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In vivo gene manipulation is a corner-
stone approach in modern physiology.

Cre-Lox technology has been extensively
used to delete genes and activate reporters
in pancreatic b-cells, bringing new insight
into the pathophysiology of diabetes. In
all cases, it is important to understand the
expression domain of the specific reporter-
Cre combination in order to correctly
interpret the data. In the case of targeted
genes with significant expression and
function in the brain, the use of Ins2 pro-
moter driven Cre, commonly known as
RIP-Cre, has been shown to confound
data interpretation when appropriate con-
trols are not present. The recent article
from the Philipson group in Islets provides
an important characterization of a new
Cre-deleter model, referred to as MIP1-
CreER, which employs the mouse Ins1
promoter. This Ins1 promoter, recapitu-
lating the expression pattern of the endog-
enous Ins1 gene, does not drive significant
transgene expression in the brain and
therefore is highly specific for deleting
genes or turning on reporters in the pan-
creatic b-cell. This model promises to be
widely used in the field of islet biology.
Here, I review recent developments in the
area of in vivo gene modification and pre-
dict areas where such tools will be refined
further.

The goal of modern medical research is
to understand the mechanisms of disease
in sufficient detail to intervene therapeuti-
cally. A critical component of this mission
involves the understanding of the role of
specific genes in the context of whole
organism physiology. In the case of diabe-
tes, many causal genes or genes that
increase an individual’s susceptibility to
disease in the context of environmental

factors are known, from both candidate
gene approaches and genome-wide associ-
ation studies.1 For example, increased risk
for common and polygenic type 2 diabetes
can be conferred by single nucleotide
polymorphisms in at least 50 genes.1

Monogenic forms of diabetes, including
the MODY category, have at least 10
known causal genes.1 The study of these
gene-deficient patients and their families
has provided critical insight into the essen-
tial pathways that mediate glucose homeo-
stasis in man.2 However, such ‘knockout
humans’ are generally very rare and, with
this approach, it is not possible to gain
sufficient insight into the effect of specific
genes in common type 2 diabetes due to
the small effect sizes of each gene and the
genetic heterogeneity of the human popu-
lation. Moreover, because invasive analysis
and tissue-specific manipulations are vir-
tually impossible in humans, a robust
understanding of the physiological role of
key genes requires the use of animal mod-
els. From a mechanistic standpoint, stud-
ies in genetically engineered rodents are
more powerful than correlative and non-
invasive human studies. While human
studies are important in diabetes research,
genetic manipulation of b-cells in small
animal models, like mice, is required to
understand mammalian glucose homeo-
stasis and diabetes pathogenesis.

Many approaches have been taken to
modulate gene expression in pancreatic
islet cells, with the ultimate goal of under-
standing the control of glucose homeosta-
sis. There are critical caveats and
assumptions inherent to each approach. In
the case of global germline knockout
mice, gene deletion can be absolute
(depending on the targeting strategy) and
these models best mimic monogenic
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human diseases. However, the use of
global knockout mice to identify specific
tissues and developmental stages involved
in a genetic pathway comes with clear cav-
eats, given the interconnectivity across tis-
sues. For human mutations that result in
gain-of-function or change-of-function,
germline knock-in mice are suitable mod-
els. Again, these models do not offer tem-
poral or spatial control of gene function
that is required to understand the relative
roles of specific tissues or cell types.

In order to understand the specific func-
tion of a gene in a specific cell type, condi-
tional gene manipulation must be used.
This typically involves the use of a two-
component system, involving a line of
mice wherein the target gene has been
modified to incorporate loxP sites and a
second line of mice where Cre-recombi-
nase is expressed in the domain of a tissue-
specific gene promoter3,4 Complete
knowledge of the domain within which
Cre is expressed is critical for the proper
interpretation of a Cre-Lox experiment.
Magnuson has recently published a com-
prehensive review of Cre lines available for
pancreas research.5 Here I will focus on the
utility and caveats around b-cell models.
Extensive research has shown that many
widely used Cre mouse lines are not as tis-
sue-specific as originally thought.5-7 In the
field of pancreatic b-cell physiology, the
first extensively used Cre driver line was
the so-called RIP-Cre mouse,8 where RIP
denotes short (»0.6 kb) versions of the rat
Ins2 promoter.5 Versions of this mouse
line were produced by multiple laborato-
ries (an up-to-date list has recently been
published5). There have been reports of
Cre toxicity with this model,9,10 but other
groups have not reported similar observa-
tions,11 suggesting the possibility that such
effects are strain- and/or environment-
dependent. Care and adequate controls are
essential in this realm of research. The
rationale for Cre-only controls, to comple-
ment floxed controls and fully wildtype
controls has recently been reviewed.12

Despite these caveats, these Cre-Lox mod-
els remain viable tools for stable tissue-
selective gene deletion or reporter activa-
tion in cells with Ins2 promoter activity. In
pancreatic b-cells, Ins2 promoters are
active beginning at »E9.5, meaning that
gene modulation encompasses a majority

of developmental stages and the entire
adult lifespan.

Time-controlled gene deletion in
b-cells can be achieved with variants of
this model wherein the Cre activity can be
induced with a small molecule, usually the
estrogen-related drug tamoxifen. These
mice include the RIP-CreER strains that
take advantage of the rat Ins2 promoter
and Pdx1CreER strains (made by several
groups) that utilize a fragment of the Pdx1
promoter that expresses in adult b-cells. It
should be noted the widely used
Pdx1CreER mouse generated by the Mel-
ton group was not reviewed in the article
examining Cre-mediated excision in the
brain,6 and several groups including ours
have found an absence of broad hypotha-
lamic excision using this model.13 An Ins2
Cre-ERT knock-in has recently been cre-
ated and published.14 These systems work
by using a Cre fusion protein that contains
a modified version of the estrogen receptor
that, in the absence of tamoxifen, prevents
the Cre from entering the nucleus to
cleave the loxP tagged DNA. Some tech-
nical challenges of this approach include
spontaneous recombination in the absence
of tamoxifen in older mice.15 Caveats
associated with these complications can be
circumvented by performing studies in
younger mice and by employing multiple
controls that take into account possible
effects of Cre alone, tamoxifen alone, and
spontaneous recombination. Another
caveat that has been reported is the persis-
tence of significant recombination, up to
2 weeks after the last high-dose tamoxifen
pulse.16 Presumably, this can be alleviated
by using lower doses and more sensitive
ER systems.

Several versions of the tamoxifen-
inducible Cre have been published in the
broader field, including a fusion protein
containing two modified ER (MER)
domains that reportedly exhibits fewer
spontaneous recombination events.5

Another version, called the ERT2 system,
employs a triple mutant version of the
estrogen receptor that exhibits virtually no
binding to endogenous estrogen at physio-
logical concentrations, and therefore
greater sensitivity and specificity for artifi-
cial estrogen receptor ligands such as
tamoxifen.17 The ERT2 system should
theoretically improve upon current

models, although a complete set of con-
trols should still be employed.

Rational Choice of Insulin
Promoter or Knock-in Location
for b-Cell Targeting: Lessons

from Insulin Biology

Understanding the consequences and
complexities of transgenes driven by insulin
promoters and alterations in the insulin
locus requires some understanding of the
biology of the insulin genes in mice. Insu-
lins are ancient, conserved genes.18 Worms
have 40 insulin-like genes expressed mostly
in neurons.19 Flies have 7 insulin-like pepti-
des, also in neurons, with diverse roles in
growth and metabolism.20 There are 8
genes related to insulin in humans: an
INSULIN gene, 2 IGFs, as well as insulin-
like peptides and relaxins; they are expressed
in a plethora of tissues.21 Mice and rats are
unique in that the have 2 insulin genes, a
second gene (Ins1) arising from a duplica-
tion event.22 The Ins2 gene is ancestral,
equates to the INSULIN gene found in
humans and is better characterized.22 Islets
express almost twice as much Ins2 mRNA
when compared to Ins1.22 It is probably the
relative strength of the Ins2 promoter that
led most investigators to employ Ins2 pro-
moter constructs in transgenic mice.5 Insu-
lin is expressed, albeit at much lower levels,
in several tissues outside the pancreas. Spe-
cifically, Ins2/INSULIN is expressed in the
pancreas, the thymus where it controls
immune tolerance, and in certain regions of
the brain where its function is unknown.23-
33 We found clear, albeit modest, expres-
sion of Ins2 mRNA, but not Ins1 mRNA,
in multiple brain regions of wildtype
mice.23 Importantly, neither Ins2 mRNA
expression nor insulin protein, were found
in Ins2¡/¡ mice, effectively controlling for
qPCR or staining artifacts.23We and others
have described how mice with bGal
knocked into the endogenous Ins2 locus,
originally created in the 1990s, show clear
expression in multiple regions of the
brain.23 The recently published Ins2 Cre-
ERT knock-in mouse14 would also be
expected to produce Cre in the brain, as
demonstrated by previous Ins2 lacZ knock-
in and Ins2 diphtheria toxin knock-in
mice.23,26,34 Thus, Cre expression in the
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brain while under the control of the Ins2
promoter6 or endogenous Ins2 gene ele-
ments reflects to at least some extent the
endogenous expression domain of Ins2 in
the brain,23 and is not necessarily entirely
due to a poorly defined process of
‘leakiness’. The expression of Cre in the
brain does not necessarily mean that a study
is fatally flawed, just that complete controls
are required, including controls for the
effects of Cre alone, as well as detailed study
of processes under central control. In some
cases, the gene of interest will not be
expressed or relevant in the Ins2 expressing
central neurons. Conversely, the analysis of
the endogenous expression domain of Ins1
in the adult mouse, which does not include
significant expression in the intact brain,

also explains why Ins1-based approaches are
inherently more specific to the pancreas. In
the accompanying paper,35 the authors
report the characterization of a new Cre-
deleter mouse model employing a large Ins1
promoter fragment that directs Cre expres-
sion to the pancreatic b-cells, but not the
brain.6

Utilizing the Mouse Ins1
Promoter to Mitigate Brain

Cre Expression

The need for a more b-cell specific Cre
deleter model prompted the Philipson
group to design the MIP1-CreERT mouse
model using an 8.3 kb fragment of the

Ins1 gene promoter, as described in the
Tamarina publication.35 A long Ins1
promoter was also previously used to
make the well-characterized MIP-GFP
mice,36-38 as well as other mice designed
for PET imaging and bioluminescence
imaging.39 In this new publication, the
authors used qRT-PCR to demonstrate
that MIP1 does not drive creERT mRNA
expression in a panel of non-pancreatic
tissues. This complements previous stud-
ies demonstrating that this model does
not drive significant Cre expression in the
central nervous system (Fig. 1).6 Although
a tiny number of GFP-positive can appar-
ently be FACS separated the hypothala-
mus of MIP-GFP mice, they do not
express Ins1 or Ins2 once immortalized
and it is not clear what features of the
resulting cells lines are recapitulated in
vivo.40 Given previous reports of extra-
pancreatic GFP expression in stressed
MIP-GFP mice,41 a thorough, cell-level,
immunohistochemical analysis of Cre and
reporter gene expression (e.g., b-Gal) in
all tissues will be required to confirm its
absolute specificity to the islet b-cells.

The authors provide evidence that the
MIP1-CreERT model is physiologically
normal. Specifically, no significant effects
of Cre induction with tamoxifen were
found on glucose homeostasis in either
male or female mice under the conditions
tested.35 Intracellular Ca2C responses of iso-
lated whole islets to glucose, a robust index
of b-cell function and health,42 also
appeared normal in this model. Islet archi-
tecture was grossly normal,35 althoughmor-
phometric counting of b-cells and a-cells
and analysis at more ages and under stress
conditions may be required to fully elimi-
nate an effects of Cre to b-cell health.
Moreover, it will be important in future
studies to assess the b-cell function of this
model under diabetic conditions.

The work by Tamarina et al. demon-
strates for the first time that a target gene,
in this case b-catenin, can be robustly
down-regulated using the MIP1-CreERT
deleter mouse line,35 although MIP-Cre
has previously been used to activate a tar-
get gene in b-cells.43 It is expected that
there will be some caveats with this model,
as there always are with any model. For
example, the expression level of Cre might
be expected to be slightly less than in Ins2-

Figure 1. Schematic of Cre-LoxP mediated gene targeting in pancreatic b-cells and its relationship
to the endogenous expression patterns of Insulin 1 and Insulin 2 in the mouse. In mice, Insulin 1 is
present primarily in the pancreatic b-cells, whereas the ancestral Insulin 2 gene is expressed in the
pancreatic b-cells, the thymus, and specific cell populations in the brain. Using a tamoxifen-sensi-
tive system that causes Cre translocation to the nucleus (A), transgenic mice expressing Cre recom-
binase under the control of the mouse Ins1 promoter can selectively excise DNA sequences
between LoxP sites in the pancreatic b-cells, without significant recombination in the brain (B).
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driven models, given the relative weakness
of the Ins1 promoter. Subsequent studies
were unable to show complete protein
ablation of GLP-1 receptors using this
MIP1-CreERT deleter mouse,44 which
impacts the interpretation of those studies.
We and others have shown that some Ins1
promoter constructs may only be robustly
activated in a subset of mature b-cells.45,46

While this caveat apparently did not come
into play in the Tamarina studies,35 less
than complete gene ablation is something
that groups using this model should care-
fully examine using qPCR and imaging of
a lineage-tracing reporter in littermate
controls.

Future Directions
and Perspectives

The field of genetic engineering in pan-
creatic b-cells is clearly entering an excit-
ing new phase, with a range of available
and improved models. It will be a chal-
lenge for the field to keep track of each
model, in part, due to the shifting nomen-
clature. Ideally, the field would move to a
nomenclature used in publications where
each of the strains has a unique identifier.
For example, Cre-deleter mice could have
information on the promoters used built
into their name (e.g., mIns1¡xxx-xxxbp

CreERT).
The field looks forward to additional

Cre-deleter lines for pancreatic b-cell
research. In addition to transgenic
approaches, which can come with caveats
related to insertion sites, groups are
employing alternative approaches includ-
ing bacterial artificial chromosomes, as
well as knock-in/gene editing. A very
recent article reports on the creation of an
Ins1-based Cre driver using bacterial artifi-
cial chromosome transgenesis.47 Multiple
efforts under way to produce additional
Cre and CreERT2 knock-in alleles that
replace Ins1 in the endogenous insulin
gene locus. Such mice would have the
advantage of near ideal specificity for
mature b-cells. While such Ins1 knock-in
mice would necessarily have only 3 of
4 insulin alleles, we and others have shown
that mice have normal glucose homeosta-
sis even when lacking 2 insulin alleles.23 It
should be noted that the Ins1 promoter is

generally considered to be slightly weaker
than the Ins2 promoter. However, with
the sensitivity of the Cre-lox system, one
might not expect this to be a serious prob-
lem. It is also expected that investigators
may begin to use multiple site-specific
recombinases, such as Flp and Dre,5

which may permit double lineage tracing
and other complex experimental designs,
once suitable target alleles become avail-
able. Expanded use of a hybrid approach,
where Cre or similar recombinases are
delivered using viruses to mice with condi-
tional alleles, is also expected. Indeed,
studies have shown that adeno-associated
viruses, such as AAV8 and AAV6, are par-
ticularly effective at delivering genes to
islets in vivo.48-51 This approach obviates
the need for tamoxifen, which may be less
than ideal in some experiments.

In summary, the models described
herein are forming an increasingly varied
and powerful toolkit that will allow inves-
tigators to tailor studies to test highly
complex and specific hypotheses. The
combined use of multiple models to
answer a given question will give the field
increased confidence in the underlying
biology. The rapid increase in new mouse
models for b-cell genetic engineering will
provide new insights into b-cell biology
and accelerate diabetes research.
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