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Transition from continental 
rifting to oceanic spreading in 
the northern Red Sea area
Sami El Khrepy1,2, Ivan Koulakov3,4,5*, Taras Gerya6, Nassir Al‑Arifi1, Mamdouh S. Alajmi7 & 
Ayman N. Qadrouh7

Lithosphere extension, which plays an essential role in plate tectonics, occurs both in continents (as 
rift systems) and oceans (spreading along mid-oceanic ridges). The northern Red Sea area is a unique 
natural geodynamic laboratory, where the ongoing transition from continental rifting to oceanic 
spreading can be observed. Here, we analyze travel time data from a merged catalogue provided 
by the Egyptian and Saudi Arabian seismic networks to build a three-dimensional model of seismic 
velocities in the crust and uppermost mantle beneath the northern Red Sea and surroundings. The 
derived structures clearly reveal a high-velocity anomaly coinciding with the Red Sea basin and a 
narrow low-velocity anomaly centered along the rift axis. We interpret these structures as a transition 
of lithospheric extension from continental rifting to oceanic spreading. The transitional lithosphere is 
manifested by a dominantly positive seismic anomaly indicating the presence of a 50–70-km-thick and 
200–300-km-wide cold lithosphere. Along the forming oceanic ridge axis, an elongated low-velocity 
anomaly marks a narrow localized nascent spreading zone that disrupts the transitional lithosphere. 
Along the eastern margins of the Red Sea, several low-velocity anomalies may represent crustal zone 
of massive Cenozoic basaltic magmatism.

The transition from continental rifting to oceanic spreading is a crucial yet partly enigmatic stage that determines 
the birth and further evolution of an oceanic basin. This transition has been broadly investigated using two 
dimensional (2D) and three-dimensional (3D) numerical geodynamic models. Both abrupt and gradual lith-
ospheric extension has been suggested depending on the initial thermal-rheological structure of the continental 
lithosphere1–5. However, direct geophysical observations of the evolution of deep lithospheric structures are rare 
because of the limited availability of appropriate transitional settings and logistical problems. Among the most 
spectacular sites on Earth where such a transition can be directly observed is the Red Sea basin, particularly, its 
northern part where different stages of the process are simultaneously active. More than 50 years of multidiscipli-
nary research6–8 (see also the overview in the supplement) has produced a comprehensive geological-geophysical 
database of the Red Sea region that enables testing of geodynamic hypotheses. However, previous geophysical 
studies did not provide sufficient spatial resolution for the deep lithospheric structures beneath the Red Sea to 
corroborate or disprove the existing concepts and test predictions from numerical geodynamical models.

The Red Sea is part of the large “Afro-Arabian rift system” that propagates from the Dead Sea to Mozambique9 
and is considered among the youngest oceanic spreading zones in the world. It has formed as a result of the 
northeast displacement of the Arabian Plate with respect to the African Plate10 with the relative divergence vary-
ing from 10 to 16 mm/year11,12. The opening of the Red Sea began approximately 30 Ma because of the rupture of 
the Arabian–Nubian Shield, which may have been triggered by flood basalt volcanism caused by the Afar plume 
impingement on the non-uniformly stressed continental lithosphere4,7,13.

The opening of the southern part of the Red Sea (to the south of 20°N) presently occurs in the form of oceanic 
spreading7. Clearly identified linear magnetic anomalies around a distinct axial trough indicate that oceanic crust 
has developed here for at least 5 Ma8,14–16. However, in the northern half of the Red Sea, the lithospheric extension 
time is shorter and the extensional mechanism is not completely understood. The axial trough is not as clear here 
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as it is in the southern part6 and it forms a series of discrete depressions termed “deeps,” some of which are shown 
in Fig. 1A. No clear linear magnetic anomalies can be identified in the northern Red Sea to the north of 22°N 
6,8,16, which can be interpreted as evidence of continental extension. On the other hand, the crust in this part of 
the basin appears to be composed of a complex alternation of gabbroic and basaltic dikes, some of which have 
deep mantle origin and no continental crust contamination17. Furthermore, the estimated volume of the crustal 
material forming the Red Sea depression appears to be larger than the value following from the reconstruction 
based on correlating geological structures on the African and Arabian sides18. This means that some new crust 
needs to appear in some manner to satisfy this balance. Thus, both mechanisms of continental crust extension 
(i.e., stretching and faulting) and magmatic additions may occur in the northern Red Sea; therefore, it represents 
a unique case of a transition from rifting to spreading. The same conclusion follows from the analysis of detailed 
bathymetry structures and gravity observations19,20.

In this study, we present a new higher-resolution seismic tomographic model that shows some key lithospheric 
structures that were not observed in previous studies and that critically contribute to a better understanding of 
the geodynamics of the Red Sea area and lithospheric evolution during the rift to ridge transition.

Data and tomographic inversion
Here, we jointly use the data of the Egyptian and Saudi Arabian networks containing the arrival times of the P 
and S waves from regional seismicity, which were never used together in tomography studies. In this research, 
we used a dataset with 15,899 regional and local events and correspondingly 111,981 P-wave and 20,157 S-wave 
arrival times (Figures S1 to S3 of Supplementary Materials). These data were inverted using the LOTOS code21. 
A detailed description of the data and the main algorithm workflow is presented in the Supplementary Materials.

The reliability of the model was carefully tested using a series of synthetic tests. We used both a checkerboard 
and a model with realistic anomalies similar to those obtained after inversion of the experimental data. The results 
of synthetic modeling and additional information can be found in the Supplementary Materials (Figures S4 to 
S7). Note that because of lower number data, the resolution of the S-wave model is much poorer. Therefore, for 
our interpretation, we mostly used the P-wave model.

The resulting distributions of the P-wave velocity anomalies of the experimental data inversion are shown 
in Fig. 2 in two horizontal sections and three vertical profiles. More horizontal sections of this model, as well as 
the results for the S-wave velocity model and absolute P-wave velocity in vertical sections, are presented in the 

Figure 1.   (A) Topography in the study area (http://​www.​marine-​geo.​org). Red areas highlight the Harrats 
(Cenozoic basaltic fields); the dotted line indicates the axis of the Red Sea spreading/rifting. The names of the 
major deeps (depression points) in the Red Sea are shown. (B) Distribution of data used in this study: red points 
are events, blue triangles are Saudi Arabian stations, and green triangles are Egyptian stations and stations 
reporting to the ISC that were used in the previous tomographic studies21,22. Dotted lines indicate political 
boundaries. The images have been produced using the Surfer Golden Software 13 (https://​www.​golde​nsoft​ware.​
com/​produ​cts/​surfer).

http://www.marine-geo.org
https://www.goldensoftware.com/products/surfer
https://www.goldensoftware.com/products/surfer
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Supplementary Materials (Figures S8 to S10). The final distribution of the seismicity after five iterations of the 
inversion is shown in Fig. 1B.

Discussion
In the tomographic model, beneath the northern Red Sea (to the north of 24°N), we see a prominent high-velocity 
anomaly to 50–70 km depth whose shape approximately corresponds to the limits of the basin. A similar anomaly 
for the northernmost part of the Red Sea has already been retrieved by other tomographic studies merely based 
on the Egyptian networks22,23. The novel feature of the present result is an elongated low-velocity anomaly in 
the central part of the Red Sea between 24ºN and 27ºN (red dotted line with the indication of L1 in Fig. 2a). 
In the deeper sections, below 50 km depth, the negative anomaly beneath the Red Sea widens and is observed 
below the entire basin (anomaly L2 in Fig. 2b). At these depths, the high-velocity anomalies are traced as several 
distinct patterns mostly beneath onshore areas. In such regional-scale studies, areas of high seismic velocities are 
commonly associated with rigid, highly consolidated massifs consisting of igneous or deeply metamorphosed 
rocks, whereas the low-velocities are usually interpreted as sedimentary deposits or active magmatic systems 
with high temperature and/or melt content.

It is interesting that in areas where the low-velocity anomaly is observed beneath the axial trough, the seis-
micity is relatively weak whereas the maximum seismic activity is observed beneath the northernmost part of 
the Red Sea and at approximately 24ºN latitude at the vicinity of the high-velocity anomaly indicated H2. This 
irregularity in the seismicity distribution along the Red Sea axis was earlier discussed24. It was shown that high 
seismic activity corresponds to colder areas where the extending crust behaves in a brittle manner. This seems to 
be supported by the results of this study: a seismic gap between 25.5 °N and 26 °N and highly dispersed seismicity 
between 26 °N and 26.5 °N with earthquake magnitudes rarely exceeding 4 25 correspond to low-velocity areas 
in the tomographic model along the rift axis (anomaly L1 in Fig. 2a), which may mark high-temperature zones 
where the ductile extension of the hot crust occurs. Alternatively, the extension in this segment may occur by 
dike intrusion rather than normal faulting, which could result in a net decrease in seismic moment release. Such 
mechanism was earlier proposed in the context the Afar extension26–28.

Figure 2.   P-wave velocity anomalies obtained from tomographic inversion presented in two horizontal 
(panels a, b) and three vertical (panels c–e) sections. In the maps, the contours of harrats are shown on the Saudi 
Arabian side. Within the Red Sea, the bathymetry is shown with contour lines starting from 1000 m and at an 
interval of 500 m. Above each of the vertical sections, the topography/bathymetry along the profile is shown. 
The locations of the main harrats are shown in red ellipses as follows: Rh – ar Rahah, Uw – Uwayrid, Lu – 
Lunayyir, Kh – Khaybar, and Rt – Rahat. AB is Abu-Dabbab. Dotted lines indicate political boundaries. Letters 
in yellow indicate the structures discussed in the text. The images have been produced using the Surfer Golden 
Software 13 (https://​www.​golde​nsoft​ware.​com/​produ​cts/​surfer).

https://www.goldensoftware.com/products/surfer
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In another segment of the axial rift located in the southern part of our study area between the latitudes of 
23ºN and 25ºN indicated with H2, the observed high velocity anomalies may characterize cold zones, where 
brittle crust deformation produces considerable seismicity.

Based on the tomographic results, we propose that in the Red Sea area, we may observe gradual lithosphere 
reworking due to extension and initiation of the spreading zone, as schematically shown in Fig. 3. Before the 
opening of the Red Sea, between the divergent Arabian and Nubian plates, the lithosphere extension occurred 
through continuous stretching of continental crust (Stage 1 in Fig. 3A). The extension primarily occurred in a 
zone where the lithosphere was softened by the presence of hot asthenosphere that arrived either from the Afar 
Plume29 or from an overheated area beneath the central part of the Arabian Plate30. In this case, the continental 
crust was gradually thinned by normal faulting, as observed in other continental rifts.

In a case of the presence of hot asthenospheric material beneath extended lithosphere, as has been presumed 
beneath the western margin of the Arabian Plate, further extension of the continental lithosphere may trigger 
intrusions of the mantle-originated magma into the crust31 (Stage 2 in Fig. 3B). In this case, the lithosphere 
stretching due faulting and dike intrusion can occur synchronously, as supported by an evidence that extension 
was kick started by a phase of intrusions around ~ 25 Myrs ago13. Thick continental and thin transient lithosphere 
in this case behave differently. In the thicker lithosphere, as beneath the western margin of the Arabian Plate, the 
intrusions create a series of multi-level magma reservoirs that episodically lead to eruptions of massive basaltic 
fields, i.e. Harrats. For the extended thinner lithosphere, as within the Red Sea basin, the asthenospheric mate-
rial creates a series of dikes propagating throughout the lithosphere that accommodate extension. Note that the 

Figure 3.   Schematic representation of three stages of extension of the transition from continental rifting to 
oceanic spreading (panels A–C). The interpretation in panel (D) is based on the results of seismic tomography 
obtained in this study. See details in the text. The images have been created in Corel Draw (coreldraw.com).
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emplacement of a dike releases local tensile crustal stresses making the respective crustal region not suitable for 
further fracturing. Therefore, the further extension of the lithosphere is accommodated by dikes emplacement in 
others more stressed parts of the lithosphere32. This explains why the dikes in the transient lithosphere uniformly 
affect the entire basin and are not localized in one narrow zone. After some time, these dikes composed of frozen 
igneous rocks change the effective integral properties of the lithosphere, making it fundamentally different from 
the stretched continental lithosphere. In the tomographic model of the current study (Fig. 2a), this transitional 
lithosphere appears as a high-velocity anomaly observed at shallow sections. We see that the coastal line of the 
Red Sea corresponds to a sharp transition from low velocity beneath the onshore areas to high velocity offshore 
without any gradual transition. This is particularly clear for the northern Red Sea area ("Introduction" section 
in Fig. 2) where the offshore lithosphere is uniformly high-velocity (anomaly H1 in Fig. 2a).

The third stage of the lithosphere stretching (Fig. 3C) presumes breaking of the lithosphere in a localized 
area and then further development of oceanic spreading. Possible interpretation of the derived distributions 
of the P-wave velocity anomalies in Sect. 3, which correspond to this extensional stage, is schematically shown 
in Fig. 3D. Spreading in the Red Sea is evidenced by the presence of the elongated low-velocity anomalies L1 
(Fig. 2a) coinciding with the line of “deeps” along the axial part of the Red Sea. This low-velocity zone along the 
axial trough represents the hot partially molten asthenosphere that has ascended immediately below the spread-
ing center. Note that the southernmost part of the anomaly L1 deviates westward from the through axis. This may 
indicate that the lithosphere fracturing in this zone avoids ductile high-temperature zones and primarily occurs 
in colder brittle lithosphere associated with high-velocity anomaly H2 and high seismicity.

The high-velocity anomalies along the opposite sides of the Red Sea basin represent the oceanic–continental 
transitional mantle lithosphere perturbed by a system of mafic dykes. These lithosphere segments appear to be 
not symmetrical. As we see in the vertical sections in Fig. 2, the lithosphere in the eastern flank of the Red Sea 
does not exceed 40 km in thickness, whereas beneath the Egyptian coast it appears much thicker. In the northern 
part of the Red Sea basin, the mantle lithosphere may be up to 50–70 km thick.

Based on the new tomography model, we can conclude that within the study area, a transition between two 
different mechanisms of rift basin opening exists: in the northern part, we propose an extension due to dispersed 
diking throughout the entire basin of the Red Sea (Scheme 2 in Fig. 3B), whereas in the southern part, most of 
extension is thought to be accommodated in a narrow zone of initiated spreading (Scheme 3 in Fig. 3C). This 
transition might be associated with a variable extension rate along the Red Sea, which is caused by the fact that 
the Arabian plate is rotating anticlockwise with an Euler pole somewhere in the Mediterranean Sea and this 
results in a decreasing spreading rate from the south to north of the Red Sea.

To understand tectono-magmatic processes leading to the formation of the transitional lithosphere, we ana-
lyzed the results of previously published numerical models of the rifting to spreading transition3, in which 
dynamics of magma addition to the lithosphere was simulated. The asymmetry of the lithospheric extension 
in the northern Red Sea area suggests the existence of rheologically decoupled continental lithosphere with a 
weak lower crust that greatly affects mantle melting and crustal growth dynamics2,3 (Fig. 6 in Liao and Gerya3). 
Compared to stronger and more symmetrical rheologically coupled models, decoupled lithosphere extension is 
characterized by a distinct transient period of enhanced mantle melting and related magmatic crustal growth. 
During this period, lithospheric extension can likely be dominated by magmatic (e.g., dike emplacement) rather 
than tectonic processes (a high-M regime, where M is the proportion of magmatic vs. tectonic extension33. As 
a result, a transitional, predominantly magmatic lithosphere can form as imaged in the high seismic velocity 
anomaly of the northern Red Sea area. During a later stage, localization of lithospheric extension produced an 
incipient oceanic ridge that disrupted the transitional lithosphere and formed a linear negative seismic velocity 
anomaly via localized upwelling and decompression melting of the upper mantle (Fig. 3C and D).

Conclusions
We have constructed a 3D seismic model of the lithosphere and uppermost mantle beneath the Red Sea and 
surrounding areas based on a merged dataset containing P- and S-wave arrival times from regional seismicity 
provided by Egyptian and Saudi Arabian seismic networks. For the Red Sea basin, we have achieved a better reso-
lution compared to the cases when the data of these networks were separately used. The derived seismic model 
resolves the lithospheric structure during the ongoing transition from continental breakup to oceanic spreading. 
In the Red Sea basin, particularly in its northernmost part, we observed a pronounced high-velocity anomaly. A 
sharp transition from low to high velocity along the Red Sea’s coastline may disprove the mechanism of gradual 
stretching of the continental crust during passive rifting. The results of this study may show that the crust in the 
northernmost Red Sea is principally different from the regular continental crust and represents a transient type 
of lithosphere strongly affected by dike intrusions. The linear low-velocity anomaly along the axial trough of the 
northern Red Sea shows a zone of spreading initiation causing asthenospheric ascent.

Data availability
The full directory with data and program codes to reproduce the results presented in this paper can be down-
loaded from Zenodo. http://​doi.​org/​10.​5281/​zenodo.​44820​96. This compressed file includes a Read_Me.pdf file 
with detailed guidelines on how to perform the calculations.
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