin, Or, in a Cartesian coordi-
nate system. Let further a particle be indexed by p = 1, 2, .., P and illuminated by a point
like X-ray source at Os as schematically illustrated in Figure 4.

Figure 4. Top down 2D schematic of ray sphere intersection considering a point like X-ray source at
Os and two illuminated spheres with centroids at cp and cp+1.

The projected attenuation for a given point in the image plane, (xd, yd), and sample
rotation, θ, is then associated to an X-ray propagating along the unit vector n̂ as

A(xd, yd) =
p=P

∑
p=1

2ρpRe
[√

Sp

]
, (36)

where

Sp = (n̂T(Os − cp))
2 −OT

s Os+

cT
p (2Os − cp) + r2

p,
(37)

and

Os = Rz

−S
0
0

, Od = Rz

D
0
0

, (38)

n̂ =
1√

(D + S)2 + x2
d + y2

d

Rz

D + S
xd
yd

. (39)

where S and D are the source to rotation axis and detector to rotation axis distances,
respectively, xd, yd are the x and y coordinates of the detector ray intersection point and
Rz is a 3 × 3 rotation matrix rotating a vector negatively around the z-axis. In this setting
the line connecting the X-ray source, Os, with the detector origin, Od, is parallel to x̂,
i.e., the optical axis of propagation is along x̂. The angle θ describes a positive sample
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rotation around ẑ. Further, ρp is the sphere attenuation, rp the sphere radii, cp the sphere
centroid coordinate and Re[·] denotes real value. Here we have assumed that the detector
is perfectly mounted, i.e., (Od −Os)T ẑ = 0.

A single detector pixel value, Ak, of the detector can be assigned by (36) using the
pixel centroid coordinate. However, to better mimic real measurements conditions, we
may consider that the measured detector values are in fact integral measures over the
surface domains of the pixels. In this paper, we account for this effect by, for each pixel,
evaluating (36) at 9 separate locations located on an equidistant grid within the pixel square
and assigning the value of pixel number k as the average of these 9 samples.

9. Numerical Simulations

Three separate phantom scenarios have been investigated. The first of these represents
a three-particle system featuring prescribed large, nonlinear helical translations paths. In
contrast to the predefined motion paths, the second two phantoms were generated by
DEM simulations including hundreds of particles with motion initiated and driven by an
impactor making contact upon a particle bed. Simulation and reconstruction parameters
for the three phantom scenarios are presented in Table 1. The resulting reconstructions
generated by Algorithm 1 are presented in Sections 9.1 and 9.2 together with comparisons
against ground truth reference reconstructions. For completeness, additional comparisons
to reconstructions obtainable by existing iterative reconstruction methods are presented
in the Supplementary Material. These additional comparisons were performed using the
open source library tomopy [1] and features comparison to a compressed sensing technique
similar to [23–25].

Using an NVIDIA Quadro P2000 for ray tracing and a single Intel(R) Core(TM) i7-
8700K CPU@3.70GHz for all other calculations reconstruction was executed in 11.5 ± 0.2 s
per time-step for all presented phantom scenarios. It is noteworthy that the algorithm
scales linearly in both the number of time-steps as well as the number of voxels in the
discretization and angular projections used. If a locally supported basis is used the number
of basis functions have little to no impact on the compute time but primarily affect the
memory usage of the algorithm.

Table 1. Simulation and reconstruction parameters used in three phantom scenarios constructed to test Algorithm 1. For the
given DEM phantoms the impactor radii (15 mm) is excluded from the given sphere radii range as well as the sphere count.

Helical Motion DEM Large Grains DEM Small Grains

No. spheres 3 300 2200
Sphere radii range [100.0–111.11] mm [3.25–5.0] mm [1.5–3.0] mm

Simulation duration t ∈ [0, 1000] ms t ∈ [0, 49.8] ms t ∈ [0, 49.8] ms
Projection readout speed 2 ms 0.1 ms 0.1 ms
No. sampled time points 501 499 499

Beam geometry in plane parallel in plane parallel in plane parallel
Projection angles −75◦, −35◦, 0◦, 35◦, 75◦ −75◦, −35◦, 0◦, 35◦, 75◦ −75◦, −35◦, 0◦, 35◦, 75◦

Detector dimensions (pixels) 64 × 64 64 × 64 64 × 64
Detector pixel size 15.625 mm 1.5625 mm 1.5625 mm

No. velocity basis elements 661 1983 1983
Element enclosing sphere radii [72.91, 147.42] mm [4.91–9.75] mm [4.91–9.75] mm

No. FVM cells 64 × 64 × 64 64 × 64 × 64 64 × 64 × 64
FVM cell size (∆x) 15.625 mm 1.5625 mm 1.5625 mm

RK integration time step 2 ms 0.1 ms 0.1 ms
Max L-BFGSG-B iterations 20 20 20

Max L-BFGSG-B line searches 25 25 25
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9.1. Three Body Helical Motion System

We define a helical motion path by introducing the sphere centroid coordinate functions,

x = vxi sin(2πt)− txi,

y = vyi cos(2πt)− tyi,

z = vzit− tyi,

(40)

where vxi and vyi bound the x̂-ŷ plane velocities, vzi is the particle velocity along the helix
rotation axis (ẑ) and txi, tyi, tzi define the initial position of the sphere centroid. For this
example, we define a three particle system as in Table 2, which corresponds to a fixed
central sphere surrounded by two spheres revolving in opposite directions.

Table 2. Parameters of three particle helical motion system, interpreted through Equation (40).

Particle Number i 1 2 3

vxi [m/s] 2/7 2/7 0
vyi [m/s] 2/7 −2/7 0
vzi [m/s] 3/20 −3/20 0

txi [m] 0 0 0
tyi [m] 0 0 0
tzi [m] 9/64 −9/64 0

The initial attenuation function, f̄0, provided for Algorithm 1 was produced by sim-
ulating an initial full projection set with Nπ projections equally spaced in the angular
interval θ ∈

[
0◦ 180◦

]
, where N was the number of pixels along the detector side length.

From the reference projection set an initial volume was reconstructed by solving the least
squares residual equations,

Argmin f̄ ∑
k
(Pk[ f̄ ]− Ak)

2, (41)

using L-BFGS-B [22] with a maximum number of allowed iterations equal to N and a
maximum number of line searches equal to 25. The Finite Volume mesh was selected to
align with the reconstructed voxel grid, resulting in a cubic mesh domain and cubic cells.

Using Algorithm 1, reconstruction from the five projection angles described in Table 1
was performed. The resulting time-series of cell values was thresholded at 5% of the
maximum cell value found throughout the time-series. In the middle row of Figure 5 these
results are illustrated at five selected time-points. For comparison, the analytical particle
positions (Equation (40)) and propagation directions have been overlayed on the cell
attenuation values. The top row of Figure 5 shows the corresponding projected residuals
between the analytical projections provided as input to Algorithm 1 and the numerical
projections of the discretised reconstruction produced by Algorithm 1. This residual is
an important measure of how well the reconstruction respects the input data. Finally, the
bottom row of Figure 5 depicts reference reconstructions, generated independently through
the same procedure described above for the initial attenuation function, f̄0. These reference
reconstructions represent a best-case scenario, i.e., when full angular information of the
sample is possible to be perfectly attained at each time-step without motion blurring.
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Figure 5. Reconstructed per-cell average 3D attenuation, f̄ , and projected residuals for the 3-particle
system phantom undergoing helical motion. The bottom row illustrates the reference reconstructions
from a full set of projections. The middle row illustrates the reconstruction from 5 projections
using Algorithm 1. The top row shows the projection residual at θ = 0◦ which corresponds to
projecting along the x-axis into the y-z-plane. The 3D volume reconstructions are rendered by a
fixed cut-off threshold (5% of maximum cell value) and shown for varying times as indicated by the
legends. The reconstructions are overlayed with their corresponding input particle sphere shells with
a 1.1 magnification for visibility. The true input velocities for the moving spheres are illustrated as
3D arrows in the renderings. Input parameters for simulation and reconstruction are described in
Section 9.

To quantify the error in the reconstructions, the real space and sinogram residuals
were analysed over the full time-series. We define the root mean squared errors (RMSE),

RMSE =

√√√√i=n

∑
i=1

r2
i

n
, (42)

and the mean absolute errors (MAE),

MAE =
i=n

∑
i=1

|ri|
n

, (43)

where a total of n residuals, ri, are included in the sums. In this setting ri can be either the
per cell average value of f̄ compared between the reconstruction by Algorithm 1 and the
reference tomography reconstructions, or, alternatively, ri may be the residuals between
the numerically projected values of f̄ and the ground truth simulated projections. The
evolution in time of the RMSE and MAE for the helical motion phantom is presented in
Figure 6.
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Figure 6. Root mean squared error (top row) and mean absolute error (middle row) for the attenuation
residual field and the projected sinograms of the helical motion phantom shown in Figure 5. The
residual fields at each time point are defined by subtracting the reconstructed attenuation value from
the target value.

To put the magnitude of the RMSE and MAE in relation to the imaged system, his-
tograms over the reference reconstructions and ground truth sinograms are presented in
Figure 7 together with RMSE and MAE found at the final timestep.

Figure 7. Histograms of the per pixel/per voxel distributions found in the reference volumes and
ground truth sinograms of helical motion phantom shown in Figure 5. The RMSE and MAE found at
the final reconstructed time point is marked in the corresponding histograms as dashed lines.

To investigate how the velocity field reconstructed by the sub-iteration of Algorithm 1
relates to the true kinematics of the system, particle tracking has been performed using
the initial true sphere positions and the reconstructed velocity field was used to predict
the sphere trajectories. The normalised error between the true and reconstructed sphere
centroids is defined as

∆c = ||crecon − ctrue||2/D, (44)

where crecon and ctrue denotes reconstructed and true sphere centroids, respectively, and
D is the sphere diameter. The coordinate crecon was produced by RK4 integration and
interpolating for intermediate velocities assuming quadratic motion trajectory over a single
time step. The velocity at a given time step for a given sphere was defined by averaging
over the sphere volume, using the current centroid, crecon, together with the sphere radii. By
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the definition of (44), an error less than unity corresponds to overlap between the true and
reconstructed sphere volumes. The errors ∆c for the helical motion phantom are presented
in Figure 8, where the error of each individual particle has been coloured its corresponding
maximum CFL number found at any time during the simulation.

Figure 8. Distance error between true (ctrue) and predicted (crecon) sphere centroids normalised by
sphere diameter (D) for the helical three body system depicted in Figure 5. Each line in the plot
represents the error of a single sphere and has been colored by its corresponding maximum CFL
number recorded at any instance in the time series.

9.2. DEM Simulations

Two DEM simulations were run featuring a total of 300 and 2200 particles, respectively.
The radius-size distribution and initial geometry of the two simulations are depicted in
Figure 9. The simulations featured the impact of a dense, large, spherical, gravity-driven
impactor on a grain ensemble confined by a cylindrical tube. The LIGGGHTS input files,
specifying the input parameters of the simulation, are provided in the Supplementary Materials.

Figure 9. DEM simulations featuring gravity impact on particle beds for large (left) and small (right)
grain size distributions. The gravity-driven impactor is the grey sphere above the grain ensemble.

The maximum CFL number found for any sphere in the DEM simulation at each
integration timepoint is depicted in Figure 10. It can be seen that the small-grains DEM
features, in general, grains with higher velocities than the large-grains DEM and that it is
feasible to reconstruct the motion of either system, as the CFL number is always less than
unity for any grain at any time.
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Figure 10. Time evolution of the maximum Courant–Friedrichs–Lewy (CFL) number for the two
DEM simulation corresponding to Figure 9.

9.3. DEM Simulation—Large Grains

The attenuation reconstructions by Algorithm 1 of the DEM phantom featuring large
grains are found in Figure 11, which is arranged in the same way as Figure 5 with the
thresholded results of Algorithm 1 presented in the central row.

Figure 11. Reconstructed per cell average 3D attenuation, f̄ , and projected residuals for DEM phan-
tom featuring impact upon a granular bed. The bottom row illustrates the reference reconstructions
from a full set of projections. The middle row illustrates the reconstruction from 5 projections
using Algorithm 1. The top row shows the projection residual at θ = 0◦ which corresponds to
projecting along the x-axis into the y-z-plane. The 3D volume reconstructions are rendered by a
fixed cut-off threshold (5% of maximum cell value) and shown for varying time as indicated by the
legends. The reconstructions are overlayed with their corresponding input particle sphere shells with
a 1.1 magnification for visibility. Input parameters are described in Section 9.

The time evolutions of the RMSE and MAE, as defined in Equations (42) and (43),
are presented in Figure 12. The moment the impact makes contact with the granular bed,
instantiating motion therein, is marked in grey in the four subplots.
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Figure 12. Root mean squared error (top row) and mean absolute error (bottom row) for the at-
tenuation residual field and the projected sinograms of the DEM particle simulations shown in
Figure 11.

To put the RMSE and MAE in relation to the imaged system, histograms over the
phantom attenuation and projection values, analogue to those shown in Figure 7, are
presented in Figure 13.

Figure 13. Histograms of the per pixel/per voxel distributions found in the reference volumes and
ground truth sinograms. The RMSE and MAE found at the final reconstructed time point is marked
in the corresponding histograms as dashed lines.

Finally, for the DEM simulation featuring large grains, the result of velocity tracking
is presented in Figure 14. The particle position error of the impactor has been marked in
an off-coloured cerise, as opposed to the errors of the particle ensemble, which have been
coloured by their corresponding maximum CFL found throughout the time-series. At the
final timestep, it was found that 86.71% of the predicted particle positions still maintained
overlap with their corresponding true positions. We remind the reader that a particle
position error >1 means that the predicted and true position of a sphere has a zero overlap.
From the colouring of the error curves, it is seen that particles with higher maximum CFL
numbers tend to also produce higher particle position errors.
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Figure 14. Distance error between true (ctrue) and predicted (crecon) sphere centroids normalised by
sphere diameter (D) for the DEM simulation depicted in Figure 11. Each line in the plot represents the
error of a single sphere and has been colored by its corresponding maximum CFL number recorded
at any instance in the time series. The spherical impactor has been marked by an off-range color
(magenta) for visibility.

9.4. DEM Simulation—Small Grains

For the DEM featuring small grains the attenuation reconstructions by Algorithm 1
are found in Figure 15.

Figure 15. Reconstructed per cell average 3D attenuation, f̄ , and projected residuals for a challenging
DEM phantom scenario featuring impact upon a granular bed. The bottom row illustrates the
reference reconstructions from a full set of projections. The middle row illustrates the reconstruction
from 5 projections using Algorithm 1. The top row shows the projection residual at θ = 0◦ which
corresponds to projecting along the x-axis into the y-z-plane. The 3D volume reconstructions are
rendered by a fixed cut-of threshold (5% of maximum cell value) and shown for varying time as
indicated by the legends. The reconstructions are overlayed with their corresponding input particle
sphere shells with a 1.1 magnification for visibility. Input parameters are described in Section 9.

Again, the time evolutions of the RMSE and MAE are presented in Figure 16.
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Figure 16. Root mean squared error (top row) and mean absolute error (middle row) for the attenua-
tion residual field and the projected sinograms of the DEM particle simulations shown in Figure 15.
The residual fields at each time point are defined by subtracting the reconstructed attenuation value
from the target value.

Histograms over the reference reconstructions and ground truth sinograms are pre-
sented Figure 17 together with RMSE and MAE found at the final timestep.

Figure 17. Histograms of the per pixel/per voxel distributions found in the reference volumes and
ground truth sinograms of DEM particle simulations shown in Figure 15. The RMSE and MAE found
at the final reconstructed time point is marked in the corresponding histograms as dashed lines.

Velocity tracking was performed in the same way as previously described and the
resulting particle error evolution is presented in Figure 18. In this case it was found
that only 10.31% of the predicted particle positions still maintained overlap with their
corresponding true positions at the final timestep.
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Figure 18. Error in Euclidean distance between true (ctrue) and predicted (crecon) sphere centroids
normalised by sphere diameter (D) for the challenging DEM simulation depicted in Figure 15. Each
line in the plot represents the error of a single sphere and has been colored by its corresponding
maximum CFL number recorded at any instance in the time series. The spherical impactor has been
marked by an off-range color (magenta) for visibility.

10. Discussion

The projection residuals in the top row of Figure 5 display an initial, close-to-zero error
followed by a rapid evolution and (possibly) stabilisation, with typical values of about two
times that of the sphere attenuation. As the constitutive spheres have a diameter of several
voxels/cells (>10) this represents a relative projected error much less than unity. The error
magnitudes can be assessed further by Figure 7, where it is seen in the left histogram
that the final MAE and RMSE in the real space reconstructions are far lower than the
interior sphere values (peak in the histogram). This is also reflected in the 3D renderings of
Figure 5, where the reconstructed thresholded volume fits well to the overlaid true particle
positions and is visually very close to the reference reconstructions. The initial close-to-zero
projected residual (as opposed to a zero residual) present at t0 is due to analytical and
numerical ray model discrepancy. In a best-case scenario, Algorithm 1 would propagate
f̄ in time without introducing any additional errors other than those that are inherent in
the ray model. In Figure 6, an error build up to a few times this inherent error is, however,
observed. Interestingly, this error build up seems to stabilise after about 100 timesteps. One
might be tempted to think that this error cannot be attributed to a poor spatial velocity basis
representation, as the same phenomenon can be observed in Figure 3 where the motion
is uniform in ẑ and, thus, perfectly represented by the finite basis expansion. One should
however remember that, although the true underlying attenuation function may feature
a velocity field that is uniform, the velocities needed to optimally update the discretised
version of f may very well not be uniform. It is, therefore, likely that the discrepancy
between true and discretised attenuation field, together with a finite basis expansion of the
velocities, is driving the observed error. This would also explain why the error plateaus
after some initial iterations, as then the best possible dynamic sphere representation allowed
by the velocity expansion and continuity requirement has been reached. This inherent error
would then indeed be expected to be higher than that of the best possible static sphere
representation allowed by a classical tomographic reconstruction, where each individual
cell value may be changed arbitrarily and independently of neighbouring cells.

Examination of Figures 5–7, in comparison to Figures 11–13 and 15–17, indicates
better attenuation reconstructions by Algorithm 1 for the three-body system than for the
multi-grain cases. These three examples serve to illustrate the impact of the velocity basis
coarseness in relation to the true motion of the system. The three-body system features
spheres that are both large and well separated in space compared to the dimension of
the velocity basis element size, and it is possible for the basis expansion to take on fields
that are close to those of the true underlying system. When the particle density grows
successively in the DEM simulations the velocity basis discretisation must be made finer
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to capture rapid spatial velocity variations. Since the number of basis functions is kept
fixed, however, it becomes increasingly more challenging for the algorithm to find velocity
fields that yield good updates to the attenuation field. This explains how the largest RMSE
and MAE errors are found in the small grains DEM phantom (Figures 15 and 16) while the
larger grain distribution DEM phantom (Figures 11 and 12) have a reduced error and the
three-body system (Figures 5 and 6) has a close to zero RMSE and MAE. However, even in
the most challenging test case, which features more particles than velocity basis functions
(see Table 1), the attenuation field reconstruction depicted in Figure 15 still displays a
reasonable distribution of the bulk mass of the system and is even able to capture the
ejection of a single constitutive grain from the ensemble. We stress here that, apart from
the initial conditions ( f (t0) = f0), the algorithm has no access to sample specific prior
information, which is a result of the attempt to formulate a generic solution strategy.
Additional prior information on the kinematics of the sample could even further improve
the reconstruction quality and reduce the number of needed velocity basis functions and
projections. The most obvious of such constraints lies in the selection of the velocity basis
itself limiting what type of motion that is permitted.

We note that, in the DEM impact scenarios (Figures 12 and 16), the MAE and RMSE
are seen to increase more rapidly from the moment the impactor makes contact with the
granular bed (as marked in the figures). Before the moment of impact, the errors associated
with the reconstruction of the static bed would be expected to only be attributed to the
inherent previously discussed errors, which is reflected in the MAE and RMSE indicating
plateauing prior to impact.

Examining the velocity fields produced by the sub-iteration of Algorithm 1, we see
in Figure 8 that the motion of the three particle system is preserved throughout the full
time-series with an error in the size of some small fraction of a sphere radius. We stress
that the velocities produced by Algorithm 1 are optimised, not to capture the kinematics
of the system, but to propagate the current reconstructed grid of attenuation cell values,
through a Finite Volume model, to match the measured rate of the sinogram. From
an algorithmic perspective, the velocities are but a vehicle to find allowable updates to
the attenuation volume, which is the sought output from the algorithm. This means, in
particular, that historical errors introduced into the attenuation volume, due to, for instance,
finite discretisations or model approximations, may be corrected for later by introducing
spurious velocities. Nevertheless, the results observed for the three-body system shows
that these artificial velocities can capture the true kinematics of the system. Turning to the
same metric for the DEM simulations we see that the velocities produced for the DEM with
larger grains (Figure 14) better preserve the sphere positions in time compared to the small
grains distribution (Figure 18). It is interesting to note that some correlation between high
CFL numbers for the spheres and high position errors seem to be present. In particular,
for the small grains DEM, the kinematics of the system are poorly captured, which may
be partly explained by high CFL numbers and partly by the discretisation of attenuation
and velocity field being coarse in comparison to the constitutive of the system. However,
the exact conditions under which Algorithm 1 reliably reproduces the kinematics of the
studied system remains a question for further study.

11. Conclusions

An algorithm for reconstruction of spatiotemporal attenuation fields, geared to-
wards rotation-free, fast, multi-beam X-ray imaging, has been developed and numerically
tested using an independent analytical ray model for phantom generation. The algo-
rithm was found to produce reconstructions from a sparse set of projections (unknowns:
equations > 10) with errors in the order of magnitude of those expected from classical full
angle range tomography. Furthermore, it was found that the velocity fields produced by
the algorithm sub-iterations can, under the right conditions, approximate the kinematics
of the imaged system well. The proposed algorithm opens the door to unveiling the 3D
evolution of physical processes unfolding at timescales currently inaccessible with existing
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techniques. In summary, the algorithm constrains the possible solutions by assuming con-
servation of the total linear X-ray attenuation within the field of view. For systems where
no phase transformations are present, this is identical to enforcing mass conservation.

The presented algorithm opens for a rich survey and optimisation of parameter selec-
tions, including, but not limited to, velocity basis selection, Finite Volume scheme, time in-
tegration scheme and temporal interpolation scheme of the measurements. Improvements
to the computational aspects of the algorithm, providing fast parallel implementations
would also be desirable. To further evaluate the robustness of the algorithm for real data
applications, the impact of X-ray phase propagation and detector noise in the measurement
series are deemed to be key. Beyond these considerations, application to real, multi-beam,
data could reveal further avenues of improvement. The proposed algorithm aims towards
a generic as possible reconstruction scheme for multi-beam data. With this in mind, we
suggest that the algorithm may serve as a basis to solve more advanced problems via the
introduction of sample specific constraints.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
0/jimaging7110246/s1, Text S1 and Figures S1–S3: Reconstruction comparison to existing iterative
tomography methods, Text S2: LIGGGHTS code for generating DEM simulations.
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Appendix A. Analytical Projection of a Set of Spheres

Let the sphere, with centre cp = [cpx, cpy, cpz]T and radius rp, be defined by a scalar
real valued analytical function, sp(x), in 3D real space, x = [x, y, z]T , such that

sp(x) =

{
ρp if (x− cp)T(x− cp) ≤ r2

p

0 otherwise
. (A1)

We define the origin of the Cartesian coordinate system and define it by the symbol
Or. Next we introduce a point-like X-ray source at Os and let a projection plane go
through the point Od with normal d̂ = (Os −Od)/||(Os −Od)||2. Considering a single
point in the detector plane, Pd, we seek to compute the intersection of a ray parallel to
n̂ = (Pd −Os)/||Pd −Os||2 with the sphere sp. Since spheres are convex objects this is
easily done by considering the two cases of intersection or no intersection. If an intersection
exist the intersection points are given as

(x− cp)
T(x− cp) = r2, x = Os + sn̂. (A2)

Expansion yields

s2 + 2sn̂T(Os − cp) + OT
s Os + cT

p (cp − 2Os)− r2 = 0. (A3)

Introducing the scalar

Sp = (n̂T(Os − cp))
2 −OT

s Os + cT
p (2Os − cp) + r2, (A4)

https://www.mdpi.com/article/10.3390/jimaging7110246/s1
https://www.mdpi.com/article/10.3390/jimaging7110246/s1
https://github.com/AxelHenningsson/contomo
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the intersections are given as

s = n̂T(cp −Os)±
√

Sp. (A5)

From this we can see that the ray path length through the sphere is

Lp = 2
√

Sp. (A6)

For the case when no intersection exists, the value under the root will be negative.
Thus, we may compactly write the general attenuation contribution from a sphere as a
real part,

Ap = 2ρpRe
[√

Sp

]
. (A7)

Letting the value of sp represent the sphere attenuation, we have that the analytical
projection of a set of spheres at arbitrary detector location is

A =
p=P

∑
p=1

2ρpRe
[

2
√

Sp

]
. (A8)

Introducing the rotation axis ẑ and the angle θ as a positive sample rotation, we may
compute the projection at any rotation by setting

Os = Rz

−S
0
0

, Od = Rz

D
0
0

,

n̂ =
1√

(D + S)2 + x2
d + y2

d

Rz

D + S
xd
yd

.

(A9)

Here S and D are the source to rotation axis and detector to rotation axis distances,
respectively, and xd, yd are the x and y coordinates of the detector ray intersection point. In
this setting the line connecting the X-ray source, Os, with the detector origin, Od, is parallel
to x̂, i.e., the optical axis of propagation is along x̂.

On a computational side, we mention here that the rendering time of projections may
be reduced by only evaluating the root expression in (A8) for detector pixels that are inside
a projected bounding rectangle associated with the considered particle.

Appendix B. Derivation of Partial Derivatives of Flow Model

To enable solving of

Argminαj ∑
k

(
Pk[FV [ f̄ , u]]− ∂Ak(tl)

∂t

)2
(A10)

by numerical iterative schemes we seek to derive expressions for the partial derivatives
∂C/∂αj where we define the function, C, as

C(αj) = ∑
k

(
Pk[FV [ f̄ , u]]− ∂Ak(tl)

∂t

)2
. (A11)

Considering that the projection operator, Pk[·], is linear, we find that

∂C
∂αj

= 2 ∑
k
Pk

[
∂FV [ f̄ , u]

∂αj

](
Pk[FV [ f̄ , u]]− ∂Ak(tl)

∂t

)
. (A12)
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Equation (A12) indicates that Pk[·] needs to be computed three times for each included
basis function in the velocity expansion. Considering that the projection operation repre-
sents a computationally expensive ray-tracing algorithm, we select to rewrite (A12) to a
backwards format as

∂C
∂αj

= 2 ∑
k

∂FV [ f̄ , u]
∂αj

P∗k
[
Pk[FV [ f̄ , u]]− ∂Ak(tl)

∂t

]
, (A13)

where P∗k [·] is the adjoint of Pk[·], commonly refered to as the "back-projection" operator.
The equality of the backwards (A13) and forwards (A12) formulation follows from the fact
that the enclosing sum goes over all k, defining a scalar product. With (A13), ray-tracing
needs only be executed two times during gradient computation.

To complete the expression given in (A13), we seek now ∂F [ f̄ , u]/∂αj. Considering the
used flow scheme represented by (13), we find that the derivative of the D-th component
(corresponding to dimensions x, D = 1, y, D = 2 or z, D = 3) of the j-th velocity basis
vector is

F [ f̄ , u]
∂αDj

=
∂

∂αDj

(
− 1

∆x

d=3

∑
d=1

(
Fdi+ − Fdi−

))
=

1
∆x

( d=3

∑
d=1

(∂Fdi−
∂αDj

− ∂Fdi+
∂αDj

))
.

(A14)

With (14), the derivatives of the numerical fluxes at the cell faces setting d = D become

∂Fdi−
∂αDj

=
1
2

(∂uDi−
∂αDj

)(
f R
Di− + f L

Di−

)
−

1
2

(∂|uDi−|
∂αDj

)(
f R
Di− − f L

Di−

)
,

∂Fdi+
∂αDj

=
1
2

(∂uDi+
∂αDj

)(
f R
Di+ + f L

Di+

)
−

1
2

(∂|uDi+|
∂αDj

)(
f R
Di+ − f L

Di+

)
.

(A15)

For d 6= D the derivatives vanishes

∂Fdi−
∂αDj

= 0, if d 6= D

∂Fdi+
∂αDj

= 0, if d 6= D (A16)

Using the velocity basis decomposition defined in (22), we find that

∂uDi−
∂αDj

=
l=M

∑
l=1

(
∂αDl
∂αDj

)
ϕl(xDi−) = ϕj(xDi−),

∂|uDi−|
∂αDj

=
l=M

∑
l=1

(
∂|αDl |
∂αDj

)
ϕl(xDi−) = sign(αDj)ϕj(xDi−)

∂uDi+
∂αDj

=
l=M

∑
l=1

(
∂αDl
∂αDj

)
ϕl(xDi+) = ϕj(xDi+),

∂|uDi+|
∂αDj

=
l=M

∑
l=1

(
∂|αDl |
∂αDj

)
ϕl(xDi+) = sign(αDj)ϕj(xDi+)

(A17)
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where sign(·) is the signum function and αDj 6= 0. Insertion of (A17) into (A15) now yields

∂Fdi−
∂αDj

=
1
2

ϕj(xDi−)
(

f R
di− + f L

di−

)
−

1
2

sign(αDj)ϕj(xDi−)
(

f R
di− − f L

di−

)
∂Fdi+
∂αDj

=
1
2

ϕj(xDi+)
(

f R
di+ + f L

di+

)
−

1
2

sign(αDj)ϕj(xDi+)
(

f R
di+ − f L

di+

)
(A18)

Insertion of (A18) and (A16) into (A14) gives

F [ f̄ , u]
∂αDj

=
1

2∆x

[
ϕj(xDi−)

(
f R
Di− + f L

Di−

)
−

sign(αDj)ϕj(xDi−)
(

f R
Di− − f L

Di−

)
−

ϕj(xDi+)
(

f R
Di+ + f L

Di+

)
+

sign(αDj)ϕj(xDi+)
(

f R
Di+ − f L

Di+

)]
.

(A19)

With the additional definition that sign(0) = 1, we find that Equation (A19), together
with (A13), completely defines the sought derivatives.
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