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ANP32A dysregulation contributes to
abnormal megakaryopoiesis in acute
megakaryoblastic leukemia
Xueqin Sun1, Bin Lu1, Cuijuan Han1, Wanlin Qiu1, Qi Jin1, Dengju Li2, Qiubai Li3, Qiong Yang4, Qiang Wen4,
Puneet Opal4, Ameet R. Kini5, John D. Crispino4 and Zan Huang 1

Acute megakaryoblastic leukemia (AMKL) is a rare type
of leukemia characterized by indefinite proliferation of
megakaryocytes1. The prognosis of AMKL is dismay and
no target therapy is available that urges for development
of novel therapy2. Recent research proposed that forcing
AMKL cells to undergo polyploidization and differentia-
tion was a good therapeutic strategy for AMKL3. Thus,
regulators controlling megakaryopoiesis could be poten-
tial targets for AMKL therapy. ANP32A gene was implied
to be a potential regulator of hematopoiesis and mega-
karyopoiesis4. However, its role in blood remains unclear.
In this study, we observed a potential correlation

between ANP32A downregulation and megakaryocyte
differentiation. Hematopoietic stem cells (HSCs)
(CD133+CD34dim) and megakaryocyte-erythrocyte pro-
genitor expressed a higher level of ANP32A than colony-
forming unit-megakaryocyte (CFU-Mk) and mature
megakaryocytes (Fig. 1a)5, and significant upregulation of
ANP32A was verified in primary AMKL cells (Fig. 1b).
However, ANP32A was downregulated in leukemic cells
undergoing megakaryocytic differentiation (Supplemen-
tary Fig. 1A, B). Interestingly, complete blood count of
Anp32A−/− mice were apparently normal (data not
shown). Both Anp32A−/− and ANP32-overexpressing
megakaryocyte cultures showed comparable CD41 and
CD42 expression compared with wild-type (WT) cells.
ANP32A-deficient megakaryocytes only exhibited mild
increased of polyploidy in CD42+ megakaryocytes and

slight decrease of CFU-Mk, whereas ANP32A over-
expression had an opposite but marginal effect (Supple-
mentary Fig. 2A–F). These observations suggest a
dispensable role of ANP32A on normal megakaryopoiesis.
This may be due to the compensatory effect of ANP32B
and ANP32E as proposed previously6. In sharp contrast,
ANP32A knockdown (shANP32A#1) in 6133/MPL
W515L cells induced spontaneous megakaryocytic dif-
ferentiation in the absence of phorbol 12-myristate 13-
acetate (PMA) with increased CD41 and CD42 expression
(Fig. 1c), which was confirmed in multiple AMKL cell
lines (Supplementary Fig. 3A–F). Although ANP32A
overexpression failed to promote K562 cell proliferation,
it did impair PMA-induced megakaryocytic differentia-
tion (Supplementary Fig. 4A–C). Furthermore, ANP32A
knockdown significantly reduced colony-forming ability
of these cells in soft agar (Fig. 1d). Notably, ANP32A
downregulation significantly impaired the ability of 6133/
MPL W515L cells to induce AMKL in mice7 and
improved the survival rate (Fig. 1e). These observations
indicate that ANP32A may be critical for AMKL cell to
maintain hyper-proliferative and undifferentiated status
and contribute to the pathogenesis of AMKL.
Mechanistically, ectopic expression of ANP32A dam-

pened the induction of RUNX1 and FLI1 and inhibited
extracellular-signal-regulated kinase (ERK) activation by
phorbol myristate acetate (PMA) (Fig. 2a). In contrast,
ANP32A downregulation caused an opposite phenotype
(Fig. 2b). These findings were consistent to previous
reports showing that PMA induces activation of mitogen-
activated protein kinase/ERK and stress-activated protein
kinase/c-Jun NH(2)-terminal kinase pathways and sub-
sequently regulate the expression of RUNX1 and FLI1 to
promote megakaryopoiesis8, 9. Noticeably, further
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RUNX1 knockdown (shANP32A#3+shRUNX1) or FLI1
knockdown (shANP32A#3+shFLI1) efficiently abrogated
shANP32A#3-induced megakaryocytic differentiation
(Fig. 2c, Supplementary Fig. 5). Moreover, ERK inhibitor
PD98059 significantly suppressed the induction of
RUNX1 and FLI1 expression and abolished
shANP32A#3-induced megakaryocytic differentiation

(Fig. 2d, e). Interestingly, ANP32A knockdown in primary
AML cells increased the expression of RUNX1 and FLI1
and enhanced ERK phosphorylation while GATA1 was
intact (Fig. 2f). Our findings suggest that ANP32A may
inhibit ERK and subsequently repress RUNX1 and FLI1 to
promote megakaryocyte differentiation.

Fig. 1 ANP32A dysregulation contributes to AMKL. a The expression of ANP32A mRNA in HSC CD133+CD34dim, MEP (megakaryocyte-erythrocyte
progenitor), CFU-Mk (colony-forming unit-megakaryocyte), and Mk (megakaryocytes) were analyzed and presented as log 2 expression. Expression
data were obtained from online Bloodspot database (http://servers.binf.ku.dk/bloodspot/?gene=C5orf4&dataset=DMAP). b Quantitative RT-PCR
analysis of ANP32A in MNCs from healthy donors (Normal, N=5) and two cases of AMKL patients (AMKL#1 and #2). The expression of ANP32A was
normalized to GAPDH and presented as relative mRNA level. ***p < 0.001; NS: not significant. c Immunoblotting to detect ANP32A expression and
flow cytometry to measure the expression of CD41 and CD42. Histograms were representative results of three independent experiments (duplicates)
with similar results. d Scramble or Anp32a-knockdown (shAnp32a#1) 6133/MPL W515L cells were seeded in soft agar to measure the CFU. *p < 0.05. e
Scramble or ANP32A-knockdown 6133/MPL W515L cells (shANP32A#1) were transplanted into semi-lethally irradiated mice through retro-orbital
injection. The mice survival was observed up to 7 weeks

Fig. 2 ANP32A impairs megakaryocyte differentiation by repressing ERK signaling and subsequent RUNX and FLI1 expression. a
Immunoblotting to detect protein expression and phosphorylation in control and ANP32A-expressing K562 cells treated with (+) or without (−) PMA
for 2 days. HSC70 served as a loading control. b Immunoblotting to detect protein expression and phosphorylation in Scramble or ANP32A-
knockdown K562 cells (shANP32A#1, shANP32A#3). HSC70 served as a loading control. c RUNX1 or FLI1 was further knocked down in ANP32A-
knockdown K562 cells. CD61 expression in the resultant cells was measured by flow cytometry. Histograms were representative results of three
independent experiments (duplicates) with similar results. *p < 0.05. d Immunoblotting to detect RUNX1, FLI1 expression, and ERK phosphorylation in
Scramble or ANP32A-knockdown (shANP32A#3) K562 cells treated with or without PD98059. HSC70 served as a loading control. e Flow cytometry to
measure CD61 expression in the resultant cells in d. Histogram was representative data from three independent experiments (duplicates) with similar
results. *p < 0.05. d Immunoblotting to detect protein expression and phosphorylation in Scramble or ANP32A-knockdown primary AML cells
(shANP32A#3). HSC70 served as a loading control
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In summary, our study reveals that ANP32A dysregu-
lation may be a critical factor contributing to AMKL and
ANP32A may be a good target for AMKL therapy. Pre-
vious studies showed that ANP32A bound to unmodified
histone H3 and inhibited H3 acetylation7. Thus, ANP32A
downregulation may potentially alter global epigenetic
modifications.
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