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ABSTRACT: The rapid and effective identification of anticancer
peptides (ACPs) by computer technology provides a new
perspective for cancer treatment. In the identification process of
ACPs, accurate sequence encoding and effective classification
models are crucial for predicting their biological activity.
Traditional machine learning methods have been widely applied
in sequence analysis, but deep learning provides a new approach to
capture sequence complexity. In this study, a two-stage ACPs
classification model was innovatively proposed. Three novel coding
strategies were explored; two mainstream Natural Language
Processing (NLP) models and 11 machine learning models were
fused to identify ACPs, which significantly improved the prediction
accuracy of ACPs. We analyzed the correlation between peptide
chain amino acids and evaluated the relevant performance of the model by the ROC curve and t-SNE dimensionality reduction
technique. The results indicated that the deep learning and machine learning fusion models of M3E-base and KNeighborsDist
models, especially when considering the semantic information on amino acid sequences, achieved the highest average accuracy
(AvgAcc) of 0.939, with an AUC value as high as 0.97. Then, in vitro cell experiments were used to verify that the two ACPs
predicted by the model had antitumor efficacy. This study provides a convenient and effective method for screening ACPs. With
further optimization and testing, these strategies have the potential to play an important role in drug discovery and design.

1. INTRODUCTION
Cancer is a significant global public health issue, with a rapid
increase in cancer incidence and mortality rates worldwide.1,2

It is estimated that by 2025, the annual number of new cancer
cases globally will exceed 20 million.3 Common cancer
treatment modalities include surgery, chemotherapy, and
radiotherapy.4 Among these, chemotherapy is one of the
primary approaches to cancer treatment. However, the major
challenge faced by traditional chemotherapy is the lack of
specificity of chemotherapeutic drugs, making it difficult to
target tumor sites for localized treatment. This leads to
collateral damage to healthy tissues and a range of
complications, often necessitating discontinuation of treat-
ment. Therefore, there is a pressing need for breakthroughs in
cancer drug therapy.

Anticancer peptides (ACPs) represent a class of peptides
with anticancer activity and are found in various organisms,
including mammals, plants, birds, amphibians, fish, insects, and
microorganisms.5 Compared to traditional chemotherapy
drugs, proteins, monoclonal antibodies and other agents,
ACPs possess several distinctive characteristics, such as high
specificity, ease of synthesis and modification, strong tumor
penetration capabilities and diverse administration methods.6

As an emerging anticancer therapy, ACPs have received
widespread attention in recent years. In terms of clinical
applications, although ACPs are still in the early stages of
development, a small number of peptide drugs have
successfully entered clinical trials, demonstrating their
potential in treating specific cancers. With the in-depth
research on ACPs and the advancement of related
technologies, we have reason to believe that ACPs will play
an increasingly important role in future cancer treatment and
bring new hope to cancer patients.

Ideally, anticancer peptides can selectively target cancer cells
without harming normal tissue cells, inducing cancer cell death
by altering cell membrane permeability, or interacting with
intrinsic targets within cancer cells. The mechanisms of action
of ACPs from different sources and their modified peptides
have become a recent focus of research in anticancer drug
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development.7−9 Some ACP-based drugs have already entered
clinical trials or been approved for use.10 Therefore, the rapid
identification of potential ACPs holds significant importance
for the development of cancer treatments. However, traditional
methods of identifying ACPs through wet laboratory experi-
ments are relatively costly and time-consuming. Computational
techniques in the field of bioinformatics provide a solution to
the rapid and accurate identification of ACPs. Among various
computational methods, machine learning has emerged as a
promising approach to efficiently identifying ACPs.

Traditional machine learning methods for ACP identifica-
tion involve manually designing features for classifying protein
sequences, followed by the use of classification models such as
Support Vector Machines (SVM), Random Forest (RF), K-
Nearest Neighbors (KNN), Extra Trees and Gradient Boosting
Trees.11−14 However, relying solely on handcrafted features
may not fully capture the complexity and diversity of data
features.15,16 Deep learning methods, known for their ability to
efficiently handle unstructured data, have increasingly been
applied in ACP identification.17 Yi et al. introduced a deep
learning Long Short-Term Memory (LSTM) neural network
model, ACP-DL, which automatically learned how to identify
anticancer peptides and nonanticancer peptides by integrating
binary profile features and a simplified amino acid alphabet
sparse matrix.18 However, this method still fundamentally used
handcrafted features as inputs, limiting the neural network’s
ability to acquire raw information. Yang et al. proposed the
CACPP model, which employed a convolutional neural
network (CNN) to extract high-potential features from peptide
sequences and a contrastive learning module to learn more
distinguishable feature representations in a deep learning
framework.19 However, due to the restricted receptive field of
the CNN network, it was challenging to capture the
interactions between amino acids that are distant from each
other in long peptide chains. Sun et al. proposed an ACP-BC
model, which uses a bidirectional long short-term memory
network (BiLSTM) to extract features from the original

sequence and obtains deep abstract features through a
bidirectional encoder representation converter (BERT),
achieving an accuracy of 87%.20 However, handcrafted features
also limited the neural network’s ability to acquire raw
information, and using chemical formulas as inputs for the
BERT network made it prone to truncation when peptide
chains were too long. Currently, it appears that neural
networks commonly used in computer vision, such as CNNs,
and sequence-based neural networks, such as LSTMs, are more
prevalent in ACP identification models. However, we believe
that models related to Natural Language Processing (NLP) are
more suitable for ACP screening.

In this study, we employed four different feature
representation and encoding methods, and trained and
compared various deep learning and machine learning models
to screen peptide sequences with anticancer potential. First, we
performed bigram processing on amino acid sequences to
generate overlapping matrices and conducted relevant
statistical analysis and t-SNE dimensionality reduction visual-
ization. This aided in exploring the co-occurrence relationships
and correlations between amino acids, providing support for
the design and prediction of peptide sequences with anticancer
potential. In the feature engineering phase, we utilized three
encoding methods: (1) encoding considering only the amino
acid letter information, (2) encoding considering both amino
acid letter information and amino acid position information,
and (3) encoding the amino acid sequence as if it were a
sentence. In the third encoding method, we used two different
NLP sequence representations, with or without splitting amino
acids, and performed transfer training using two NLP models,
BERT and M3E. We employed a greedy soup strategy to
enhance network generalization and trained various machine
learning models on top of deep learning. The results for each
method included peptide sequence classification as well as
performance evaluation using tools such as ROC curves and t-
SNE dimensionality reduction plots. We identified the model
combination of the m3e-base and KNeighborsDist with the

Figure 1. Workflow of this study.
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highest average accuracy (ValACC and TestACC) of 93.85%.
Using this model, we screened peptide sequences effectively
validated by both the original NLP model and the
comprehensive model, followed by synthesis and in vitro
antitumor efficacy validation. The results indicated that the
peptides validated by the model demonstrated significant
anticancer cell cytotoxicity. Overall, our innovative approach
combining NLP language models and machine learning models
for ACP screening achieved high accuracy and ease of
implementation compared with traditional screening methods.
Through in vitro experiments, we confirmed that the peptides
selected by our model possess effective anticancer activity,
which could aid researchers in discovering more potential
ACPs and promoting the development of ACP-based drugs.
The workflow of this study was illustrated in Figure 1.

2. MATERIALS AND METHODS
2.1. Data Collection. The data for this study were

collected from various publicly available anticancer peptide
databases, including APD3 (https://aps.unmc.edu/database/
anti), BioPepDB (http://bis.zju.edu.cn/biopepdbr/index.
php?p=search&field=category&query=anticancer), DPL
(http://www.peptide-ligand.cn/search/?csrfmiddlewaretoken=
PSqYxvTcUbmCHIAOCjLDJa0tzZky9MoQ6YR9NrAVsHH
q e U B 6 u B k d M N y r m I J 1 o 2 Z f & q 0 = & q 1 = & q 2 = & q 4 =
Anticancer+&q3=&q5=&submit=Search), PlantPepDB
(http://14.139.61.8/PlantPepDB/pages/browse_result.php),
and FeptideDB (http://www4g.biotec.or.th/FeptideDB/
peptide_search.php). These diverse databases provided
comprehensive data support by offering a wide range of
anticancer peptide sequence information. To ensure data
integrity, duplicate peptides within individual databases and
between databases were removed, and the anticancer activity of
each peptide was rigorously validated. The integrated database
consists of 859 anticancer peptides. Additionally, to balance
the data set, an equal number of random peptides were
generated using a randomization process to serve as control
samples for training and testing.
2.2. Data Preprocessing. Data preprocessing played a

critical role in this study to ensure the quality and suitability of
the amino acid sequence data. Strategies employed included
identifying inconsistent or unexpected format data within
sequences and correcting or removing them to ensure data set
consistency and reliability. Furthermore, techniques such as
imputation, deletion, or interpolation were applied to address
missing values or blank data, ensuring data completeness and
usability. In addition, noise data were also processed during
data cleaning using filtering or other denoising methods to
reduce random interference in the data, ensuring the stability
and reliability of subsequent analyses.

After data cleaning, the Bigram method for processing amino
acid sequences was a key step in this study.21 By applying
Bigram processing to amino acid sequences, we generated an
overlapping matrix. This matrix recorded the pairwise
occurrences of amino acids in the sequences and, through
statistical analysis methods, explored co-occurrence relation-
ships and correlations between amino acids. Through the
analysis of these relationships, we identified potential patterns
and feature sequences with anticancer potential.
2.3. Peptide Sequence Feature Extraction and

Representation. In this study, the feature extraction methods
covered three novel encoding methods aiming to better
capture the features of amino acid sequences. First, the first

method considered only the encoding of the amino acid letters
themselves, mapping different amino acids to specific symbols
or numbers. Second, the second method comprehensively
considered the letter and position information on amino acids
for a more comprehensive representation of amino acid
sequence features. Lastly, the third method viewed amino acid
sequences as natural language texts, employing two different
NLP sequence representation methods: one split the amino
acid sequence into individual amino acids as words and the
other treated the entire amino acid sequence as a sentence.
Both methods used models from NLP (e.g., BERT and M3E)
to represent amino acid sequences in vectorized form,
facilitating understanding and processing by deep learning
models.
2.4. Screening Model Construction. 2.4.1. Construction

of Screening Models Based on Machine Learning. In this
study, for screening anticancer peptides, the research team
chose a variety of machine learning algorithms for comparative
analysis. These algorithms included LightGBMLarge,
LightGBMXT, XGBoost, LightGBM, CatBoost, KNeighborsD-
ist, KNeighborsUnif, RandomForestEntr, RandomForestGini,
ExtraTreesEntr and ExtraTreesGini.

For model training and optimization, exhaustive parameter
adjustments and optimizations were conducted for the
machine learning models. For gradient boosting tree models
such as LightGBM, XGBoost, and CatBoost, key parameters
such as learning rate, tree depth, and number of leaf nodes
were adjusted to improve model generalization and predictive
performance. In KNN models, parameters such as the number
of neighbors and distance measurement methods were
adjusted. For ensemble learning methods such as Random
Forests and Extra Trees, parameters such as the number of
trees and maximum number of features were optimized to
achieve the best model effect. During the training process,
methods such as grid search were used to further enhance
model stability and performance.

2.4.2. Construction of Screening Models Based on Deep
Learning. Specifically, two main deep learning models, BERT
(Bidirectional Encoder Representations from Transformers)
and M3E (Multiscale 3D Epitope Prediction), were chosen
and explored in this study. BERT, a milestone in the NLP field
with a Transformer structure, excels in capturing sequence
features and context. M3E, a multitask model, has been
enhanced for text classification tasks, allowing it to process
multiscale features between sequences, which is advantageous
for protein function prediction.

Moreover, in addition to the deep learning models, machine
learning models were also incorporated to enhance the model
performance. Specifically, comparative experiments were
conducted in the BERT and M3E models, including using
only NLP models and combining them with various machine
learning models. These machine learning models include the
ones listed above, such as LightGBMLarge, XGBoost,
KNeighbors, etc., used to further enhance predictive perform-
ance on top of deep learning models.

During the model training and optimization process, this
study conducted exhaustive tuning for different deep learning
models and strategies. For BERT and M3E models, key
hyperparameters such as learning rate, number of layers, and
number of hidden units were adjusted, and techniques like
pretraining and fine-tuning were used to improve model
performance. In the model combination stage, parameters of
different machine learning models were adjusted, and

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c01374
ACS Omega 2024, 9, 16820−16831

16822

https://aps.unmc.edu/database/anti
https://aps.unmc.edu/database/anti
http://bis.zju.edu.cn/biopepdbr/index.php?p=search&field=category&query=anticancer
http://bis.zju.edu.cn/biopepdbr/index.php?p=search&field=category&query=anticancer
http://www.peptide-ligand.cn/search/?csrfmiddlewaretoken=PSqYxvTcUbmCHIAOCjLDJa0tzZky9MoQ6YR9NrAVsHHqeUB6uBkdMNyrmIJ1o2Zf&q0=&q1=&q2=&q4=Anticancer+&q3=&q5=&submit=Search
http://www.peptide-ligand.cn/search/?csrfmiddlewaretoken=PSqYxvTcUbmCHIAOCjLDJa0tzZky9MoQ6YR9NrAVsHHqeUB6uBkdMNyrmIJ1o2Zf&q0=&q1=&q2=&q4=Anticancer+&q3=&q5=&submit=Search
http://www.peptide-ligand.cn/search/?csrfmiddlewaretoken=PSqYxvTcUbmCHIAOCjLDJa0tzZky9MoQ6YR9NrAVsHHqeUB6uBkdMNyrmIJ1o2Zf&q0=&q1=&q2=&q4=Anticancer+&q3=&q5=&submit=Search
http://www.peptide-ligand.cn/search/?csrfmiddlewaretoken=PSqYxvTcUbmCHIAOCjLDJa0tzZky9MoQ6YR9NrAVsHHqeUB6uBkdMNyrmIJ1o2Zf&q0=&q1=&q2=&q4=Anticancer+&q3=&q5=&submit=Search
http://14.139.61.8/PlantPepDB/pages/browse_result.php
http://www4g.biotec.or.th/FeptideDB/peptide_search.php
http://www4g.biotec.or.th/FeptideDB/peptide_search.php
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c01374?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


optimization methods such as grid search were used.
Throughout the training process, appropriate loss functions
and evaluation metrics were used to obtain more robust
models with stronger generalization capabilities.
2.5. Experimental Design. In the experimental design of

this study, a strict validation and test data set division approach
was adopted (60% of the data for training, 20% for validation
and tuning model parameters, and the final 20% for the
ultimate model testing and evaluation). For the optimization of
model parameters, methods like grid search were used to
determine the best combination of hyperparameters, thereby
enhancing the model’s generalizability. Regarding computa-
tional equipment and configuration, the experiment utilized
high-performance computing servers equipped with high-
memory GPUs (NVIDIA GeForce RTX 2070 graphics
cards) to accelerate the model training and optimization
process. The experimental environment was based on the
Python programming language, employing relevant deep
learning frameworks (such as PyTorch) and machine learning
libraries (such as Scikit-learn), ensuring stability and efficiency
of the experimental platform.
2.6. Model Evaluation. In the model evaluation process of

this study, the performance metrics used covered multiple
aspects, including Accuracy, Recall, Precision, F1 Score, and
Area Under the Curve (AUC). These metrics were capable of
comprehensively assessing the model’s performance in various
aspects.

Accuracy intuitively reflects the overall predictive accuracy of
the model, that is, the proportion of correctly predicted
samples, and is a key indicator of the model’s basic
performance. Recall measures the proportion of anticancer
peptides identified by the model out of the total actual
anticancer peptides, focusing on the model’s coverage
capability. Precision assesses the proportion of samples
correctly identified as anticancer peptides by the model out
of the total samples predicted as anticancer peptides, reflecting
the model’s accuracy. The F1 Score, which is the harmonic
mean of precision and recall, provides an evaluation of
comprehensive performance, particularly suitable for imbal-
anced data sets. Lastly, the AUC value measures the model’s
overall performance at different thresholds, serving as an
important indicator of the model’s predictive capacity.
Together, these evaluation metrics enable us to understand
and assess the model’s performance from multiple dimensions
comprehensively, ensuring the model’s effectiveness and
reliability in practical applications.
2.7. In Vitro Antitumor Efficacy of Synthetic Peptides.

The model with the best effect was selected to predict two
peptides with a high antitumor efficacy for synthesis. The two
peptide sequences were purchased from Jill Biochemical Co.,
Ltd. (Shanghai, China) and synthesized by the synthesis
method of fluorenylmethyloxy carbonyl chloride protective
amino acids. The purity of the synthetic peptide was detected
by high-performance liquid chromatography (HPLC) to be

Figure 2. Overlapping matrix visualization.
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more than 95%. The in vitro cytotoxicity of peptides was
evaluated in 4T1 cells (mouse breast cancer cells) using the
sulfonyl rhodamine B (SRB) assay (Sigma-Aldrich, St. Louis,
MO, USA).22,23 4T1 cells (6 × 103 cells/well) were seeded in
96-well plates, incubated for 24 h, and then treated with
peptides at 37 °C for 24 h. The cell viability was determined
using SRB, which allowed quantification of the living cells by
measuring absorbance at 540 nm with a 96-well plate reader
(model 680; Bio-Rad Laboratories Inc., Hercules, CA, USA).
The half-maximal inhibitory concentration (IC50) was
calculated according to the dose−effect curves using GraphPad
Prism 8 software.

3. RESULTS
3.1. Distribution Statistics Display. The activity of ACPs

is influenced by the composition of amino acids and their
structure. Previous studies mostly considered the frequency of
individual amino acids in ACPs.24 However, we believed that
the co-occurrence relationships and correlations between
amino acids are more meaningful in the search for and
exploration of peptides with anticancer activity. Therefore, we
processed the amino acid sequences through bigram
processing, generated overlapping matrices, and conducted a
statistical analysis of the results.

As shown in the context matrix plot (Figure 2), lysine (Lys,
K), alanine (Ala, A), and leucine (Leu, L) had the highest
frequency in ACPs. This may be attributed to the positively
charged nature of these amino acids or their hydrophobic
properties. When ACPs interact with cancer cell membranes,
the positively charged hydrophilic regions effectively bind to
the negatively charged surface of cancer cell membranes
through electrostatic adsorption. Simultaneously, the hydro-
phobic regions bind to the membrane lipids. This laid the
foundation for the selective action of ACPs on cancer cells, and
the results were consistent with the findings reported in the
literature.25 It was noteworthy that the top three amino acid
pairs in terms of occurrence frequency are K-K, A-K, and K-L,
with frequencies of 617, 485, and 457, respectively (Table 1).
Identifying amino acid pairs with higher occurrence
frequencies was more helpful in designing amino acid
sequences with anticancer activity based on contextual
relationships, which could not be achieved by only counting
individual amino acids.
3.2. Machine Learning Model Performance Evalua-

tion Results. 3.2.1. Results of Encoding Based on Amino
Acid Letters Only. We first explored the impact of encoding
based on amino acid letters on the performance of machine
learning models. This encoding strategy maps different amino
acids to a set of unique symbols or numbers, serving as the
basis for training and predicting machine learning models. To
comprehensively assess the effectiveness of this encoding
method, we employed a series of advanced machine learning
algorithms, including but not limited to LightGBMLarge,
XGBoost, CatBoost, etc. Each algorithm was evaluated on
multiple dimensions including precision (Pre), recall (Rec), F1
score, and accuracy (ACC). The specific results are shown in
Table 2. In the comparative analysis, we observed that the
XGBoost model achieved a high score of 0.873 in average
ACC, and its precision, recall, and F1 scores were also
impressive at 0.909, 0.851, and 0.879, respectively. Further-
more, by conducting ROC curve analysis for the top 6 models
ranked by ACC (Figure 3a), both XGBoost and Light-
GBMLarge models demonstrated outstanding performance

with AUC values reaching 0.93, highlighting their excellence in
classification tasks.

We further performed visual analysis of features using the t-
SNE dimensionality reduction technique. Despite the
simplicity and intuitiveness of this encoding method, the
results in Figure 3b revealed a challenge. There seemed to be a
difficulty in distinguishing between ACPs and non-ACPs using
features extracted by this encoding method. This might be
attributed to the fact that this encoding strategy overlooks
spatial positions and contextual information in amino acid
sequences, which often play crucial roles in biological sequence
analysis.

3.2.2. Results of Encoding Considering Both Amino Acid
Letter and Position Information. Next, we delved into a more
complex encoding strategy that not only included the letter
information on amino acids but also integrated their positional
information in the sequence to achieve a comprehensive
representation of amino acid sequence features. By introducing
positional information, we aimed to capture the spatial
structural characteristics of amino acid sequences, thereby
enhancing the model’s classification ability for ACPs and non-
ACPs. As shown in Table 3, we evaluated various machine
learning models, including but not limited to XGBoost,
LightGBM, etc. The results indicated that when positional
information is introduced, the top-performing models
remained comparable to the first encoding method across all
metrics. XGBoost and LightGBMLarge models continued to
exhibit the best performance. Furthermore, we conducted a
comparative analysis of model performance through ROC
curves (Figure 4a), and the results corroborated the numerical
indicators in the table, demonstrating that the overall
performance of the models was maintained.

To further analyze the impact of encoding on classification
performance, we applied the t-SNE technique for dimension-
ality reduction and visualized the model’s classification results
(Figure 4b). Despite the introduction of positional informa-
tion, there was an improvement in the separation of the models
in distinguishing ACPs from non-ACPs. However, the results

Table 1. Number of Occurrences of Amino Acid-Amino
Acid Pairs

amino acid-amino acid pairs number of occurrences

K-K 617
A-K 485
K-L 457
L-K 340
L-A 323
A-L 291
L-L 289
K-A 282
K-I 240
L-F 214
L-G 188
A-A 177
G-L 168
F-K 161
G-K 156
K-V 150
F-A 150
R-R 143
K-F 141
G-G 140
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suggested that this improvement was not significant, and the
models still faced challenges in clearly distinguishing between
the two sequence classes. This might indicate that simply
adding positional information had limitations in enhancing the
model’s ability to recognize ACPs, or it might suggest the need
for further optimization of feature expression and model
structure to fully leverage positional information. In con-
clusion, while the second encoding method provided a more
complex and comprehensive feature representation by
considering both amino acid letters and positional information,
its practical application did not significantly improve model
performance.

3.3. Deep Learning Model Performance Evaluation
Results. 3.3.1. Results without Adding Machine Learning
Models. In an effort to improve the results of traditional
machine learning models, we experimented with two NLP
deep learning models�BERT and M3E. Simultaneously, we
employed a third encoding method that treats amino acid
sequences as natural language text and utilized two different
NLP sequence representation approaches: one treating the
entire amino acid sequence as a single sentence and the other
splitting the amino acid sequence into individual amino acids
as words. This was done to vectorize the amino acid sequences
for understanding and processing by deep learning models. As

Table 2. Machine Learning Model Results of Encoding Based on Amino Acid Letters Only

ML model ValAcc TestAcc TestPre TestRec TestF1 AvgAcc

XGBoost 0.868 0.877 0.909 0.851 0.879 0.873
LightGBMLarge 0.871 0.868 0.897 0.846 0.871 0.870
LightGBM 0.883 0.853 0.871 0.846 0.858 0.868
CatBoost 0.868 0.835 0.857 0.823 0.840 0.852
LightGBMXT 0.856 0.841 0.855 0.840 0.847 0.849
RandomForestEntr 0.856 0.835 0.880 0.794 0.835 0.846
RandomForestGini 0.838 0.829 0.864 0.800 0.831 0.834
ExtraTreesEntr 0.817 0.826 0.855 0.806 0.829 0.822
ExtraTreesGini 0.814 0.820 0.849 0.800 0.824 0.817
KNeighborsDist 0.643 0.707 0.668 0.874 0.757 0.675
KNeighborsUnif 0.637 0.701 0.665 0.863 0.751 0.669

Figure 3. Visual analysis of encoding based on amino acid letters only. (a) ROC curves and AUC values. ROC: receiver operating characteristic;
AUC: area under the ROC curve. (b) T-SNE dimensionality reduction diagram.

Table 3. Machine Learning Model Results of Encoding Considering Both Amino Acid Letter and Position Information

ML model ValAcc TestAcc TestPre TestRec TestF1 AvgAcc

XGBoost 0.868 0.877 0.909 0.851 0.879 0.873
LightGBMLarge 0.871 0.868 0.897 0.846 0.871 0.870
LightGBM 0.883 0.853 0.871 0.846 0.858 0.868
CatBoost 0.868 0.835 0.857 0.823 0.840 0.852
LightGBMXT 0.856 0.841 0.855 0.840 0.847 0.849
RandomForestEntr 0.856 0.835 0.880 0.794 0.835 0.846
RandomForestGini 0.844 0.832 0.865 0.806 0.834 0.838
ExtraTreesGini 0.808 0.832 0.848 0.829 0.838 0.820
ExtraTreesEntr 0.799 0.832 0.848 0.829 0.838 0.816
KNeighborsDist 0.682 0.704 0.692 0.783 0.735 0.693
KNeighborsUnif 0.670 0.689 0.680 0.766 0.720 0.679
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shown in Table 4, in the first NLP sequence representation
method (treating the entire amino acid sequence as a single
sentence), the BERT model performed better with test set
ACC, Pre, Rec, and F1 scores of 0.904, 0.961, 0.851, and
0.903, respectively. The average ACC for the test and
validation sets was 0.904. In the second NLP sequence
representation method (splitting the amino acid sequence into
individual amino acids as words), the M3E model showed
superior performance, surpassing the optimal results of the first
representation method. The test set ACC, Pre, Rec, and F1
scores reached 0.919, 0.925, 0.920, and 0.923, respectively,
with the average ACC for the test and validation sets reaching
0.915. The ROC curve demonstrated an AUC value of 0.96 for

the first representation method and a remarkable AUC value of
0.98 for the second representation method (Figure 5a). The t-
SNE dimensionality reduction plot also indicated that the
second representation method combined with the M3E model
had better discriminability for the ACPs (Figure 5b). This
aligns with reality as splitting amino acids in the sequence into
individual words with a natural order is more consistent with
the natural distribution of amino acids in the sequence.
Therefore, transforming amino acid sequences into vector
representations with semantic information can better capture
advanced features and relationships in the sequence, leading to
a noticeable improvement in model accuracy.

Figure 4. Visual analysis of encoding considering both amino acid letter and position information. (a) ROC curves and AUC values. (b) T-SNE
dimensionality reduction diagram.

Table 4. Results of Deep Learning Models with Two Different NLP Sequence Representations

DL model ValAcc TestAcc TestPre TestRec TestF1 AvgAcc

NLP no space m3e-base 0.904 0.889 0.879 0.914 0.896 0.897
bert-base-uncased 0.904 0.904 0.961 0.851 0.903 0.904

NLP with space m3e-base 0.904 0.940 0.953 0.931 0.942 0.922
bert-base-uncased 0.910 0.919 0.925 0.920 0.923 0.915

Figure 5. Visual analysis of deep learning models. (a) ROC curves and AUC values. (b) T-SNE dimensionality reduction diagram.
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3.3.2. Results of Fusion Models of Machine Learning and
Deep Learning. In this study, to enhance the accuracy of deep
learning models, we not only independently utilized NLP deep
learning models, but also attempted to combine them with
traditional machine learning models using the Greedy Soup
strategy to achieve a superior performance. Through this
fusion approach, we could leverage the ability of deep learning
models to extract complex features from amino acid sequences
and enhance the final classification accuracy by using machine
learning models. We selected the model with the highest ACC
from numerous combinations for detailed evaluation, and the
results were listed in Table 5. The findings indicated that the
overall performance of the model improved after incorporation
of machine learning models. In particular, the combination of
the M3E-base and KNeighborsDist models exhibited the
highest accuracy in all tests, reaching an impressive 93.9%.

On the other hand, we visually presented the experimental
results of this fusion strategy. The ROC curve graph clearly
illustrated the classification performance of the fusion model
(Figure 6a). We observed that when not considering the
semantic information on amino acids, the combination of
M3E-base and KNeighborsDist achieved an AUC value of
0.95, demonstrating excellent classification capability. In the
presence of semantic information, the combination of M3E-
base and KNeighborsDist increased the AUC value to 0.97,
while the combination of bert_base_uncased and
LightGBMXT reached an AUC value of 0.98. This highlighted
the significance of semantic information in enhancing model
performance.

Furthermore, the t-SNE dimensionality reduction plot
revealed the separation of the model in handling different
categories of data (Figure 6b). Comparing the dimensionality
reduction results of different model combinations, we found

that considering spatial information significantly improved the
model’s ability to differentiate between ACPs (label = 1) and
non-ACPs (label = 0). In particular, the combination of
bert_base_uncased and LightGBMXT exhibited a higher
category separation in the dimensionality reduction plot,
corroborating its high AUC value in the ROC curve graph.

These results not only confirmed the effectiveness of NLP
deep learning models in handling amino acid sequences but
also indicated that traditional machine learning models could
effectively enhance the performance of deep learning models,
especially when incorporating semantic information into the
sequence. Through this hybrid model, we could more
accurately identify and classify ACPs, thereby applying them
more effectively in drug design and related fields of
bioinformatics.

3.3.3. Comprehensive Results and Performance Compar-
ison. This study conducted a comprehensive comparison of
the impact of different encoding methods and model
combinations on the task of identifying ACPs. By contrasting
various encoding strategies and deep learning (DL) models
with or without the inclusion of machine learning (ML)
models, our determined the optimal model configuration for
achieving high-precision recognition of ACPs. In addition, we
compared the performance of our models with several
currently known excellent ACP predictors. In Table 6, we
compared six different encoding and model combination
strategies, recording their average accuracy (AvgAcc).
XGBoost models based on integer encoding (intEncode) and
integer encoding considering amino acid position information
(intPositionEncode) both demonstrated an AvgAcc of 0.873,
providing a stable baseline performance. However, when
transitioning to NLP deep learning models, we noted that
bert-base-uncased achieved an AvgAcc of 0.904 without

Table 5. Results of Fusion Models of Deep Learning and Machine Learning

NLP model AvgAcc of best ML model ValAcc TestAcc TestPre TestRec TestF1 AvgAcc

NLP no space m3e-base KNeighborsDist 0.907 0.922 0.963 0.886 0.923 0.915
bert-base-uncased LightGBMXT 0.901 0.901 0.928 0.880 0.903 0.901

NLP with space m3e-base KNeighborsDist 0.919 0.958 0.976 0.943 0.959 0.939
bert-base-uncased LightGBMXT 0.913 0.931 0.958 0.909 0.933 0.922

Figure 6. Visual analysis of fusion models of deep learning and machine learning. (a) ROC curves and AUC values. (b) T-SNE dimensionality
reduction diagram.
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semantic information and without combining ML models.
Furthermore, the m3e-base model, when considering semantic
information and not combining ML models, reached an
AvgAcc of 0.922. When combining DL models with ML
models, performance showed a significant improvement. In
particular, when not considering semantic information, the
combination of the m3e-base and KNeighborsDist increased
AvgAcc to 0.915. In the presence of semantic information, the
same combination achieved the highest AvgAcc value in this
study, reaching 0.939.

The ROC curve graph in Figure 7 provided an intuitive way
to compare performance. From the graph, we observed that
the combination of m3e-base and KNeighborsDist, which
incorporated semantic information, demonstrated the most
outstanding classification ability among all of the models, with
an AUC value of 0.97. This further emphasized the importance
of semantic information in enhancing model accuracy and the
potential of ML models to effectively boost the performance of
DL models.

Then, we selected two currently known excellent ACP
predictors, iACP-FSCM26 and ACPred-FL,27 tested them with
our data set, and compared their ROC curves and AccAvg
values with our models. The performance comparison results
showed that our models were significantly higher than the
iACP-FSCM and ACPred-FL models in terms of the AUC

value and AccAvg value. It proved that our models were
advanced compared to existing ACP predictors.
3.4. Model Prediction and In Vitro Antitumor Efficacy

of Peptides. We randomly selected 741 peptides as test
peptides in the database and predicted them using the model
m3e-base+KNeighborsDist with the highest comprehensive
evaluation. Two peptides with potentially high anticancer
activity were predicted, namely, KEWLE and KRLAFA. Mass
spectrometry results showed that the two peptides were
successfully synthesized, and HPLC results confirmed that the
purity of both peptides was above 95% (Figures S1−S4).
Mouse breast cancer cell 4T1 cells were selected to validate the
in vitro antitumor efficacy of the two peptides. The
experimental results are shown in Table 7, and the IC50
values of the two peptides were, respectively, 47.46 ± 12.14
and 39.99 ± 9.744 μM, and both had in vitro antitumor
efficacy.

4. DISCUSSION
This study aimed to construct a precise and automated model
for the screening of ACPs using machine learning methods.
Initially, three different feature representation and encoding
methods were employed, with the third encoding method
combining two different NLP sequence representations,
utilizing NLP models such as BERT and M3E, and introducing
a combination strategy of machine learning models. By
integration of various machine learning and deep learning
models, a model combination with higher accuracy was
ultimately selected. In vitro anticancer efficacy validation was
performed, demonstrating that the peptides validated by the
model exhibited potent anticancer cell toxicity. Overall, this

Table 6. Highest AvgAcc Models under Different Encoding
Methods and Comparisons with Other ACP Predictors

encoding method
model with the highest

AvgAcc AvgAcc

intEncode XGBoost 0.873
intPositionEncode XGBoost 0.873
NLP no space (no ML model) bert-base-uncased 0.904
NLP with space (no ML model) m3e-base 0.922
NLP no space (with ML model) m3e-base + KNeighborsDist 0.915
NLP with space (with ML model) m3e-base + KNeighborsDist 0.939
iACP-FSCM 0.857
ACPred-FL 0.898

Figure 7. ROC curves and AUC values of the highest AvgAcc models and comparisons with other ACP predictors.

Table 7. IC50 Values (μM) of Peptides in 4T1 Cell Lines

peptide sequences molecular weight IC50 (μM)

KEWLE 703.78 47.46 ± 12.14
KRLAFA 704.86 39.99 ± 9.744
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study innovatively incorporated NLP into the screening of
anticancer peptides, achieving higher and more achievable
accuracy compared to traditional methods and confirming the
practical and effective anticancer activity of the selected
peptides.

The machine learning methods employed in this study, such
as LightGBM, XGBoost, etc., demonstrated good general-
ization performance in terms of model efficiency, especially
when dealing with high-dimensional features and large-scale
data, exhibiting high efficiency and prediction accuracy. These
machine learning models effectively screened anticancer
peptides through traditional feature engineering and model
fusion strategies, confirming their reliability in peptide
sequence analysis. In contrast, deep learning methods such
as BERT, M3E, etc., showed advantages in capturing sequence
features and contextual information. These models could
better utilize the sequential information and global context in
the sequences, enhancing the model’s predictive capabilities
through learning advanced features. Particularly, the BERT
model, as an advanced model in the natural language
processing field, successfully applied the Transformer structure
to learn representations of protein sequences, offering new
possibilities for the screening of anticancer peptides. In
summary, traditional machine learning models have advantages
in efficiency, while deep learning models excel in learning and
representing sequence features. Therefore, combining machine
learning and deep learning methods may become a new trend
in the future for screening anticancer peptides. It is worth
noting that compared with the studies by Wei et al.27 and
Charoenkwan et al.,26 this study focuses on predicting the
activity of ACP using a combination of deep learning and
efficient feature expression, achieving the highest prediction
accuracy of 0.939. The above comparative studies construct
effective sequence feature expressions and achieve prediction
through traditional machine learning, and the prediction
accuracy is slightly lower than that in this study.

It was noteworthy that this experiment demonstrated
significant practical value in the screening of anticancer
peptides. By application of a combination of machine learning
and deep learning models, the efficiency of anticancer peptide
screening was improved. Traditional methods of anticancer
peptide screening typically required extensive experimentation
and human resources. The model constructed in this study
could rapidly and accurately predict peptide sequences with
potential anticancer activity, significantly shortening the
screening cycle. This precise screening method effectively
reduced the cost of developing new anticancer drugs,
accelerating the drug development process. This is also in
line with the future development trend in this field using
advanced computational methods to discover functional
peptides to aid drug screening.28

From a longer-term perspective, ACPs have emerged as a
promising alternative due to their specificity, lower toxicity,
and ability to circumvent drug resistance mechanisms that
often limit the effectiveness of traditional therapies. Traditional
chemotherapy indiscriminately targets rapidly dividing cells,
leading to significant side effects, whereas ACPs offer a more
targeted approach, potentially leading to more effective and
less harmful treatments. Moreover, advancements in peptide
engineering and drug delivery systems have significantly
enhanced the stability, bioavailability, and tumor-targeting
capabilities of ACPs, making them a viable option in the
arsenal against cancer. However, despite these advantages, the

clinical application of ACPs still faces several challenges such as
their rapid degradation in the bloodstream, potential
immunogenicity, and the complexity of large-scale synthesis.
These issues necessitate further research and innovation to
overcome. Additionally, while ACPs show promise in
preclinical studies, their efficacy and safety in human trials
must be rigorously tested. The possibility of replacing
traditional anticancer drugs with peptides depends not only
on overcoming these technical hurdles but also on
demonstrating superior clinical outcomes.

While this study has made significant progress in anticancer
peptide screening, there are limitations that need to be
considered. First, the quality and quantity of the data set have a
crucial impact on the training and prediction of machine
learning and deep learning models, and the data set used in this
study may have limitations. The size and coverage of the data
set may influence the generalization ability and predictive
performance of the model. Therefore, a more extensive and
representative data set could further enhance the robustness of
the model. Second, the choice of feature representation and
encoding methods has a significant impact on the performance
of the model. Although the feature engineering methods used
in this study are diverse, there may still be a potential
optimization space. Further exploration of more effective
feature representation and encoding methods may improve the
model’s ability to abstractly represent peptide sequences,
thereby enhancing predictive performance. Lastly, despite the
in vitro experiments validating the anticancer activity of the
peptides screened by the model, more experimental data and
further clinical trials are needed to verify the feasibility and
effectiveness of their clinical application. There is a certain
difference between laboratory conditions and actual treatment
environments, necessitating more clinical data to support the
experimental results obtained in this study.

5. CONCLUSIONS
This study successfully integrated different encoding methods
with multiple machine learning approaches to construct a
precise screening model for anticancer peptides. Through
rigorous model training and comparison, the study accurately
screened peptide sequences with anticancer potential and
confirmed the effectiveness of the model’s predictions in in
vitro experiments. Particularly, the introduction of NLP
language models into the screening of anticancer peptides in
this study, compared with traditional methods, significantly
improved both the accuracy and efficiency of screening. This
opened up new possibilities and avenues for the discovery and
research of anticancer drugs. However, despite the relatively
outstanding results achieved in this study, there were still some
suggestions for improvement to consider. In future research,
we will continue to explore and incorporate the latest
technologies and theoretical advancements to continuously
enhance the performance and practicality of the model,
promoting the development and application of anticancer
drugs.
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