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Background. Prostate adenocarcinoma (PRAD) is a common malignant tumor in elderly men. Our research uses The Cancer Gene
Atlas (TCGA) database to find potential related genes for predicting the prognosis of patients with PRAD. Methods. We
downloaded gene expression profiles and clinical sample information from TCGA for 490 patients with PRAD (patient age: 41-
78 years). We calculated stromal and immune scores using the ESTIMATE algorithm to predict the level of stromal and
immune cell infiltration. We categorized patients with PRAD in TCGA into high and low score arrays according to their
median immune/stromal scores and identified differentially expressed genes (DEGs) that were significantly correlated with the
prognosis of PRAD. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed. The association between DEGs and overall survival was investigated by weighted Kaplan-Meier survival
analysis and multivariate analysis. Furthermore, the protein-protein interaction network (PPI) of DEGs was constructed using
the STRING tool. Finally, the hub genes were identified by analyzing the degree of association of PPI networks. Results. We
found that 8 individual DEGs, C6, S100A12, MLC1, PAX5, C7, FAMI162B, CAMKIG, and TCEAL5, were significantly
predictive of favorable overall survival and one DEG, EPYC, was associated with poor overall survival. GO and KEGG pathway
analyses revealed that the DEGs were associated with immune responses. Moreover, 30 hub genes were obtained using the PPI
network of DEGs: ITGAM, CD4, CD3E, IL-10, LCP2, ITGB2, ZAP-70, C3, CCL19, CXCL13, CXCL9, BTK, CCL21, CD247,
CD28, CD3D, FCERIG, PTPRC, TYROBP, CCR5, ITK, CCL13, CCR1, CCR2, CD79B, CYBB, IL2RG, JAK3, PLCG2, and
CD19. These prominent nodes had the most associations with other genes, indicating that they might play crucial roles in the
prognosis of PRAD. Conclusions. We extracted a list of genes associated with the prostate adenocarcinoma microenvironment,
which might contribute to the prediction and interpretation of PRAD prognosis.

involves the detection of serum prostate-specific antigens
[5]. The current treatment methods for prostate cancer

Prostate cancer is the second leading cause of cancer deaths
in American men [1]. With increasing living standards in
China, the incidence of prostate cancer has also increased
over time [2]. Prostate adenocarcinoma (PRAD) is the most
common type of prostate cancer, whereas other types of
prostate cancer are relatively rare [3, 4]. At present, the initial
screening of subjects with suspected prostate cancer mainly

include surgery, radiotherapy, chemotherapy, and endocrine
therapy, but the prognosis differs among various patients
[6, 7]. Some patients with prostate cancer can survive for
10-20 years after treatment, whereas others respond poorly
to treatment and die because of metastasis within 2-3 years.
Currently, only few methods are available for evaluating and
predicting the prognosis of PRAD. Therefore, there is an
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FIGURE 1: Immune and stromal scores are significantly correlated with the T clinical stage of PRAD patients. (a) Distribution of immune and
stromal scores by the T clinical stage of PRAD. Boxplot showed a significant correlation between the T clinical stage of PRAD and the immune
and stromal scores (n = 490). (b) Patients with PRAD were divided into two groups based on their median immune scores: high immune score
group (1 = 246), low immune score group (1 = 244). Kaplan-Meier survival curves revealed that the median overall survival was higher in the
low immune score group. (c) The median overall survival was higher in the group of patients with low stromal scores than in those with higher
stromal scores, but no significant difference was observed between the two groups.

urgent need to determine a rapid and noninvasive method for
predicting the prognosis of diseases in such patients. The
establishment of TCGA has provided us with a wealth of
clinical data and has enabled us to discover genomic abnor-
malities in several populations worldwide [8, 9]. Moreover,
we can further understand the influence of human genome
on clinical prognosis.

Tumors have an extremely complex microenvironment
comprising stromal cells, immune cells, inflammatory
mediators, and extracellular matrix (ECM) [10, 11]. Previ-
ous studies have indicated that the tumor microenviron-
ment plays a crucial role in influencing gene expression
in tumor tissues [12]. In the tumor microenvironment,

stromal and immune cells represent two primary nontu-
mor components, which are important for the diagnosis
and prognosis of tumors [13]. Yoshihara et al. [14] have
described “Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data” (ESTI-
MATE), a method for inferring the proportions of stromal
and immune cells in a tumor sample using gene expres-
sion characteristics. Furthermore, the functional enrich-
ment of single sample genes can be predicted using GO
and KEGG pathway analyses [15, 16]. Yoshihara et al.
[14] have predicted the levels of infiltrating stromal and
immune cells by calculating immune and stromal scores,
which formed the basis for calculating the ESTIMATE
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F1GURE 2: Comparison of prostate adenocarcinoma (PRAD) gene expression profile according to immune and stromal scores. The average
linkage method and Pearson distance measurement method were used to draw the heat maps. The genes with high expression are shown
in red, those with low expression are shown in green, and those with the same expression are shown in black. (a) A heat map of DEGs
(fold change > 1.5, p < 0.05) between the high and low immune score groups. (b) Heat map of DEGs (fold change > 1.5, p < 0.05) between
the high and low stromal score groups. (¢, d) Venn diagrams showed the (c) upregulated genes for the high immune and high stromal
groups and the overlap representing genes common to the high stromal group versus the high immune group (d) downregulated genes for
the high immune and high stromal groups and the overlap representing genes common to the high stromal group versus the high

immune group.

score of tumor purity for tumor tissues. Subsequent
reports applied this estimation method to breast [17] and
rectal cancers [18] and demonstrated the effectiveness of
this algorithm.

In this study, for the first time, we used TCGA data of
patients with PRAD to identify a set of tumor
microenvironment-related genes, which are predictive of
poor prognosis in these patients. The results revealed a list of
genes, thus providing a better understanding of this disease
and further clarifying the relationship between prognosis
and the tumor microenvironment in patients with PRAD.

2. Methods and Materials

2.1. Database. The clinical information of patients with
PRAD was downloaded from TCGA (https://tcga-data.nci
.nih.gov/tcga/), and their clinicopathological information
was extracted from the atlas data portal. The ESTIMATE
algorithm was applied to the downloaded data to calculate
the immune and stromal scores [14].

2.2. Identification of DEGs. The PRAD patients were split
into high and low immune/stromal score groups based on
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F1GURE 3: GO term enrichment analysis of DEGs obtained from TCGA. The main GO terms (false discovery rate-adjusted p values < 0.05) are
shown for biological process, cellular component, and molecular function.

the median immune/stromal scores. DEGs were analyzed
using the limma package between the high and low immu-
ne/stromal score groups. The cutoff points for screening
DEGs were fold changes of >1.5 and adjusted p < 0.05 [19].

2.3. Integration of PPI Networks. The Search Tool for the
Retrieval of Interacting Genes/Proteins (STRING) database
(http://www.strindb.org/) is a well-known network of tools
for examining PPIs [20]. All the 524 intersected genes
between the immune and stromal score groups were mapped
into STRING to assess the relationship among these genes.

2.4. GO and Functional Analyses. GO and KEGG pathway
enrichment analyses were performed using the R Project
for Statistical Computing (version 3.6.1; https://www.r-
project.org/) [21] to characterize the functional enrichment
of all DEGs. GO describes the information based on knowl-
edge of a biological domain in relation to three components:
biological process (BP), molecular function (MF), and cellu-
lar component (CC). DEGs were considered to be signifi-
cantly enriched in GO terms or KEGG pathways using the
cutoffs of false discovery rate-adjusted p value < 0.05.

2.5. Statistical Analyses. Pearson correlation was used to ana-
lyze the association between T clinical stage and immune or
stromal scores. Considering the confounders such as age
and sample size might affect the correlation analysis, we used
the linear regression model to analyze the association
between immune scores and cancer stage as well as possible
confounders age and sample size. Weighted Kaplan-Meier
survival analysis was performed using the svykm function
of R package of survey [22]. Difference in the surviving prob-
abilities was compared with the function of svylogrank of R
package of survey [22]. Multivariate analysis was conducted
between overall survival, gene expression, or immune/stro-
mal scores and patient’s age using the svycoxph function of
R package of survey [22]. Odds ratio and p values were
extracted from the proportional hazards model. p value less
than 0.05 was considered statistically significant.

3. Results

3.1. Immune and Stromal Scores Significantly Correlated with
the T Clinical Stage of PRAD. We downloaded gene expres-
sion profile and clinical sample information from TCGA
for 490 patients with PRAD (patient age: 41-78 years). All
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FiGure 4: KEGG pathway enrichment analysis of DEGs obtained from TCGA.

the cases of PRAD with complete gene expression data and
clinical information in TCGA were analyzed (supplementary
Table 1). As shown in Figures 1(a) and 1(b), according to the
ESTIMATE algorithm, immune scores ranged from —1344
to 3002.89 and stromal scores ranged from —1929.58 to
1762.30. The rank order of immune scores across T clinical
stages was T4>T3>T2 (Figure 1(a), p < 0.05). Similarly, the
median stromal scores were the highest for clinical stage
T3 among all the clinical stages, followed by T4 (p <0.01,
Figure 1(b)). The T clinical stage was significantly
positively correlated with stromal score (correlation
coeflicient: 0.18, p value < 0.001, Pearson correlation) and
immune score (correlation coefficient: 0.14, p value < 0.01,
Figure 1(a), Pearson correlation). Considering the
confounders such as age and sample size might affect the
correlation analysis, we used the linear regression model to
analyze the association between immune scores and cancer
stage as well as possible confounders age and sample size.
As shown in the supplementary Table 2, the T clinical stage
still exhibited significant association with immune scores
with the addition of confounders (p < 0.05 for all cases).

To explore the potential correlations of overall survival
with immune and/or stromal scores in patients with PRAD,
the patients were divided into high and low immune score
groups based on the median immune and/or stromal scores.
Weighted Kaplan-Meier survival analysis (Figure 1(b))
revealed that the median overall survival was longer in the
low immune score group (p =0.49, weighted log-rank test)
than that in the high immune score group. Consistently,
the median overall survival was similarly prolonged in the
low stromal score group (p =0.28, weighted log-rank test,

Figure 1(c)). However, the differences were not significant.
Multivariate analysis results demonstrated that the higher
immune and/or stromal scores were associated with an
increase in mortality (p=0.81, odds ratio (OR): 0.86,
95% Confidence Interval (CI): 0.24-3.08 for immune score,
p=0.28, OR: 0.46, 95% CI: 0.11-1.89 for stromal score).

3.2. Comparison of PRAD Gene Expression Profiles according
to the Immune and Stromal Scores. To determine whether
global gene expression profiles are related to the immune
and/or stromal scores, we compared the Affymetrix microar-
ray data of 490 patients. The gene expression profiles of the
high and low immune and stromal score groups are pre-
sented as heat maps in Figures 2(a) and 2(b). Regarding
immune scores, 935 genes were upregulated in the high
immune score group, whereas 3 genes were downregulated
(fold change > 1.5, p <0.05). Similarly, 1240 genes were
upregulated in the low immune score group, whereas 4 genes
were downregulated. In addition, as shown in Figures 2(c) and
2(d), Venn diagrams indicated that 523 upregulated genes
were common to the high immune and stromal score groups;
only 1 downregulated gene in the high immune score group
was overlapped with that in the high stromal score group.

3.3. GO Term Analysis of DEGs Obtained from TCGA. To
explore the potential functions of DEGs, we analyzed the
functional enrichment of GO terms for 935 upregulated
genes in the high immune score group. Regarding BP,
DEGs were enriched in the regulation of leukocyte activa-
tion, T-cell activation, lymphocyte activation, leukocyte
proliferation, lymphocyte proliferation, and mononuclear
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F1GURE 5: Correlations between DEG expression and overall survival. The survival curves of selected DEGs from the high (red line) and low
(blue line) gene expression groups were generated using the weighted Kaplan-Meier analysis method (p < 0.05 in the log-rank test).

cell, as well as in the proliferation positive regulation of
cell activation, positive regulation of leukocyte activation,
regulation of T-cell activation, and leukocyte cell-cell adhe-
sion. For CC, DEGs were enriched in the external side of the
plasma membrane, side of the membrane, secretory granule
membrane, plasma membrane receptor complex, and receptor
complex. For MF, DEGs were enriched in cytokine receptor
activity, cytokine activity, receptor ligand activity, receptor
regulator activity, immunoglobulin binding, and cytokine
binding. Our results suggest that the functional clusters of
genes exhibit strong correlations with immune responses
(Figure 3). We also conducted the GO term enrichment anal-

ysis for the 3 downregulated genes; however, the genes were
not significantly enriched in any GO terms.

3.4. KEGG Pathway Analysis of DEGs Obtained from TCGA.
KEGG pathway analysis revealed that 30 pathways were sig-
nificantly enriched. Regarding the top five most enriched
pathways, 59 DEGs were enriched in cytokine—cytokine
receptor interaction pathways and 34 DEGs were enriched
in viral protein interaction with cytokine and cytokine recep-
tor pathways. In addition, 31 DEGs were enriched each in
hematopoietic cell lineage and chemokine signaling path-
ways, whereas 30 DEGs were enriched in tuberculosis-
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FIGURE 6: PPI network analysis of the 524 intersected genes between the immune and stromal score groups.

related pathways (Figure 4). These results illustrate that all
the pathways derived from the KEGG analysis are associated
with immune responses.

3.5. Correlation between Individual DEG Expression and
Overall Survival. To explore the potential relationship
between individual DEGs and overall survival, weighted
Kaplan-Meier survival curves were generated from the
TCGA data. The weighted Kaplan-Meier survival analysis
alone with multivariate analysis identified five immune
score-associated DEGs which were significantly associated
with overall survival of PRAD patients. Four DEGs, C6,
SI100A12, MLCI, and PAX5, were positive prognostic
factors, and EPYC was a negative prognostic factor for overall
survival (p < 0.05 for all cases, weighted log-rank test, Sup-
plementary Table 3, Figure 5). We also identified that
seven stromal score-associated DEGs were significantly
associated with overall survival. Of them, EPYC, MLCI,
and PAX5 were the common DEGs related to overall

survival. The other four DEGs, C7, FAM162B, CAMKIG,
and TCEALS5, were significantly predictive of favorable
overall survival (p <0.05 for all cases, weighted log-rank
test, Supplementary Table 4, Figure 5).

3.6. PPI Network Analysis among DEGs of Prognostic
Value. To better explore and understand the interactions
among the identified DEGs, the PPI network of DEGs
was constructed using the STRING tool. The network
comprised 186 nodes and 364 edges. The top 30 DEGs
with high degrees of connectivity were selected for analysis
(Figure 6). The hub genes were ITGAM, CD4, CD3E, IL-
10, LCP2, ITGB2, ZAP-70, C3, CCL19, CXCL13, CXCL9,
BTK, CCL21, CD247, CD28, CD3D, FCERI1G, PTPRC,
TYROBP, CCR5, ITK, CCL13, CCR1, CCR2, CD79B,
CYBB, IL2RG, JAK3, PLCG2, and CD19 (Figure 7). These
prominent nodes had the most associations with other
genes, indicating that they might play crucial roles in the
prognosis of PRAD.
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4. Discussion

The present study is aimed at identifying genes, which are
related to the tumor microenvironment and closely related
to the overall survival rate of PRAD. First, we analyzed the
relationship between the T clinical stage of PRAD and
immune scores (or stromal scores), discovering that the T
clinical stage of PRAD is closely related to the tumor micro-
environment. The sample size for T4 is far low than other T
stages in our study; more comprehensive analysis and further
exploration with large sample sizes are needed in the future
studies. Immune and stromal cells have been proposed to
be valuable for tumor diagnosis and prognosis evaluation.
As indicated by the GO enrichment analysis, the function of
immune cells and ECM is involved in the construction of
the tumor microenvironment in patients with PRAD. Fur-
thermore, the enriched KEGG pathways of the DEGs included
cytokine-cytokine receptor interaction, viral protein interac-
tion with cytokine and cytokine receptor, hematopoietic cell
lineage, and chemokine signaling. KEGG pathways of infec-
tious diseases such as malaria, toxoplasmosis, and Chagas dis-
ease were also correlated with DEGs in PRAD. It has been
known that viral infection such as human papillomavirus
increases the risk of PRAD [23]. The viral infection-related
regulatory cytokines (IL-1beta) or tumor necrosis factor and
many genes in Thl and Th2 differentiation pathways were
upregulated in the high immune score group and played an
important role in host-pathogen interaction.

Next, we constructed PPI modules, all of which were
related to immune/inflammatory responses. ITGAM, CD4,
CD3E, IL-10, LCP2, ITGB2, ZAP-70, C3, CCL19, and

CXCL13 were the top 10 hub genes in the PPI analysis, sug-
gesting that these genes have a large number of interactions
with other genes. Therefore, these genes may act as key genes
in the PPI network. Moreover, these genes may play important
roles in promoting tumor angiogenesis (CXCL13, ZAP-70,
and CCL19), tissue remodeling (ITGAM and ITGB2), and
immunosuppression (CD4 and IL-10) in cancer cell lines or
samples [24-30]. In recent years, an increasing number of
studies demonstrate that these inflammatory cytokines and
anti-inflammatory cytokines play a key role in malignant
tumors [31, 32] and the crosstalk between the cancer cells
and the tumor stroma mainly comprising the basement mem-
brane, fibroblasts, extracellular matrix, immune cells, and vas-
culature, to large extent, contributes to the progression of
tumors and their metastasis [33, 34]. In particular, ITGAM
and CXCR4 have attracted our attention. As illustrated in
the PPI network, CXCR4 as a chemokine receptor has been
found to be upregulated in cancer metastasis, and it has been
used as a prognostic marker in various types of cancer, includ-
ing leukemia, breast cancer, and prostate cancer [35-37]. As a
major surface antigen family on human leukocyte family
member, previous studies have reported the key role of
ITGAM in the development and prognosis of human leuke-
mia [38], ovarian cancer [39], and colorectal cancer [40].
ITGAM has been found to be upregulated PRAD after analyz-
ing the patient samples [41], but there was no research on the
role of ITGAM gene in PRAD, indicating the need for addi-
tional research to clarify its role in the prognosis of PRAD.
Research on gene expression and the overall survival
rates of patients with PRAD has been conducted on a large
scale, obtaining breakthrough results. We successfully
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extracted 9 genes involved in protein and immune responses
by analyzing patients according to high and low immune
scores. Patients with PRAD who carried these genes had signif-
icantly predictive overall survival, suggesting they may become
potential prognostic biomarkers in PRAD. Many of these
experiments were performed using in vitro tumor cell lines,
animal tumor models, and a small number of patient tumor
samples. However, PRAD and its microenvironment are
extremely complex, requiring more comprehensive analyses
and further exploration, including studies with larger sample
sizes. Fortunately, the rapid development of TCGA provides
us with a platform and foundation for further analysis.

The interaction between PRAD and its tumor microenvi-
ronment has serious effects on tumor evolution, further
affecting tumor resistance, recurrence, and overall prognosis.
Wang et al. [42] have provided a detailed description of the
mechanism by which the activation of tumor-inherent genes
affects the tumor microenvironment. The present study
focused on the genetic characteristics of the tumor microen-
vironment, which affect the development and prognosis of
PRAD. Our results may also provide a foundation for further
studies on the tumor microenvironment of PRAD.

5. Conclusions

In summary, we used TCGA for functional enrichment
analysis. Using the relationships of the immune score,
based on the ESTIMATE method, with the T clinical stage
and prognosis of PRAD, we extracted a list of genes related
to the microenvironment of PRAD. These genes may be
helpful for explaining the prognosis of PRAD. Some previ-
ously neglected genes may emerge as biomarkers for
PRAD. Finally, further studies of these genes can provide
a more comprehensive understanding of the potential rela-
tionship between the prognosis of PRAD and the tumor
microenvironment.
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