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Abstract

The human genome contains hundreds of thousands of missense mutations. However, only a handful of these variants
are known to be adaptive, which implies that adaptation through protein sequence change is an extremely rare
phenomenon in human evolution. Alternatively, existing methods may lack the power to pinpoint adaptive variation.
We have developed and applied an Evolutionary Probability Approach (EPA) to discover candidate adaptive poly-
morphisms (CAPs) through the discordance between allelic evolutionary probabilities and their observed frequencies
in human populations. EPA reveals thousands of missense CAPs, which suggest that a large number of previously
optimal alleles experienced a reversal of fortune in the human lineage. We explored nonadaptive mechanisms to
explain CAPs, including the effects of demography, mutation rate variability, and negative and positive selective
pressures in modern humans. Many nonadaptive hypotheses were tested, but failed to explain the data, which
suggests that a large proportion of CAP alleles have increased in frequency due to beneficial selection. This suggestion
is supported by the fact that a vast majority of adaptive missense variants discovered previously in humans are CAPs,
and hundreds of CAP alleles are protective in genotype–phenotype association data. Our integrated phylogenomic
and population genetic EPA approach predicts the existence of thousands of nonneutral candidate variants in the
human proteome. We expect this collection to be enriched in beneficial variation. The EPA approach can be applied
to discover candidate adaptive variation in any protein, population, or species for which allele frequency data and
reliable multispecies alignments are available.
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Introduction
Over half a million missense variants have been identified in
human populations, of which a substantial number occurs at
significant frequency (>1%; 33,369 missense variants) (1000
Genomes Project Consortium 2015). Although previous stud-
ies have shown the potential for ample adaptive coding var-
iation in the human genome (Boyko et al. 2008; Enard et al.
2014), they have pinpointed only a few missense polymor-
phisms to be adaptive (Hernandez et al. 2011; Grossman et al.
2013) (table 1). It is possible that virtually all of the common
human missense polymorphisms are either selectively neutral
or deleterious (i.e., subject to purifying selection), but an al-
ternative explanation is that existing methods lack sufficient
power to locate adaptive coding variation. Furthermore, pop-
ulation genomic approaches to date are typically designed
to identify recent selective pressures acting on candidate
genes or genetic regions that vary within modern human

populations, a segment of time that is only a minor fraction
of the depth of the human lineage. We, therefore, have the
opportunity to discover thousands of novel adaptive changes
by using complementary approaches.

In this article, we integrate phylogenomics and population
genomics to discover candidate adaptive polymorphisms
(CAPs) in the human exome. This integrative approach
advances beyond the current phylogenomic methods that
compare patterns across species, but are blind to variation
segregating within a given species (Goldman and Yang 1994;
Muse and Gaut 1994; Yang and Bielawski 2000; Hurst 2002;
Nielsen et al. 2005; Pollard et al. 2006; Anisimova and Yang
2007; Shapiro and Alm 2008; Lindblad-Toh et al. 2011; Peter
et al. 2012). It is also distinct from the current population
genomic methods that utilize patterns of population variation
to identify candidate adaptive genes or genetic regions, but do
not distinguish specific amino acid variants (Akey et al. 2002;
Li and Stephan 2006; Teshima et al. 2006; Voight et al. 2006;

A
rticle

� The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com Open Access
Mol. Biol. Evol. 35(8):2015–2025 doi:10.1093/molbev/msy107 Advance Access publication May 28, 2018 2015



Sabeti et al. 2007; Akey 2009; Grossman et al. 2013; Moon and
Akey 2016). Together, evolutionary information from both
short- and long-term time scales is harnessed in our approach.

We applied this new approach to over 500,000 polymorphic
missense alleles (1000 Genomes Project Consortium 2015)
reported in human proteins, which revealed over 18,000 var-
iants that exhibit nonneutral evolutionary patterns. We ex-
plored a wide variety of nonadaptive phenomena to explain
the existence of these variants and investigated available ge-
notype–phenotype association studies to determine if the
nonneutral variants revealed by our new approach have had
significant impact on human phenotypic variation. The result
is a large catalog of polymorphisms that will be interesting to
consider in future evolutionary and functional analysis of hu-
man genomes.

New Approaches
Our approach exploits the neutral theory framework, where
variation arising from long-term molecular evolution among
species informs a null model of observed within-species pat-
terns of selectively neutral variation (i.e., no fitness effect)
(Kimura 1983). This relationship is useful to identify adaptive
proteins that deviate from neutral expectations and have
undergone adaptive evolution (Hudson et al. 1987;
McDonald and Kreitman 1991). In our novel allelic approach,
we first capture long-term evolutionary history with estimates
of the neutral evolutionary probability (EP) of observing each
of the possible 20 segregating amino acid residues (alleles) at a
given amino acid position. EP is computed using a Bayesian
framework and a multispecies alignment; it is an average of
posterior probabilities weighted by the divergence time of
each of the species relative to humans in the species timetree
used (Liu et al. 2016). The sum of all allelic EPs is 1.0 for each
amino acid position. Importantly, EP for an amino acid allele
at a given protein position is not affected by the presence of a
consensus base at that position in the human reference ge-
nome or by the corresponding alleles that segregate in

Table 1. Known Adaptive Missense Polymorphisms and Their
Candidate Adaptive Polymorphism (CAP) Status with Empirical
Probability (Pneu).

Protein SNP Identifier CAP? P value

ALMS1 rs10193972 Yes <0.02
rs2056486 Yes <0.02
rs3813227 Yes <0.02
rs6546837 Yes <0.02
rs6546838 Yes <0.02
rs6546839 Yes <0.02
rs6724782 Yes <0.02

APOL1 rs73885319 No n/a
DARC rs12075 Yes <0.02
EDAR rs3827760 Yes <0.03
G6PD rs1050828 Marginal n/a

rs1050829 Yes <0.03
HBB rs334 Marginal n/a
MC1R rs1805007 No n/a

rs1805008 No n/a
rs885479 Yes <0.03

SLC24A5 rs1426654 Yes <0.02
SLC45A2 rs16891982 Yes <0.02
TLR4 rs4986790 Yes <0.04

rs4986791 Marginal n/a
TLR5 rs5744174 No n/a
TRPV6 rs4987657 Yes <0.01

rs4987667 Yes <0.01
rs4987682 Yes <0.01

NOTE.—A candidate adaptive polymorphism (CAP) is an amino acid polymorphism
with the evolutionary probability (EP)< 0.05 and population allele frequency
(AF)> 5%. n/a marks alleles for which at least one of these two conditions was
not met. Supplementary table 1, Supplementary Material online, presents more
details on each of these polymorphisms and the source references. Marginal status
is given to alleles with EP< 0.05 and global AF> 2%.

(a) (b) (c)

FIG. 1. Evolutionary Probability Approach. The evolutionary probabilities (EPs) and their application to discover candidate adaptive polymor-
phisms (CAPs). (a) Timetree of 46 vertebrates (Hedges et al. 2015), which was used along with alignments of orthologous amino acid sequences for
all human proteins (Kent et al. 2002) to compute the probability of observing each amino acid residue at a given position. Under neutral theory, we
expect a strong relationship between EP and allele frequency (AF) such that evolutionarily unexpected alleles (EP< 0.05) will be rare. (b)
Relationship between EP and AF. Average EP (y axis) was calculated for 0.05 sized AF bins (x axis) for all polymorphic missense alleles in the
1000 Genomes Project Phase 3 whole genome sequencing data, which confirms the general relationship between EP and AF to be consistent with
neutral expectations. The standard deviation is visualized with gray lines (averages are in blue), which is expected to be large because contemporary
AFs are a product of time of origin, natural selection, and genetic drift experienced by a mutation. (c) Distribution of empirical P values (–log10)
generated from the empirical framework (AF j EP< 0.05). The cutoff used to identify CAPs is shown with a dashed red line and is more extreme
than a false positive rate of 0.05.

Patel et al. . doi:10.1093/molbev/msy107 MBE

2016

https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy107#supplementary-data
https://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msy107#supplementary-data


humans, because this information is excluded from the multi-
species alignment when EP is calculated (Liu et al. 2016). EP of
an allele at a given position is, therefore, completely indepen-
dent of intraspecific variation. Under neutral theory, alleles
with low EP (<0.05) are not expected to persist within pop-
ulations and are, therefore, predicted to impact function and
fitness (Liu et al. 2016). Indeed,<1% of simulated neutral EPs
fall <0.05 in computer simulations, where we used the 46
species time tree in figure 1a, branch lengths from UCSC
(Murphy et al. 2001; Kent et al. 2002; Siepel and Haussler
2005; Liu et al. 2016), and pyvolve (Spielman and Wilke
2015) to simulate amino acid sequences (see Materials and
Methods).

Therefore, EP can serve as a null expectation that predicts
the neutral probability of observed within-species variation.
Contrasting the former against the latter produces a direct
neutrality comparison, for example, nonneutral alleles with
low EP (<0.05) are expected to correspond to missense
mutations that are found at low allele frequencies (AFs)
due to purifying selection (Liu et al. 2016). Consistent with
this expectation, 91% of disease-associated missense variants
in HumVar (Adzhubei et al. 2010) have low EP (<0.05) and
low AF (<1%). More generally, EP shows agreement with
observed global AFs calculated from the 1000 Genomes
data (fig. 1b; R2¼ 0.83, P< 10�15).

We used the above considerations to build an
Evolutionary Probability Approach (EPA) to identify non-
neutral (EP< 0.05) alleles that occur with unexpectedly
high population AF. When applied to protein sequence
variation, such alleles are predicted to impact protein func-
tion, and their prevalence may be due to adaptive pressures.
Therefore, we refer to them as CAPs. An observed allele is
designated a CAP, if it has an EP< 0.05 and AF> 5%. These
thresholds were chosen because the empirical probability of
observing a CAP for neutral alleles, Pneu, falls below 0.05 for
1000 Genomes Project data (fig. 1c), which represents a
significant departure from selective neutrality and forms

the basis of EPA. EPA is analogous to empirical outlier
approaches frequently utilized in population genomics, in-
cluding those that identify CAPs with metrics such as FST or
Tajima’s D (Lewontin and Krakauer 1973; Tajima 1989). A
critical difference is that we use information from both
phylogenomics (EP) and population genetics (AF) to iden-
tify CAPs, which makes EPA a two-dimensional approach
and complementary to available methods.

Results and Discussion
We applied EPA to 515,700 polymorphic missense alleles
(1000 Genomes Project Consortium 2015) reported in hu-
man proteins. We retrieved EPs for each allele from http://
www.mypeg.info; last accessed November 10, 2015 (Kumar
et al. 2012; Liu and Kumar 2013). The EPs were calculated by
Liu et al. (2016) using a 46 species alignment of orthologous
amino acid sequences (Kent et al. 2002; Liu et al. 2016). The
timetree of these species covers a very large evolutionary
timespan (�5.8 billion years; fig. 1a), such that each amino
acid position has had ample time to experience mutation and
purifying selection.

EPA revealed 18,724 CAPs (EP< 0.05) whose allele fre-
quencies showed significant departure from neutrality
(Pneu< 0.05). These CAPs were found in 7,815 proteins (see
www.mypeg.info/caps for a list of residues) distributed across
all autosomal chromosomes (fig. 2a). Many proteins harbor
multiple CAPs (fig. 3a) and have a large number of CAPs per
amino acid (fig. 3b), but protein length was not strongly
correlated with the number of CAPs (correlation coef-
ficient¼ 0.32). More than 20 CAPs were found in MUC4
and multiple HLA genes (fig. 2b), which were among the
top 0.2% of the CAP rich proteins (fig. 3b). Both of these
gene families play a role in immune response (Parham
2005; Pelaseyed et al. 2014) and are implicated in human
adaptations (Andres et al. 2009; Vahdati and Wagner 2016).
Moreover, as expected, the functional categories of “antigen

(a)
(b)

FIG. 2. Chromosomal distribution of CAPs. (a) The distribution of candidate adaptive alleles (CAPs) across autosomal chromosomes (red points).
Chromosomal banding patterns are also visualized for reference. (b) A plot of�log10(Pneu) generated from the Evolutionary Probability Approach
(y axis) against chromosome position (x axis) for the MHC region of chromosome 6. CAPs are shaded red and non-CAPs are shaded gray. The CAP
Pneu cutoff is shown with a dashed red line. Notable HLA genes with >20 CAPs are indicated.
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processing and presentation” and “sensory perception” were
among the most enriched in terms of the number of CAPs
per amino acid coding position (fig. 4).

Furthermore, a vast majority (> 70%) of known adaptive
amino acid polymorphisms were found to be CAPs (table 1
and supplementary table 1, Supplementary Material online),
which is a significant enrichment (permutation P< 10�7).
EPA also discovers a majority of the protein polymorphisms
predicted to be adaptive in previous population genomic
analyses (supplementary table 2, Supplementary Material on-
line), which suggests that the CAP catalog contains many
truly adaptive alleles. Still, the size of the CAP catalog is
over 200 times larger than the number of previously identified
adaptive polymorphisms.

One potential explanation for the high frequency of low EP
alleles is that they are mildly deleterious or selectively neutral
alleles whose frequencies are primarily driven by genetic drift
(Kryukov et al. 2007; Zhu et al. 2011). Another possibility is
that their high-allele frequencies reflect some combination of
drift, compensatory variation, and epistasis. In addition, sev-
eral nonadaptive phenomena could artificially inflate neutral
or deleterious missense allele frequencies. We, therefore, ex-
amined the extent to which genomic features and demo-
graphic processes could have given rise to CAPs.

Mutation Rate Differences and Biased Gene
Conversion
Given that mutation rates are known to affect allele frequen-
cies (Harpak et al. 2016), we investigated the potential for
mutation rate variation to result in false positive CAPs. We
first examined if mutation rates were elevated in codons
containing CAPs by comparing the rate of occurrence of
synonymous variants in codons that contained CAPs with
codons that did not contain CAPs. These two rates were
very similar, as 5.7% of the CAP-containing codons also har-
bored a synonymous polymorphism and 5.4% of non-CAP
codons harbored a synonymous polymorphism. This result

suggests that mutation rate differences do not explain the
observed distribution of CAP allele frequencies.

In addition, the hypermutability of CpG sites did not ex-
plain the persistence of low EP alleles at high frequency due to
recurrent mutations. We found a smaller proportion of CpG
overlapping CAPs relative to non-CAPs (26% and 33%, respec-
tively). Furthermore, we considered whether biased gene
conversion could result in false positive CAPs (Ratnakumar
et al. 2010). However, fewer than 1% of CAPs were within
regions of known biased gene conversion (Capra et al. 2013;
Rosenbloom et al. 2015), and the frequencies of weak to strong
(W!S) and strong to weak (S!W) changes (Lachance and
Tishkoff 2014) for non-CAP alleles (with EP< 0.05 and
AF< 5%) were not significantly different from CAP alleles
(P¼ 0.90). In addition, the relative frequencies of different
base changes were similar between CAP and non-CAP codons
(R2> 0.99, regression slope> 0.95), which showed that CAP-
containing codons show nucleotide substitution patterns
similar to non-CAP codons at each position in the codon.

Relaxation of Purifying Selection
We also examined the possibility that CAP-containing human
proteins have experienced relaxation of function in the hu-
man lineage. Although we think this is unlikely, because it
would require a vast fraction of human proteins (> 7,000 out
of 22,000) to be under reduced selection, we investigated
missense mutations that cause Mendelian diseases and com-
pared the frequency of these mutations in CAP-containing
proteins and non-CAP proteins (see Materials and Methods).
We did not find a significant difference in the preponderance
of disease mutations in CAP and non-CAP proteins.
Therefore, it is unlikely that CAP-containing proteins have
become less functionally important relative to other human
proteins.

Adaptive Hitchhiking
Deleterious alleles located in genomic regions, which have
undergone selective sweeps, can hitchhike to higher than

(a) (b)

FIG. 3. Properties of candidate adaptive alleles. Distribution of all (red bars) and phenotype-associated (pink bars) (a) CAP counts across proteins,
and (b) number of CAPs found per amino acid position in each protein coding gene.
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expected frequencies merely due to proximity to and linkage
disequilibrium with nearby adaptive alleles (Chun and Fay
2011). Only a small number of CAPs (6.7%) are located in
selective sweep regions (Schrider and Kern 2017). This obser-
vation is supported by previous studies (Chun and Fay 2011)
that investigated the impact of hitchhiking on deleterious

allele frequencies and found only a few hundred deleterious
hitchhiking nonsynonymous SNPs with common allele fre-
quencies (� 5.9%) in the 1000 Genomes Project data.
Therefore, hitchhiking of deleterious alleles with selective
sweeps does not appear to explain an overwhelming majority
of CAPs.

Human Demography
Human demographic history may explain the prevalence of
CAPs, because the migration of modern humans out of Africa
and subsequent population expansions could have resulted
in higher than expected frequencies of deleterious and mildly
deleterious alleles. However, it is not likely that these alleles
overwhelm the set of CAPs identified, since even a purely
neutral model of human evolution does not explain the frac-
tion of alleles found at high-allele frequencies: the SFS of
empirical CAPs shows a dramatic skew toward high-fre-
quency alleles relative to neutral expectation (fig. 5a). We
then tested if the CAPs SFS can be generated by human
demographic history in combination with various models
of selection. We employed a model based on differential
equations to approximate the evolution of allele frequencies
(Jouganous et al. 2017) and simulated a wide range of nega-
tive and positive selection coefficients for a demographic
model of recent human history (Gravel et al. 2011) with a
range of gamma parameter values (see Materials and
Methods). A model containing negative and positive selec-
tions provided the best fit for the CAPs SFS (lnL¼�3,080;
P� 10�10; fig. 5b). In this model, 47% of the observed alleles
were predicted to be weakly deleterious (s¼�8� 10�4) and
the remaining 53% were beneficial (s¼þ1� 10�3).

However, even the best-fit simulated selection model failed
to explain the preponderance of polymorphisms with very
high frequency (>95%). The number of empirical CAPs in this
category was over three times greater than expected (fig. 5b).
In order to determine whether the highest frequency class
(AF> 95%) was driving the signal of positive selection during
our model fitting, we conducted SFS analysis by removing all
CAPs in the 95–99.99% frequency class (observed as well as
simulated). For this comparison, the signal of positive selec-
tion persisted, as the best fit model was the one with
s¼þ2� 10�2, which was significantly better than a purely
neutral model (P� 10�10). This result further indicated that
positive selection would need to be invoked to explain the
observed distribution of CAPs.

The above results led us to consider whether CAPs repre-
sent ancestral standing variation, for example, found in the
ancestors of modern humans. We examined the proportion
of CAPs that were shared with archaic hominins
(Neanderthals and Denisovans) (Green et al. 2010; Meyer
et al. 2012; Prufer et al. 2014) and found that a large percent-
age of CAPs (43%) are shared with modern humans. This
proportion is significantly higher than what is expected by
chance (permutation P< 10�7). Although some of the
shared CAPs could have resulted from archaic gene flow,
the majority of these CAPs were likely present in the last
common ancestor of modern humans and archaic hominids,
because most (93.6%) shared CAPs occur at very high

FIG. 4. Functional distribution of CAPs. The top 75 GO-slim biological
process categories with the most CAPs per amino acid position (red
bars). The number of proteins found in each biological process an-
notation is in parentheses. The number of CAPs found in each bio-
logical process is listed next to the corresponding bar. Additional
information for all PANTHER GO-slim biological process categories
can be found as a Supplementary Material.
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frequencies (AF> 95%) in modern humans. One such possi-
bility is a CAP (rs4987682) in TRPV6, which is present in the
Altai Neanderthal genome (Prufer et al. 2014). TRPV6 is in-
volved in calcium absorption (Hughes et al. 2008) and located
in a region of the genome that has been identified in several
previous genome-wide scans for selection (Akey et al. 2006;
Hughes et al. 2008). This region is hypothesized to have been
subjected to multiple selective events (Hughes et al. 2008).
The EPA approach is able to detect these more ancient adap-
tive variants by integrating inter- and intraspecies informa-
tion. This is in contrast to common methods that are
primarily powered to detect recent adaptive events, as evi-
dent in the list of known human adaptive variants, which
consists of relatively recent polymorphisms.

Validating CAPs
Generally, traditional functional evaluation of CAPs that arose
in the human lineage is challenging, because in vitro and
in vivo approaches are low-throughput, require a priori func-
tional information for experimental design, and do not pro-
vide the impact of individual alleles on higher level human
phenotypes. Furthermore, it is not possible to test human
fitness in a controlled/laboratory setting, and it is often not
relevant to test the functional impact of CAPs in nonhuman
model systems. It is, however, possible to take an organismal
approach to investigate allelic impact on natural, population-
level human variation using phenotype-association studies.
For example, many well-known adaptive missense variants
(table 1) are also significantly associated with phenotypes in
genome-wide studies: rs334 with malaria and severe malaria
(Timmann et al. 2012; Band et al. 2013), rs4987667 with in-
termediate gene expression phenotypes involving HLA
(Fehrmann et al. 2011), and rs1426654 with skin pigmenta-
tion (Stokowski et al. 2007).

Therefore, we searched the Human Gene Mutation
Database (HGMD) (Stenson et al. 2009) for high EP alleles
associated with reduced fitness, that is, the low EP CAP alleles
associated with fitness benefits. That is, the evolutionarily
preferred allele prior to the divergence of humans and chim-
panzees (high EP, EP> 0.5) has experienced a reversal of for-
tune and become detrimental. We found 253 high EP alleles
to be associated with disease phenotypes in contemporary
humans, where the low EP CAP allele occurs with AF> 5%.

We also scanned the NHGRI-EBI catalog (MacArthur et al.
2017) of curated GWAS studies to identify additional associ-
ations and found 158 CAPs. Of these, 101 showed odds ratio
(OR) <1 for at least one discrete trait related to reduction in
the incidence of the associated abnormal phenotype. That is,
60% of the CAPs are protective against increased disease risk
(supplementary table 3, Supplementary Material online). One
such example is a CAP found in the LOXL1 protein that
confers a 20-fold decrease in risk for developing exfoliation
glaucoma, a leading cause of irreversible blindness
(Thorleifsson et al. 2007). Another example is a CAP found
in APOE genotypes e2 and e3. The APOE genotype e4, which
does not contain the CAP allele, is known to confer 5-fold
higher risk of cerebral amyloid deposition as compared with
the CAP-containing genotypes e2 and e3 (Li et al. 2015). In
these cases, the CAP allele is protective, and the non-CAP
allele is associated with a detrimental phenotype. These find-
ings not only suggest functional implications of CAPs but also
that some CAPs may be associated with health benefits.

Beyond the limited number of variants in the NHGRI-EBI
GWAS catalog, we investigated phenotypic associations in
GWAS database that contains a large catalog of genotype–
phenotype association studies. We mined data available from
GRASP2 (Leslie et al. 2014) to determine whether CAPs have
had significant impact on human phenotypes more broadly.
We found that 11% of CAPs were significantly associated with

(a) (b)

FIG. 5. Selection model fits to observed CAPs. Site frequency spectra (SFS) for SNPs with AF> 5%. Site frequency spectra (SFS) were scaled to have
the same number of sites for AF> 5%. Black bars represent all EP< 0.05 alleles observed in 1000G Phase 3 individuals. (a) Observed and fitted SFS
for all candidate adaptive polymorphisms (CAPs). A neutral model (blue) does not explain the preponderance of alleles found at very high AF, and
does not fit the observed data well (lnL¼�4,124). (b) Observed and fitted SFS for all CAPs. A model with weakly deleterious (purple) and beneficial
(green) showed the best fit (lnL¼�3,080). It was significantly better than any other combination of models (LRT P� 10�10). All CAP alleles
shared with great apes (5%) were excluded from observed SFS.
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tested phenotypes (2,073 alleles at a significance threshold of
P< 10�8), which we refer to as pheno-CAPs. This prevalence
of pheno-CAPs is significantly higher than what is expected by
chance (permutation P< 10�7). Moreover, <1% of fre-
quency matched non-CAP alleles are significantly
phenotype-associated in GRASP2 (P< 10�8). We tested the
possibility that low-EP deleterious recessive alleles have per-
sisted at significant population frequencies. If this had been
the case, we would expect an excess of heterozygote CAPs
relative to neutral expectations. However, very few CAPs
(2.5%) displayed a significant excess of heterozygosity (v2 P
value< 0.05). Moreover, after excluding pheno-CAPs that are
not shared across all 1000 Genomes continental samples
(1000 Genomes Project Consortium 2015), that are located
in previously identified selective sweeps (Schrider and Kern
2017) and that are located in previously identified regions
containing CpG sites and biased gene conversion regions
(Rosenbloom et al. 2015), over 1000 proteins contain one
or more pheno-CAPs.

We expect pheno-CAPs to be enriched for causal alleles.
There are many reasons for this expectation. First, amino acid
polymorphisms alter the sequence of functional genome en-
tities (proteins). Second, if pheno-CAPs are causal alleles then
we would expect them to show the strongest association P
values among all tested missense variants. This is indeed the
case for 92% of CAP proteins, where a pheno-CAP has the
strongest association of all missense variants in that protein
for a given phenotype in the GRASP2 database (Leslie et al.
2014). Third, a vast majority of putative adaptive variants in
humans are CAPs (table 1) and are derived variants in mod-
ern humans; they are not shared with archaic hominins.

In conclusion, we have found over 18,000 missense human
polymorphisms that are candidates of beneficial selection.
This new adaptive allele catalog is made possible by the EP
approach, which is sensitive to a timeframe that predates the
out of Africa migration of modern humans, but is not limited
to fixed differences between species (Goldman and Yang
1994; Muse and Gaut 1994; Yang and Bielawski 2000; Hurst
2002; Nielsen et al. 2005; Pollard et al. 2006; Anisimova and
Yang 2007; Holt et al. 2008; Shapiro and Alm 2008; Lindblad-
Toh et al. 2011; Peter et al. 2012). The former timeframe has
been addressed by methods that are sensitive to recent classic
sweeps and regionally restricted adaptation, which have been
the focus of the majority of human adaptation studies to date
(Akey et al. 2002; Li and Stephan 2006; Teshima et al. 2006;
Voight et al. 2006; Sabeti et al. 2007; Akey 2009; Grossman
et al. 2013; Moon and Akey 2016). These studies have yielded
only a few adaptive coding variants, leading some to argue
that regulatory variation is the predominant raw material for
adaptive change (Akey 2009; Fraser 2013; Grossman et al.
2013). Our results suggest that the temporal sensitivity of
the EP approach is able to generate a catalog of CAPs that
is enriched in functional as well as beneficial variation. We
expect many CAPs to be involved in compensatory evolution
and synergistic epistasis to counter genetic load exerted by
deleterious variants that have risen to high frequencies due to
human demography and genetic drift. Therefore, CAPs

provide ready hypotheses to test in future computational
and experimental investigations.

Materials and Methods

1000 Genomes Allele Frequencies
Global allele frequencies (AFs) for all missense single nucleo-
tide polymorphisms (SNPs) (n¼ 515,700) in the 1000
Genomes Project phase 3 data (1000 Genomes Project
Consortium 2015) were calculated for all unrelated individu-
als (n¼ 2,405). More specifically, one of each related pair of
individuals identified in the Phase 3 release (ftp://ftp.
1000genomes.ebi.ac.uk/Vol03508/ftp/release/20130502/
20140625_related_individuals.txt) was removed before calcu-
lating global allele frequencies. For each polymorphic nucle-
otide position, EP estimates for the codons corresponding to
the reference (hg19) and nonreference nucleotides were used.
For each allele, we tested for an overrepresentation of poten-
tially deleterious recessive CAP heterozygotes and evaluated
the proportion of CAPs that were in Hardy–Weinberg (HW)
disequilibrium (HW v2 P value< 0.05). We note that variants
found in genes with duplicated homologs in the genome (e.g.,
multigene families) are expected to be mapped to the correct
genomic location as the Phase 3 1000 Genomes Project data
set only included unambiguously mapped reads during var-
iant calling (1000 Genomes Project Consortium 2010).

Evolutionary Probabilities
Evolutionary probabilities (EPs) were calculated for each
amino acid residue using the method of Liu et al. (2016)
and a 46 species alignment of orthologous amino acid
sequences (Kent et al. 2002; Liu et al. 2016). They are available
from http://www.mypeg.info (Kumar et al. 2012; Liu and
Kumar 2013). The timetree (Hedges et al. 2006) of these
species covers a very large evolutionary timespan (�5.8 billion
years; Hedges et al. 2015; fig. 1a), such that each amino acid
position has had ample time to experience mutation and
purifying selection. We designed a simulation to verify that
the EP was over 0.05 for neutral alleles, by using the 46 species
time tree in figure 1a and branch lengths from UCSC
(Murphy et al. 2001; Kent et al. 2002; Siepel and Haussler
2005; Liu et al. 2016). Using pyvolve v0.8.7 (Spielman and
Wilke 2015), we generated 1000 replicate data sets of proteins
with 500 amino acid positions and calculated EP for alleles at
each site.

Evolutionary Probability Approach Framework
We began with the premise that for a given amino acid po-
sition, the probability the position has been neutral (EP) over
long-term evolutionary history (inferred from interspecies
comparisons as described in Liu et al. 2016) combined with
the orthogonal shorter term intraspecific purifying and direc-
tional selective pressures (captured by population allele fre-
quency, AF) produces a categorical framework for genome-
wide variation. This framework distinguishes neutral, poten-
tially deleterious, and potentially adaptive variation. The sum
of all allelic EPs is 1 at each amino acid position, and residues
with low EP (< 0.05) are unexpected under neutral theory
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(Liu et al. 2016). We developed an empirical framework to
identify CAPs: Prob(AF j EP< 0.05), and for each allele, cal-
culated a one-sided cumulative empirical P value using a cu-
mulative distribution function (CDF) implemented with a
custom R script (R Core Team 2014).

Misinference of Ancestral State
In genomic scans for selection, misidentification of ancestral
states may cause false signatures of selection (Baudry and
Depaulis 2003). EPA fortunately does not suffer from this
problem, because it requires EP< 0.05. An allele with such
a low EP will likely arise in the human lineage after their
divergence from chimpanzees. Additionally, EP calculation
utilizes a probabilistic model that integrates over all the out-
group species in an alignment, which makes it better than
methods that utilize one or a few outgroups to properly
identify the derived allele (Hernandez et al. 2007; Keightley
et al. 2016). Consistent with this property, we did not find any
CAP alleles in all three of the Great Ape species (chimpanzee,
gorilla, and orangutan) in our multispecies protein align-
ments. A comparison with chimpanzee proteins revealed
3.5% CAP allele sharing, and gorilla and orangutan showed
0.7% and 1.1% CAP allele sharing, respectively, with humans.
We excluded all of these alleles from all the population ge-
netic analyses, because these CAP residues may have arisen
prior to the origin of human lineage.

Identifying Allele Sharing with Archaic Genomes
To determine allele sharing among modern humans and ar-
chaic hominins, we collected genome sequencing data for five
archaic hominins (four Neanderthal individuals, and one
Denisovan individual). One Neanderthal sequence and one
Denisovan sequence were acquired from the Max Planck
Institute for Evolutionary Anthropology site (http://cdna.
eva.mpg.de/neandertal/altai/Denisovan; last accessed
November 10, 2015). The three remaining Neanderthal align-
ments were retrieved from the UCSC Neanderthal Sequence
Track (https://genome.ucsc.edu/cgi-bin/hgTrackUi? db¼
hg19&g¼ntSeqReads; last accessed November 10, 2015).
We only used sequences that provided> 45% genomic cov-
erage. We defined an allele as shared if it was present in any of
these five archaic individuals. A shared allele can be polymor-
phic or fixed in this aggregated archaic sample.

Scanning Genotype–Phenotype Association Catalogs
We scanned 75,810 phenotype associated missense muta-
tions in the Human Gene Mutation Database (HGMD)
(Stenson et al. 2009) for those that occur at CAP sites. We
found 973 such mutations, which we checked for high-EP risk
alleles (causing the abnormal phenotype). A high-EP risk allele
at a CAP site was considered a “reversal,” since this previously
favored allele (based on EP) leads to an unfavorable pheno-
type. We also scanned the NHGRI-EBI GWAS catalog
(MacArthur et al. 2017) (January 16, 2018 update) for similar
reversals. Filtering the SNPs, we find 158 missense mutations
at CAP sites. The NHGRI-EBI GWAS Catalog always reports
the risk-allele (the allele that increases phenotypic measure-
ment, e.g., increases disease risk). In order to determine the

odds ratio (OR) for the CAP allele, which is often not the
reported risk allele, we calculated the inverse (1/reported OR)
when the risk allele was in fact the reversal (high EP allele). An
OR< 1 indicates that the allele confers a decrease in abnor-
mal phenotype risk, whereas an OR> 1 indicates that the
allele increases risk for the associated abnormal or case phe-
notype. Multiple associations were occasionally found for
CAPs in the GWAS catalog. We simply reported the study
that had the lowest risk factor (OR) for abnormal phenotypes
per CAP allele found.

Gene Ontology Analysis
We downloaded the PANTHER sequence classifications (Mi
et al. 2017) containing GO biological processes for all genes in
the database for humans (ftp://ftp.pantherdb.org/sequence_
classifications/13.1/PANTHER_Sequence_Classification_files/
PTHR13.1_human; last accessed April 10, 2018). For each
biological process category, we counted the number of total
protein sequence length (amino acid positions) and the
number of CAPs in all the proteins in the category.

Demographic Simulations
We performed 10,000 forward simulations of human history
for 58,000 generations before current time; the simulation
scheme includes the out-of-Africa migration of humans
(OoA), as well as a subsequent split between simulated
European and East Asian populations. The population model
includes three representative continental groups (African,
European, East Asian). SLiM2 (Haller and Messer 2017) was
used for the simulations, with parameters obtained by Gravel
et al. (2011). Using a modified SliM2 script to output MS
(Hudson) format chromosomes, we sampled individual
sequences (50,000 base pairs in length) from the simulated
populations at each of the following time points: 1) the gen-
eration immediately before the OoA split (ancestral popula-
tion), 2) the generation immediately before the European and
East Asian split, 3) the contemporary African population,
4) the contemporary European population, and 5) the con-
temporary East Asian population. Using allele frequencies
(AF) from these samples, we followed variants at different
AF (0.1%, 1%, and 10%) in the ancestral population and traced
their trajectories into the modern day human populations
(contemporary populations). For each of these variants, we
determined the fraction that achieved> 5% AF (required for
CAP status), and were shared among one, two, and three of
the contemporary population samples.

Simulating Selection and Fitting Distributions of
Fitness Effects
We simulated site frequency spectra (SFS) using Moments
(Jouganous et al. 2017) to infer distributions of fitness effects
(DFE) that explain CAPs for which the human alleles were not
shared with any of the three great ape species (chimpanzee,
gorilla, and orangutan). Using dadi (Gutenkunst et al. 2009),
we calculated multinomial log-likelihoods (lnLs) of the ob-
served data (CAPs) for simulated deleterious, neutral, and
beneficial selection models (as above). We also calculated
lnL of DFE fit for all possible combinations: deleterious and
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neutral; neutral and positive; deleterious and beneficial; and,
deleterious and, neutral, and beneficial. In this case, we used a
single point mass fixed for each type of selection and explored
various 2Nes values. The model with the highest lnL provides
the best fit for the observed data. We excluded all CAPs
shared with great apes in these analyses. The best fit model
and lnL values for all the CAPs are shown in figure 5b. We
used likelihood fits and Akaike information criterion (AIC) to
select the best model.

Examination of the Relaxation of Purifying Selection
We examined the possibility that CAP-containing human
proteins have experienced relaxation of function in the hu-
man lineage. We investigated missense mutations that cause
Mendelian diseases and compared the frequency of these
mutations in CAP-containing proteins and non-CAP pro-
teins. This analysis used the HumVar (Adzhubei et al. 2010)
data set and obtained the number of disease mutations nor-
malized by the total sequence length and evolutionary rate of
CAP and non-CAP proteins. This normalization is required
because longer proteins are known to contain more disease
mutations as do slower evolving proteins (Miller and Kumar
2001). The ratio of two normalized counts was 0.98, which is
close to the expected value of 1.0 corresponding to no differ-
ence in the preponderance of disease mutations in CAP and
non-CAP proteins.

Permutation Testing
In order to determine whether the observed proportion of
CAPs that have been previously identified as adaptive in
humans is higher than would be expected by chance, we
randomly sampled 18,724 variants from the set of all human
missense variants (regardless of EP), and calculated Nsim,
which captures how often the simulated proportion of
phenotype-associated variants was as high or higher than
the empirical result. In total, we ran 106 permutations, and
calculated a permutation P value with the following equation:
(Nsimþ 1)/1000001.

Similarly, we tested whether the observed proportion of
CAPs that are shared with archaic genomes is higher than
would be expected by chance. We randomly sampled 18,724
variants from the set of all human missense variants, and
calculated Nsim, which captures how often the simulated pro-
portion of archaic-shared variants was as high or higher than
the empirical result (6,916 for P< 0.05 and 2,075 for
P< 10�8). In total, we ran 106 permutations, and calculated
a permutation P value with the following equation:
(Nsimþ 1)/1000001.

In order to determine whether the observed proportion of
CAPs that are also associated with phenotypes in the GRASP2
database (Leslie et al. 2014) is higher than would be expected
by chance, we randomly sampled 18,724 variants from the set
of all human missense variants with an AF> 1% (regardless of
EP), and calculated Nsim, which captures how often the sim-
ulated proportion of phenotype-associated variants was as
high or higher than the empirical result (6,916 for P< 0.05
and 2,075 for P< 10�8). In total, we ran 106 permutations,

and calculated a permutation P value with the following
equation: (Nsimþ 1)/1000001.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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