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Abstract 

Background: Prognosis prediction is indispensable in clinical practice and machine learning has been 
proved to be helpful. We expected to predict survival of pancreatic neuroendocrine tumors (PNETs) 
with machine learning, and compared it with the American Joint Committee on Cancer (AJCC) staging 
system. 

Methods: Data of PNETs cases were extracted from The Surveillance, Epidemiology, and End Result 
(SEER) database. Statistic description, multivariate survival analysis and preprocessing were done before 
machine learning. Four different algorithms (logistic regression (LR), support vector machines (SVM), 
random forest (RF) and deep learning (DL)) were used to train the model. We used proper imputations 
to manage missing data in the database and sensitive analysis was performed to evaluate the imputation. 
The model with the best predictive accuracy was compared with the AJCC staging system using the SEER 
cases. 

Results: The four models had similar predictive accuracy with no significant difference existed (p = 
0.664). The DL model showed a slightly better predictive accuracy than others (81.6% (± 1.9%)), thus it 
was used for further comparison with the AJCC staging system and revealed a better performance for 
PNETs cases in SEER database (Area under receiver operating characteristic curve: 0.87 vs 0.76). The 
validity of missing data imputation was supported by sensitivity analysis. 

Conclusions: The models developed with machine learning performed well in survival prediction of 
PNETs, and the DL model have a better accuracy and specificity than the AJCC staging system in SEER 
data. The DL model has potential for clinical application but external validation is needed. 
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Introduction 
Pancreas neuroendocrine tumors (PNETs), also 

known as pancreatic endocrine tumors, are 
heterogeneous tumors arising from the endocrine 
tissues of the pancreas. They have a low but steadily 
increasing incidence of <1 per 100 000 persons per 
year and account for less than 2 percent of all 
pancreatic tumors [1]. 

The present curative treatment for PNETs is 

complete surgical resection of the primary tumor and 
the metastasis tumor if practicable [2]. With the 
growing emphasis on less invasive personalized 
treatment, an accurate prognostication system is 
important for treatment decision, frequency of 
postoperative surveillance. Various prognostication 
system have been developed for PNETs, among 
which the most commonly used are those developed 
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by the World Health Organization (WHO), the 
American Joint Committee on Cancer (AJCC) and the 
European Neuroendocrine Tumor Society (ENETS). 
Though differences exist, these systems contain 
common elements such as cell differentiation, which 
can be measure by mitotic count and Ki-67 labelling 
index according to the WHO 2010 grading [3]. The 
AJCC and ENETS tumor-node-metastasis (TNM) 
staging system also incorporate tumor size, organ 
invasion as diagnostic factors [4,5]. Hormone 
profiling had also been reported to be relevant to the 
prognosis of PNETs [6]. Many studies have been 
carried out for comparison and validation of these 
prognostic systems, however, the superiority between 
these prognostication systems remain unclear [6,7,8]. 

Machine learning, a concept originate from 
artificial intelligence, may provide another choice for 
researchers. By learning from a large amount of data, 
machine learning aims to produce a robust model that 
can predict outcomes of another dataset. The quickly 
accumulated genomic data and clinical database also 
contribute to the various application of machine 
learning in medical research, especially in the study of 
oncology [9]. Machine learning has helped to predict 
cancer susceptibility, recurrence and survival by 
learning from various sources including 
mammogram, genomic and clinical features [10]. The 
Surveillance, Epidemiology, and End Result (SEER) 
database collects incidence and survival information 
that cover approximately 28% of the US population. 
Combined with machine learning, this comprehensive 
population-based proved to be valuable in predicting 
survival of many cancer such as breast cancer and 
lung cancer [11,12,13,14,15]. In this study, we aim to 
produce and compare models by exploring the PNETs 
populations extracted from the SEER database with 
classic machine learning algorithms. 

Patients and Methods 
DATA extraction 

 Binary format file of the SEER database 
(1973-2014) was downloaded from the official website 
after access to database was permitted by signing an 
agreement by the co-author Song, whose SEER ID was 
14917-Nov2016 [16]. We established the database with 
binary format file downloaded above and an R 
package named ‘SEERaBomb’, which is maintained 
on github by Tomas Radivoyevitch [17]. This study 
used a public de-identified database and informed 
consent and approval of the Institutional Review 
Board were waived. 

PNETs cases diagnosed between 1973 and 2014 
were identified with a combination of topographical 
codes (International Classification of Diseases for 
Oncology, 3rd Edition, ICD-O-3: C250-259) and 

histology codes (8150, 8151, 8152, 8153, 8155, 8156, 
8157, 8240, 8241, 8242, 8246 and 8249). Only cases with 
unique primary tumor that have been microscopically 
confirmed and actively follow up (excluding 
“Autopsy Only” or “Death Certificate Only” cases) 
was included in our study. Cases either with two or 
more primary tumors or only confirmed by laboratory 
test, radiology or other imaging techniques were 
excluded. Cases with follow up time equal to 0, which 
might indicate death in-hospital, were also excluded. 
Additionally, since class labels were necessary for 
supervised classification, we chose five-year 
tumor-specific survival status for training the model. 
As a result, living patients with a follow up time less 
than 60 months were excluded because their survival 
was more likely consequence to the short follow-up 
rather than the features used to train the models.  

All objective features of patients (including 
marital status, race, gender, age of diagnosis, 
histology type, death status, tumor specific death 
status, survival time, tumor size, tumor extension, 
lymph metastasis, distant metastasis, surgery type 
and tumor grade) in the SEER database were selected 
for further analyses and machine learning. AJCC 
stages were also extracted for contrasting the models 
fitted by machine learning. The outcome for survival 
analysis was tumor-specific survival. As mentioned 
above, the class labels were set according to five-year 
tumor-specific survival status (the follow up point at 
60 months) in machine learning, which meant patients 
would be assigned to the survival category even 
though they died after more than 5 years. 

DATA preprocessing 
We had explored the structure of features 

extracted from the database and made some 
modification for analysis. Two coding standards exist 
for tumor size, extension, lymph node invasion and 
distant metastasis in the SEER database. The SEER 
Extent of Disease (EOD) coding was used for cases 
diagnosed before 2004 [18]. Another standard, the 
Collaborative Stage (CS) coding was used for data 
after 2004 [5]. We merged identical variables coding 
by the two standards for different period with a 
uniform coding. 

We also recoded marital status binarily to 
married and unmarried, the later included those 
never married, separated, widowed, et al. Tumor 
grade were also divided binarily to well-differentiated 
(well and moderate) and  poor-differentiated (poor 
and undifferentiated) because the different editions of 
WHO grading standard (2004 and 2010) varied 
between well and moderate differentiated tumors but 
kept for poor-differentiated tumors [19]. 

Missing data was detected and processed with 
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different method of imputation according to the 
variable type of features [20]. Predictive mean 
matching, logistic regression, polynomial regression 
was used for continuous, binary and categorical 
variables respectively. After imputation, unordered 
categorical variables with three or more levels (race, 
surgery type and histology type) were recoded with a 
binary value in which all bits are ‘0’ except a single ‘1’ 
for each level. This method is call one-hot encoding, 
which help to handle categorical variables in machine 
learning.  

The complete datasets produced by imputation 
was compared to the original dataset with missing 
value to evaluate the validity of imputation. 
Continuous variables were expressed as median 
[interquartile range], while categorical variables were 
expressed as count (percentage). Then COX 
regression was applied to discover variables that 
probably have an influence on the outcomes. 
Variables for machine learning were selected 
according to the multivariate analysis and former 
literature evidence. 

DATA analysis 
We used four popular algorithms to fit the 

dataset prepared by the preprocessing mentioned 
above, including logistic regression (LR), support 
vector machines (SVM), random forest (RF) and deep 
learning (DL) [21,22,23]. All these algorithms aimed to 
express the outcomes as a combination of the features 
with a mathematical function with several 
parameters, which need to be learned from the data. 
LR is an easy-to-operate method for binary 
classification with independent features. SVM, 
another popular method for cancer diagnosis or 
prognosis, handles the classification problems by 
mapping the input vectors into a higher dimensional 
space, and the hyperplane that best separate the two 
categories was considered classifiers. As its name 
implied, RF was a group of many decision trees and 
the yield the classification which was supported by 
most trees. Multiple hidden layers of nonlinear 
processing was used to extract the feature of input 
data in DL, which is considered an uninterpretable 
black-box and make DL different from the other three 
methods. There are also hyperparameters which can 
not be learned from data, including regularization 
coefficient in LR, penalty strength and the kernel 
parameter gamma in SVM, depth and number of trees 
in RF, number of hidden layers in DL. To make a 
balance between overfitting and underfitting, the best 
hyperparameters were achieved with grid searching 
for LR, SVM and RF. In DL, the number of hidden 
layer was decided by manually traversing and the 
Adam algorithm was used for optimization with all 

its parameters kept to default [24]. Ten-folds cross 
validation was used to evaluate and compare 
predictive accuracy of models produced by the four 
methods. Features in each training set were 
normalized before model training with formula 
(refers to normalized value for certain feature,  refers 
to each sample,  refers to the minimal value for certain 
feature,  refers to the maximal value for certain 
feature,  refers to the real value for certain feature). 

Then we checked the sensitivity of missing data 
imputation by applying the model to a series of 
subsets created by deleting missing data of one 
unique feature for a subset and re-imputing the 
missing data of the other features. These subsets were 
name according to their feature with missing data as 
metastasis-na-omit (MNO) subset, extend-na-omit 
(ENO) subset, lymph-na-omit (LNO) subset, 
size-na-omit (SNO) subset and grade-na-omit (GNO).  
In addition, a subset named overall-na-omit (ONO) 
was also created by deleting missing data of all 
features. Predictive accuracy of the model was 
compared between these subsets, and little difference 
will confirm the validity of missing data imputation. 

Finally, we assessed the overall value of our 
model by making a comparison  with the AJCC stage 
system [5]. The Kaplan-Meier survival curve and 
receiver operating characteristic (ROC) curve were 
plotted and area under curve (AUC) was calculated to 
evaluate the accuracy and specificity of the two 
prognostication methods. 

All computation and analyses in our research 
was completed with R language (version 3.3.2) and 
Python (version 2.7.14). R package ‘mice’ was use for 
missing data imputation, while ‘tableone’, ‘survival’ 
were imported for displaying tables and COX 
regression respectively. Python module ‘Scikit learn’ 
was responsible for all methods of machine learning 
except DL, which was done with the Application 
Program Interface (API) provided by ‘Keras’ and 
‘Tensorflow’ [25,26]. Python module ‘matplotlib’ was 
responsible for all data visualizations. Statistical tests 
for continuous variables used One-way ANOVA. For 
categorical variables, Chi-square test or Fisher’s exact 
test (if necessary) was used. Cox regression model 
was applied for multivariate survival analysis. 
Differences were considered statistically significant 
for p < 0.05. 

Results 
The SEER database (1973-2014) consists of 

9,663,315 records, among which 8422 cases were 
diagnosed with PNETs identified with ICD 
topographical and histological codes. Finally, 3944 
cases were retained for further analysis after filtration 
with our inclusion and exclusion criteria. Workflow of 
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data selecting was illustrated in Fig.1. 
There were missing data in several features 

including marital status, race, tumor size, regional 
extension, lymph invasion, distant metastasis, surgery 
and tumor grade. Demographic features of dataset 
before and after imputation were both summarized in 
table 1 and no significant difference was detected 
between the two datasets. 

The result of multivariate survival analysis was 
summarized on table 2. Most of the features were 
recognized as independent prognostic factors for 
tumor-specific survival time, except for race and 
tumor size. However, the prognostication power of 
these two features were supported by literatures 
[27,28]. Considering our relatively large sample size, 
we decided to train our model with all features. 

In the LR model, the best parameter C 
representing the inverse of regularization coefficient 
was found to be 0.1 by grid searching (SFig.1), which 
yielded a mean accuracy score of 81.5% (± 1.7%) for 
test sets. Similar for SMV, the parameter C = 100 
representing penalty strength and the kernel 
parameter gamma = 0.01 gave a best-performing 
model with an mean accuracy of 80.7% (± 1.6%) 
(SFig.2). The RF method had a best performance with 
a mean accuracy of  81.5% (± 1.8%) when the number 
of decision tree is 600 and a max depth is 9 per tree 
(SFig.3). 

 

 
Figure 1 Workflow of data selection from the SEER database 

Table 1 Demographic features of datasets before and after 
imputation. 

Features Category Values before 
imputation 

Values after 
imputation 

p 
value 

Gender (%) Male 2136 (54.2) 2136 (54.2) - 
 Female 1808 (45.8) 1808 (45.8)  
Age at diagnosis 
(median [IQR]) 

 59.00 [48.00, 
69.00] 

59.00 [48.00, 
69.00] 

- 

Marital status (%) Single 1336 (35.1) 1385 (35.1) 0.991 
 Married 2467 (64.9) 2559 (64.9)  
 NA 141(3.6) -  
Race (%) White 3201 (81.5) 3216 (81.5) 0.998 
 Black 444 (11.3) 444 (11.3)  
 Others 283 ( 7.2) 284 ( 7.2)  
 NA 16(0.4) -  
Histology type (%) Islet-cell 

adenocarcinoma 
1043 (26.4) 1043 (26.4) - 

 Malignant 
beta-cell tumor 

64 (1.6) 64 (1.6)  

 Malignant 
alpha-cell tumor 

31 (0.8) 31 (0.8)  

 G-cell tumor 76 (1.9) 76 (1.9)  
 VIPoma 15 (0.4) 15 (0.4)  
 Malignant 

somatostatinoma 
1 (0.0) 1 (0.0)  

 Carcinoid tumor 264 (6.7) 264 (6.7)  
 Argentaffin 

carcinoid tumor 
2 (0.1) 2 (0.1)  

 Mucocarcinoid 
tumor 

4 (0.1) 4 (0.1)  

 Neuroendocrine 
carcinoid tumor 

2432 (61.7) 2432 (61.7)  

 Atypical 
carcinoid tumor 

12 ( 0.3) 12 (0.3)  

Tumor size 
(median [IQR]) 

 43.00 [30.00, 
65.00] 

45.00 [30.00, 
69.00] 

0.083 

 NA 1339 (34.0) -  
Regional 
extension (%) 

Extended 1915 (63.8) 2607 (66.1) 0.05 

 Local 1086 (36.2) 1337 (33.9)  
 NA 943(23.9) -  
Lymph invasion 
(%) 

Negative 1422 (56.0) 2159 (54.7) 0.321 

 Positive 1116 (44.0) 1785 (45.3)  
 NA 1406(35.6) -  
Distant metastasis 
(%) 

Negative 1294 (34.4) 1352 (34.3) 0.967 

 Positive 2473 (65.6) 2592 (65.7)  
 NA 177(4.5) -  
surgery (%) No surgery 2283 (61.6) 2430 (61.6) 0.856 
 Tumor 

destruction 
26 (0.7) 30 (0.8)  

 Surgery, 
unknown type 

186 ( 5.0) 213 ( 5.4)  

 Tumor resection 1213 (32.7) 1271 (32.2)  
 NA 236(6.0) -  
Grade (%) Poor 

differentiated 
445 (32.2) 1358 (34.4) 0.144 

 well-moderate 
differentiated 

936 (67.8) 2586 (65.6)  

 NA 2563(65.0) -  
Survival time 
(median [IQR]) 

 27.00 [6.00, 
79.00] 

27.00 [6.00, 
79.00] 

- 

Total  3944 3944  
NA refers to count of missing value; ‘-‘ refers to not applicable. Abbreviations: IQR, 
interquartile range; 
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Table 2 Results of multivariate survival analysis 

Features HR (95%CIs) p values 
Marital(single) 1.19(1.10-1.29) <0.001 
      
White Race 1  
Race(black) 1.12(1.00-1.26) 0.057 
Race(other) 1.10(0.95,1.27) 0.193 
      
Gender(male) 1.11(1.03-1.19) 0.008 
Age 1.02(1.02-1.03) <0.001 
      
Islet-cell adenocarcinoma 1  
Malignant beta-cell tumor 0.94(0.67-1.31) 0.702 
Malignant alpha-cell tumor 0.62(0.40-0.96) 0.036 
G-cell tumor 0.59(0.43-0.80) <0.001 
VIPoma 0.61(0.34-1.08) 0.089 
Malignant somatostatinoma - 0.981 
Carcinoid tumor 1.01(0.86-1.18) 0.939 
Argentaffin carcinoid tumor 1.47(0.36-5.94) 0.59 
Mucocarcinoid tumor 0.51(0.16-1.58) 0.242 
Neuroendocrine carcinoid tumor 1.14(1.04-1.25) 0.003 
Atypical carcinoid tumor 2.01(1.11-3.65) 0.022 
      
Tumor size 1.00(1.00-1.00) 0.431 
Regional extension 1.25(1.14-1.37) <0.001 
Lymph positive 1.09(1.01-1.17) 0.02 
Distant metastasis 2.08(1.86-2.31) <0.001 
      
No surgery 1  
Tumor destruction 0.51(0.35-0.75) <0.001 
Surgery, unknown type 0.62(0.52-0.74) <0.001 
Tumor resection 0.42(0.37-0.46) <0.001 
      
Poor tumor grade 2.13(1.97-2.31) <0.001 
‘-‘ exists if only one case in that category. Abbreviation: CIs, confidence intervals 

 
 

 
Figure 2 Boxplot of the predictive accuracies of the LR, SVM, RF and DL models for 
training and test sets. The point refers to the certain accuracy of each algorithm for 
each cross-validation. The horizontal line in the box refers to the median and the 
rhombus refers to the mean. Abbreviations: LR, logistic regression; SVM, support 
vector machines; RF random forest; DL, deep learning. 

 
In the training of DL model, we manually 

increased the number of hidden layers starting with 2 
layers. The predictive accuracy culminated with 3 
layers and adding more layer did not improve the 
performance but increase time of computation. 
Therefore, we decided to train the model with 3 

hidden layers as well as 3 dropout layers to avoid 
overfitting. Finally the DL model was produced by 
over 60 epoches training with a batch size of 32, and 
showed a predictive accuracy of 81.6% (± 1.9%) for 
test sets. The accuracies of the models fitted by four 
algorithms for training and test sets were visualized 
in Fig.2. The RF model revealed a little overfitting, 
while the DL model got the best mean of accuracies 
for test sets though there was no significant 
difference. 

Due to its better predictive accuracy, the DL 
model was applied to the further sensitive analysis of 
imputation and comparison with the AJCC stage 
system. The predict accuracy of the DL model for the 
MNO, ENO, LNO, SNO, GNO and ONO subset as 
well as data size of each subsets were visualized in 
Fig.3 A. The predictive accuracy for the ONO subset 
dropped to 77.7%. To find the cause of drop, we 
re-trained the DL model with 10-fold cross-validation 
on ONO itself (Fig.3 B). The mean accuracy of the 
re-trained DL model was 78.0% (± 2.6%) and no 
significant difference exists compared with the 
original DL model (p = 0.90). Thus we concluded that 
the drop of predictive accuracy did not result from the 
imputation of missing data. 

Finally, we compared the DL model with the 
AJCC stage system. As the survival curves in Fig.4 A 
showed, the DL predicted negative cases had lower 
hazard rates than those classified as stage I-III by the 
AJCC system, indicating that the DL model have a 
better performance than the AJCC system in survival 
prediction of early-stage cases. However, DL might be 
as good as (but no better than) AJCC for predicting 
survival rate in more advanced PNETs since the curve 
of the DL predicted positive cases perfectly 
overlapped with that of AJCC IV Stage cases. The 
ROC curve of the AJCC system located right lower to 
the DL curve and had a smaller AUC value than the 
DL model (0.88 to 0.76) as shown in Fig.4 B. All above 
evidence implied that the DL model had a better 
accuracy and specificity than traditional AJCC staging 
system for PNETs cases in SEER database. 

Discussion 
Our study analyzed the public database SEER 

with four machine learning algorithms in order to 
establish a prognostication model for PNETs. Models 
produced by these four algorithm got similar 
predictive accuracies of more than 80% for test sets. 
As an evaluation, the DL model performed better than 
traditional AJCC staging system for the SEER cases. 
Missing data did not affect the model performance. 

As data are produced at an incredibly rapid 
speed and databases for various data types have been 
developed, the big-data era is coming. Compared 
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with traditional researches, databases have the 
advantage of collecting data with a wide range of time 
and space rather than several research centers. 
Moreover, the web-based storage also makes it 
convenient to get access to the data for researchers. At 
the same time, managing the redundancy and quality 
control of data also become a challenge. 

 

 
Figure 3 Sensitive analysis of the missing data imputation. (A) Predictive accuracies of 
the DL model for different subsets. The area of the bubble represents the sample size 
of the subset. (B) Predictive accuracies of the DL model for ONO dataset with the 
10-fold cross-validation. Each point refers to the certain accuracy of each step of 
cross-validation. The horizontal solid line refers the mean accuracy of these ten steps. 
While the horizontal dotted line refers to the accuracy of the DL model trained by 
imputed dataset but validated on ONO dataset. Abbreviations: MNO, 
metastasis-na-omit subset; ENO, extend-na-omit subset; LNO, lymph-na-omit 
subset; SNO, size-na-omit subset; GNO, grade-na-omit subset. ONO, 
overall-na-omit, DL, deep learning. 

 
Data themselves is useless and must be analyzed 

and interpreted, and machine learning have provided 
a powerful tool for cancer prognostic research. Park K 
and his fellows established a model using 
graph-based semi-supervised learning algorithm with 
162,500 breast cancer cases in the SEER database, 
which showed a predictive accuracy of 71% [29]. 
Another machine learning method, artificial neural 
network (shallow learning) had been used by Chen 
Y-C and his collaborators to train a model with 
heterogeneous data type of clinical data and gene 
expression data, which also had a good performance 

of 83.5% accuracy [30]. In fact, as the review written 
by Kourou K, et al indicated, there was an increasing 
tendency of applying machine learning in the field of 
cancer study 10. 

 

 
Figure 4. Comparison of DL model and AJCC stage system on the SEER dataset. (A) 
The survival curves of two system. The fillings surrounding the lines refers to the 95% 
confidence intervals. (B) The ROC curves of two systems. Abbreviation: AJCC, 
American Joint Committee on Cancer; ROC, receiver operating characteristic; AUC, 
area under curve; DL, deep learning. 

 
One of the challenges in machine learning is 

overfitting, which also presented in our study. As 
shown in Fig.2, the RF model performed well with a 
86.3% (± 0.4%) accuracy for the training, while the 
accuracy dropped to 81.5% (± 1.8%) for the test set. 
The overfitting may be caused by the small size of 
training set and the large depth of decision trees. It 
can be seen in the supplement Fig.3B that the learning 
curves of training and test sets got closer as the size of 
training set increased. And the predictive accuracy for 
test set was 81.2% (± 1.7%) and 83.6% (± 0.2%) for the 
training set when we reduced the max depth per tree 
to 7. However, in the grid search process, only test set 
was taken into consideration. As well as the 
overfitting of the RF model, the predictive accuracies 
of models training by four algorithms were also 
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affected by sample size (Fig S1-4). However, the 
relatively low accuracy for the ONO subset can not be 
explained only by sample size. Our imputation was 
based on logistic regression, polynomial regression 
and predictive mean matching, all of which neglected 
random effects. However, the really close predictive 
accuracy between the model trained by the ONO 
subset and that by imputed dataset support the 
validity of imputation. Thus the imputed dataset was 
not deviated from the real-word dataset and the 
model trained with it was also valid. 

Various prognostication systems had been 
proposed by other researchers. For instance, the 
Memorial Sloan Kettering Cancer Center (MSKCC) 
prognostication system for PNETs takes grade, tumor 
size as well as presence of metastasis into account [31]. 
And the scoring system proposed by Bilimoria et al 
indicates that age, grade, and distant metastasis are 
powerful prognostic factors for PNETs [32]. Currently 
the simplest prognostic system is that developed by 
Ellison et al in 2014, which used a cutoff age of 63, 
gender, and a continuous Ki-67 index to calculate the 
5-year overall survival rate and median overall 
survival time [33]. The superiority of these systems 
had not been confirmed and they are not so widely 
accepted compared with the traditional AJCC system. 

We had established prognostication models for 
PNETs with different algorithms, which had good 
performance for the SEER cases and possessed the 
potential for clinical application. However, there are 
many steps toward the widely application. Firstly, our 
research lacked external validation, while the widely 
accepted AJCC staging system has been validated by 
patients all over the world. Secondly, the SEER 
dataset has a number of missing data. Though we had 
managed it with reasonable methods, some hidden 
regulars could not be dug out. Finally, as PNETs are 
relatively rare disease, the size of data is still small for 
machine learning. The accumulating data collected by 
institution over the word and the development of the 
public database are expected to provide a perfect 
solution for study of these rare diseases. 

Conclusion 
We compared four machine learning algorithms 

for PNETS survival prediction and little difference 
had been observed. All models had an accuracy of 
more than 80% in predicting five-year survival rate, 
and the DL performed better than the AJCC stage 
system for PNETs cases in the SEER database. The 
models have potential for clinical application, but 
more validations are needed. 
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