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FAD104, a regulator of 
adipogenesis, is a novel suppressor 
of TGF-β–mediated EMT in cervical 
cancer cells
Motoharu Goto, Shigehiro Osada, Masayoshi Imagawa & Makoto Nishizuka

Epithelial-to-mesenchymal transition (EMT) is a biological process in which epithelial cells translate into 
a mesenchymal phenotype with invasive capacities, contributing to tumour progression, metastasis, 
and the acquisition of chemotherapy resistance. To identify new therapeutic targets for cancers, it is 
important to clarify the molecular mechanism of induction of EMT. We have previously reported that 
fad104, a positive regulator of adipocyte differentiation, suppressed the invasion and metastasis 
of melanoma and breast cancer cells. In this study, we showed that FAD104 functions as a novel 
suppressor of transforming growth factor-β (TGF-β)–mediated EMT in cervical cancer cells. Expression 
of FAD104 is upregulated during TGF-β–mediated EMT in human cervical cancer HeLa cells. Reduction 
of fad104 expression enhanced TGF-β–mediated EMT and migration in HeLa cells. Conversely, 
overexpression of FAD104 suppressed TGF-β–induced EMT. In addition, we showed that FAD104 
negatively regulated phosphorylation of Smad2 and Smad3 but positively regulated phosphorylation of 
Smad1/5/8 via treatment with TGF-β. These findings demonstrate that FAD104 is a novel suppressor of 
TGF-β signalling and represses TGF-β–mediated EMT in cervical cancer cells.

Metastasis is a typical feature of malignancy. It is well known that metastatic cancer is more difficult to treat than 
cancer that has not spread1,2. Cancer cell metastasis is a multistep process, consisting of local invasion, intrava-
sation, circulation, extravasation and colonization3,4. In order to intravasate into blood vessels, metastatic cells 
undergo epithelial-to-mesenchymal transition (EMT). During EMT, epithelial cells with polarity translate into 
mesenchymal cells with increased motility and are more likely to move freely in the extracellular matrix, result-
ing in increased metastatic capabilities5–7. EMT is triggered by a variety of soluble factors including epidermal 
growth factor, hepatocyte growth factor and transforming growth factor-β (TGF-β), and it is regulated by many 
transcription factors such as Snail, Slug and Twist8–10. Recently, research by 2 groups demonstrated that EMT 
may be more important for the acquisition of chemotherapy resistance than for metastasis in some cancers11,12. 
To identify novel therapeutic targets for cancers, the molecular mechanism involved in the regulation of EMT 
must be elucidated.

Previously, we isolated 102 genes whose expression was upregulated in the early stages of adipocyte differen-
tiation and we demonstrated that some novel genes including the factor for adipocyte differentiation 24 (fad24), 
fad49, fad104 and fad158 promoted adipocyte differentiation13–18. FAD104 has a proline-rich region, 9 fibronectin 
type III domains and a transmembrane region and it is also called fibronectin type III domain containing protein 
(FNDC) 3B17,19. Previous analyses using fad104-deficient mice showed that fad104 plays a pivotal role in bone 
formation and lung maturation in addition to regulating of adipocyte differentiation20–23.

We also reported that fad104 suppressed the invasion and metastasis of melanoma and breast cancer cells by 
inhibiting the signal transducer and activator of transcription 3 (STAT3) activity24. Furthermore, we recently 
demonstrated that fad104 suppressed anchorage-independent growth of melanoma cells, and that the N-terminal 
region of FAD104 was essential for inhibiting malignant transformation and STAT3 activity25. These findings 
strongly suggest that FAD104 is closely associated with cancer cell metastasis. However, it is not known whether 
FAD104 contributes to the regulation of EMT.
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In the present study, we revealed that expression of FAD104 is upregulated during TGF-β–mediated EMT in 
human cervical cancer HeLa and CaSki cells. Furthermore, a reduction of fad104 expression enhanced TGF-β–
mediated EMT and migration in HeLa cells. In contrary, overexpression of FAD104 suppressed TGF-β–induced 
EMT. In addition, we showed that FAD104 negatively regulates phosphorylation of Smad2 and Smad3 but posi-
tively regulates phosphorylation of Smad1/5/8 via TGF-β treatment. These results indicate that FAD104 is a novel 
suppressor of TGF-β signalling and represses TGF-β–mediated EMT in cervical cancer cells.

Results
Expression of FAD104 is elevated during TGF-β–mediated EMT in HeLa and NMuMG cells.  We 
first examined the level of expression of FAD104 during TGF-β–mediated EMT in HeLa cells. HeLa cells were 
treated with TGF-β1 and stained for F-actin with tetramethylrhodamine isothiocyanate (TRITC) –conjugated 
phalloidin. At 72 hours after treatment with TGF-β1, HeLa cells formed long actin stress fibers and were more 
elongated than control cells treated with vehicle (Fig. 1A). Furthermore, the expression level of ZO-1, an epithelial 
marker gene, decreased with TGF-β1 treatment, whereas the expression of fibronectin, a mesenchymal marker, 
was upregulated (Fig. 1B). These results suggested that TGF-β1 treatment for 72 h induced EMT in HeLa cells. 
Quantitative real-time polymerase chain reaction (qPCR) and Western blot analyses showed that expression lev-
els of fad104 in cells treated with TGF-β1 were higher than those in control cells (Fig. 1C and D).

Similar to HeLa cells, NMuMG cells, a nontransformed mouse mammary gland epithelial cell line, are also 
frequently used as a model for TGF-β–mediated EMT. We then examined whether expression of FAD104 was 
upregulated during EMT in NMuMG cells. At 48 hours after treatment with TGF-β1, the number of actin stress 
fibers notably increased and a morphological change from being cuboidal-shaped to spindle-shaped was observed 
(Fig. 2A). Moreover, TGF-β1 treatment downregulated the expression of ZO-1 and upregulated the expression of 
N-cadherin, a mesenchymal marker (Fig. 2B). Fad104 mRNA and protein expression increased in NMuMG cells 

Figure 1.  FAD104 expression is elevated during TGF-β–mediated EMT in HeLa cells. HeLa cells were treated 
with 5 ng/mL TGF-β1 or vehicle for 72 h. (A) Morphological changes of HeLa cells after treatment with TGF-β1. 
F-actin was visualized by TRITC-conjugated phalloidin. (B) The expression of the epithelial marker ZO-1 and 
mesenchymal marker Fibronectin after treatment with TGF-β1. Whole-cell lysates were subjected to Western 
blot analysis and β-actin was used as a loading control. (C) qPCR analysis of fad104 expression in HeLa cells 
treated with TGF-β1. The expression level of fad104 was normalized with 18 S rRNA expression. Each column 
represents the mean with standard deviation (n = 3). Significant differences are indicated as **p < 0.01. (D) 
Protein expression of FAD104 in HeLa cells after treatment with TGF-β1. Whole-cell lysates were subjected to 
Western blot analysis and β-actin was used as a loading control.
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treated with TGF-β1 for 48 h (Fig. 2C and D). These results indicate that FAD104 expression is elevated during 
TGF-β–induced EMT.

Fad104 knockdown enhances TGF-β–mediated EMT in cervical cancer cells.  To clarify the role of 
fad104 in EMT, we conducted knockdown experiments. HeLa cells were transfected with a control small interfer-
ing RNA (siRNA) or siRNA targeting fad104 (fad104-A). The protein level of FAD104 decreased by about 90% in 
fad104 knockdown cells compared with that in control cells, regardless of the TGF-β1 treatment (Fig. 3A). Next, 
F-actin of fad104 knockdown and control cells was stained with TRITC –conjugated phalloidin. After TGF-β1 
treatment, the number of long and thick actin stress fibers increased in fad104 knockdown cells compared with 
that in control cells (Fig. 3B). Furthermore, the degree of elongated cell morphology significantly increased in 
fad104 knockdown cells treated with TGF-β1 compared with that in control cells (Fig. 3C).

We evaluated expression levels of EMT-related genes. TGF-β1 treatment drastically increased fibronectin 
mRNA expression in fad104 knockdown cells (Fig. 3D). Furthermore, mRNA expression of snail and slug, tran-
scription factors promoting EMT, was also elevated in fad104 knockdown cells treated with TGF-β1 (Fig. 3D). In 
addition, Western blot analyses revealed that protein levels of Fibronectin, Snail and Slug significantly increased 
in fad104 knockdown cells treated with TGF-β1 compared with that in control cells (Fig. 3E). Similar results 
were obtained from knockdown experiments using fad104-B, a siRNA-targeting region different from fad104-A 
(Supplementary Figure S1). Analyses of cell morphology and the expression of EMT-related genes strongly sug-
gested that reduction of fad104 expression enhanced TGF-β–induced EMT in HeLa cells.

Figure 2.  FAD104 expression is elevated during TGF-β–mediated EMT in NMuMG cells. NMuMG cells were 
treated with 5 ng/mL TGF-β1 or vehicle for 48 h. (A) Morphological changes in NMuMG cells after treatment 
with TGF-β1. F-actin was visualized by TRITC-conjugated phalloidin. (B) Expression of the epithelial marker 
ZO-1 and mesenchymal marker N-cadherin after treatment with TGF-β1. Whole-cell lysates were subjected 
to Western blot analysis and β-actin was used as a loading control. (C) qPCR analysis of fad104 expression in 
NMuMG cells treated with TGF-β1. The expression level of fad104 was normalized with 18 S rRNA expression. 
Each column represents the mean with standard deviation (n = 3). Significant differences are indicated as 
**p < 0.01. (D) Protein expression of FAD104 in NMuMG cells after treatment with TGF-β1. Whole-cell lysates 
were subjected to Western blot analysis and β-was used as a loading control.
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Figure 3.  Fad104 knockdown enhances TGF-β–mediated EMT in HeLa cells. (A) Knockdown efficiency of 
fad104 in HeLa cells. HeLa cells were transfected with siRNA targeting fad104 (sifad104-A) and treated with 
5 ng/mL TGF-β1. Luciferase siRNA was used as a control. β-Actin expression was used as a loading control. (B) 
Morphological changes in HeLa cells transfected with fad104 siRNA. Cells were treated with 5 ng/mL TGF-β1 
for 72 h. F-actin was visualized by TRITC-conjugated phalloidin. Scale bars represent 100 μm. (C) Quantitative 
analysis of cell morphology of HeLa cells in (B). The lengths of the major and minor cell axes were measured 
using NIH-Image software. The ratios of the major to minor axes of cells were used to determine the degree of 
elongated cell morphology. For each experiment, over 20 cells in each condition were measured. Each column 
represents the mean with standard deviation. (D) qPCR analysis of fibronectin, snail, and slug expression in 
fad104 knockdown cells. Cells were treated with 1 ng/mL TGF-β1 for 72 h. Expression levels of fibronectin, snail, 
and slug were normalized with 18 S rRNA expression. Each column represents the mean with standard deviation 
(n = 3). (E) Protein expression of fibronectin, Snail, and Slug in fad104 knockdown cells. Whole-cell lysates were 
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Next, we tested whether the reduction of fad104 expression enhanced TGF-β–induced EMT in other cervical 
cancer cells than HeLa cells. As with HeLa cells, CaSki cells are also used as a model for TGF-β–mediated EMT26,27. 
We first examined the expression level of fad104 during EMT in CaSki cells. qPCR and Western blot analyses 
showed that fad104 expression increased in CaSki cells treated with TGF-β1 for 72 h (Supplementary Figure S2A 
and S2B). We next examined whether fad104 regulates TGF-β–induced EMT in CaSki cells. Since the expres-
sion of Snail was not detected in CaSki cells treated with or without TGF-β1, we evaluated expression levels of 
Fibronectin and Slug. As shown in Supplementary Figure S2C, the expression levels of Fibronectin and Slug signifi-
cantly increased in fad104 knockdown cells treated with TGF-β1 compared with those in control cells. These results 
suggested that reduction of fad104 expression enhanced TGF-β–induced EMT in CaSki cells as well as HeLa cells.

Overexpression of FAD104 attenuates TGF-β–mediated EMT in HeLa cells.  We then examined 
the effect of overexpression of FAD104 on TGF-β–mediated EMT. HeLa cells were infected with adenovirus 
encoding either FAD104 or LacZ. Exogenous expression of FAD104 in HeLa cells was attained by adenoviral 
transduction of fad104 (Fig. 4A). After treatment with TGF-β1, expressions of Fibronectin, Snail and Slug were 
upregulated in control cells infected with LacZ. FAD104 overexpression significantly suppressed the increased 
expression of Fibronectin and Snail after the treatment (Fig. 4A). Overexpression of FAD104 also inhibited the 
increased expression of Slug; however, the difference was not statistically significant (Fig. 4A).

We tested whether FAD104 overexpression influenced stress fiber formation induced by TGF-β1 treatment. 
HeLa cells were transfected with a Flag-tagged FAD104 expression plasmid. At 72 hours after TGF-β1 treatment, 
the number of actin stress fibers in the untransfected cells notably increased (Fig. 4B, arrowheads). In contrast, 
few stress fibers were observed in cells expressing Flag-tagged FAD104 (Fig. 4B, arrow). These results suggested 
that FAD104 overexpression suppresses TGF-β–mediated EMT in HeLa cells.

Reduction of fad104 expression enhances migration of HeLa cells undergoing TGF-β–mediated 
EMT.  It is well known that tumour cells undergoing EMT acquire migratory capacity8–10. Therefore, we exam-
ined whether fad104 was involved in the migration of HeLa cells following TGF-β–mediated EMT. HeLa cells 
were transfected with control siRNA or fad104 siRNA (sifad104) and treated with TGF-β1 for 72 h to induce 
EMT. We first examined the expression levels of EMT markers. The expression of fibronectin and Snail increased 
in fad104 knockdown cells treated with TGF-β1 compared with that in control cells. Slug expression slightly 
increased in fad104 knockdown cells treated with TGF-β1. On the other hand, the expression of these proteins 
was not elevated in fad104 knockdown cells treated with vehicle (Fig. 5A). In addition, an epithelial marker 
ZO-1 expression was reduced in fad104 knockdown cells treated with TGF-β1, suggesting that these cells were 
underwent EMT by treatment with TGF-β1 (Fig. 5A). Next, migration assay using fibronectin-coated transwell 
chambers was performed. The reduction of fad104 expression increased the migration ability of HeLa cells that 
had undergone TGF-β–mediated EMT. Furthermore, fad104 knockdown also facilitated migration of HeLa cells 
treated with vehicle (Fig. 5B and C). To examine whether the change of cell proliferation rate influences on the 
number of migrated cells, we performed cell proliferation assay. As a result, fad104 knockdown had little influ-
ence on the growth of HeLa cells undergoing EMT (Fig. 5D). These results suggest that FAD104 contributes to 
regulating migration of HeLa cells that have undergone EMT.

FAD104 regulates TGF-β–Smad signalling.  TGF-β binds to its receptors and leads to phosphorylation of 
Smad2 and Smad328,29. We examined whether FAD104 contributed to the regulation of Smad3 phosphorylation 
during TGF-β–mediated EMT. The level of phosphorylation in Smad3 significantly increased in fad104 knock-
down cells treated with TGF-β1 compared with that in control cells, while the level of total Smad3 did not differ 
between fad104 knockdown cells and control cells (Fig. 6A). Furthermore, FAD104 overexpression significantly 
decreased Smad3 phosphorylation after treatment with TGF-β1 (Fig. 6B). We next tested whether the reduction 
of fad104 expression influenced on the phosphorylation level of Smad2 during TGF-β-mediated EMT. The level 
of phosphorylation in Smad2 significantly increased in fad104 knockdown cells treated with TGF-β1 compared 
with that in control cells (Supplementary Figure S3).

It is reported that TGF-β can additionally activate Smad1 and Smad5 in various cells30–32. Therefore, we tested 
the level of phosphorylation in Smad1/5/8 during TGF-β–induced EMT. Knockdown and overexpression experi-
ments showed that FAD104 facilitates Smad1/5/8 phosphorylation induced by TGF-β1 (Fig. 7). These results sug-
gested that fad104 negatively regulated Smad2 and Smad3 phosphorylation but positively regulated Smad1/5/8 
phosphorylation during TGF-β–induced EMT in HeLa cells.

Discussion
Despite improvements in diagnosis and screening techniques, cervical cancer is one of the most common malig-
nant tumours and remains the second-largest cause of cancer-related deaths in women worldwide33. Especially, 
pelvic lymph node metastasis is an important risk factor for recurrence or death in cervical cancer34,35. Although 
it is thought that EMT plays a role in acquisition of the ability to invade the pelvic lymph nodes and surrounding 
tissue, the regulatory mechanisms of EMT in cervical cancer are not fully understood. In this study, we demon-
strated for the first time that fad104 functions as a novel suppressor of TGF-β–mediated EMT in cervical cancer 
cells.

subjected to Western blot analysis and β-actin was used as a loading control. Signal intensities of the proteins 
were quantified using NIH-Image software. Each column represents the mean with standard deviation (n = 3). 
Significant differences are indicated as **p < 0.01.
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Knockdown and overexpression experiments showed that FAD104 negatively regulates phosphorylation of 
Smad2 and Smad3 after treatment with TGF-β (Fig. 6). Furthermore, expression levels of FAD104 were elevated 
in HeLa and NMuMG cells treated with TGF-β (Figs 1 and 2). It is well known that TGF-β signalling is precisely 
regulated by a balance between stimulatory factors such as Smad2 and Smad3 and inhibitory factors including 
SnoN and Smad7. The expression of Smad7 and SnoN is upregulated by TGF-β and they act as negative feed-
back regulators of TGF-β signalling36. Yin et al. demonstrated that SnoN suppressed TGF-β–induced EMT and 
invasion of bladder cancer37. Moreover, it was reported that some microRNAs targeting Smad7 promote TGF-β–
mediated EMT and invasion of cancer cells38,39. These findings raise the possibility that FAD104 also participates 
in a negative feedback loop to regulate TGF-β signalling and limits the extended activation of TGF-β signalling 
leading to EMT.

Figure 4.  FAD104 overexpression attenuates TGF-β–mediated EMT in HeLa cells. (A) The effect of FAD104 
overexpression on the expression level of EMT-related genes. HeLa cells were infected with FAD104 or LacZ, 
and treated with 1 ng/mL TGF-β1 for 72 h. Whole-cell lysates were subjected to Western blot analysis and 
β-actin was used as a loading control. Signal intensities of the proteins were quantified using NIH-Image 
software. Each column represents the mean with standard deviation (n = 3). Significant differences are indicated 
as **p < 0.01. (B) Flag-tagged FAD104 expression plasmid was introduced into HeLa cells. After transfection, 
the cells were treated with 5 ng/mL TGF-β1 for 72 h. The signals of F-actin (red) and Flag-tagged FAD104 
(green) were detected with fluorescence microscopy. Arrow indicates the cells expressing Flag-tagged FAD104. 
Arrowheads indicate untransfected cells as Flag signal is not detected.
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Our previous report showed that FAD104 expression was lower in highly metastatic melanoma cells than in 
poorly metastatic cells24. Furthermore, in the Human Protein Atlas (www.proteinatlas.org), expression levels of 
FAD104 in most malignant tumours including cervical and breast cancer are lower than those in corresponding 
normal tissues. Therefore, it is possible that the reduction in FAD104 expression is deeply involved in the malig-
nancy of cancer cells such as cervical cancer and melanoma. Promoter analysis is required to determine how 
TGF-β upregulates the expression of fad104. In addition, we need to perform single-nucleotide polymorphism 
analyses of the fad104 promoter in various cancer cells.

As shown in Figs 6 and 7, FAD104 upregulated TGF-β–induced phosphorylation of Smad1/5/8, but it neg-
atively regulated Smad2 and Smad3 phosphorylation. TGF-β signals via the TGF-β type I receptor/activing 
receptor-like kinase (ALK5) and activates Smad2/3. TGF-β also signals through another type I receptor, ALK1, 
and activates Smad1/5/89,36. However, the role of Smad1/5/8 activated by TGF-β remains controversial. Goumans 
et al. demonstrated that ALK1 activity not only induces a biological response opposite to that of ALK5 but also 
directly antagonizes ALK5/Smad signalling in endothelial cells31. On the other hand, Daly et al. showed that 
Smad2/3 signalling is not inhibited by Smad1/5 activation30. It is necessary to clarify the role and function of 
Smad1/5/8 activated by TGF-β during EMT of cervical cancer cells.

We previously demonstrated that FAD104 interacted with Smad1/5/8 and down-regulated BMP2-induced 
Smad1/5/8 phosphorylation in C2C12 cells20. Furthermore, our present results suggested that FAD104 negatively 

Figure 5.  Knockdown of fad104 expression enhances the migration of HeLa cells undergoing TGF-β–mediated 
EMT. HeLa cells were transfected with siRNA targeting fad104 (sifad104-A) and treated with 1 ng/mL TGF-
β1 for 72 h. (A) Whole-cell lysates prepared from HeLa cells undergoing EMT were subjected to Western blot 
analysis. β-Actin was used as a loading control. Arrowhead shows nonspecific bands. (B) Cells undergoing EMT 
were plated in the upper chamber of the filters coated with fibronectin. Cells that migrated to the underside 
of the transwell insert were measured after 24 h. Representative images of migrated cells were shown. (C) The 
mean number of migrated cells in the field was calculated. Each column represents the mean with standard 
deviation (n = 5). (D) Cells undergoing EMT were plated in culture plates. After 24 h, cells were trypsinized and 
counted. Each column represents the mean with standard deviation (n = 3). Significant differences are indicated 
as **p < 0.01 and *p < 0.05.

http://www.proteinatlas.org
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regulated Smad2 and Smad3 phosphorylation but positively regulated Smad1/5/8 phosphorylation during 
TGF-β–induced EMT in HeLa cells (Figs 6 and 7). These findings raise the possibility that FAD104 regulates two 
Smad signalling pathway though the interaction with Smad proteins. Therefore, we conducted immunoprecipita-
tion experiments. IP using anti-Smad1/5/8 or anti-Smad3 antibody showed that FAD104 does not interact with 
either Smad1/5/8 or Smad3 in HeLa cells treated with or without TGF-β1 (Supplementary Figure S4). Considering 
this result, at least in HeLa cells, it seems that FAD104 regulates the phosphorylation levels of Smad1/5/8 and 
Smad3 other than through the interaction with these proteins. To clarify the role of FAD104 on TGF-β-mediated 
EMT, we conducted experiments using LY2157299, a TGF-β type I receptor kinase inhibitor. Previous report 
showed that 5 μM LY2157299 inhibited TGF-β-Smad2/3 signalling in breast cancer cell lines40. We first examined 
the effect of LY2157299 on the phosphorylation level of Smad3. As shown in Supplementary Figure S5A, 5 μM 
LY2157299 inhibited Smad3 phosphorylation in HeLa cells treated with TGF-β1. We next examined the effect of 
LY2157299 on the expression levels of mesenchymal markers in control and fad104 knockdown cells. LY2157299 
fully inhibited Fibronectin and Snail expression elevated by TGF-β1 in both of control and fad104 knockdown 
cells, suggesting that FAD104 regulates TGF-β-mediated EMT at least through the control of TGF-β-Smad2/3 
signalling (Supplementary Figure S5B). Our previous findings showed that FAD104 down-regulated Smad1/5/8 
phosphorylation in C2C12 cells20. On the other hand, FAD104 inhibited the phosphorylation level of STAT3, 
whereas FAD104 had no influence on the Smad1/5/8 phosphorylation in A375 melanoma cells24. Therefore, it 
is possible that FAD104 has different roles and functions in each cell. To more clearly understand the roles of 
Smad2/3 and Smad1/5/8 in the regulation of FAD104 during TGF-β-mediated EMT, experiments of overexpres-
sion and knockdown of Smad2/3 and Smad1/5/8 are needed.

Recently, Vorstenbosch et al. reported that CD109, a glycosylphosphatidylinositol (GPI)-anchored protein, 
directly interacts with ALK5 and ALK1 and inhibits Smad2/3 activation while enhancing Smad1/5 activation in 
keratinocytes41. On the other hand, it was reported that reduced levels of expression of Bmal1, an essential clock 
transcription activator, increased TGF-β–mediated phosphorylation levels of Smad1/5/8 but decreased phospho-
rylation levels of Smad2/3 in primary human articular chondrocytes and C3H10T1/2 cells42,43. Moreover, loss 
of neuropilin-1, a coreceptor of semaphorin and vascular endothelial growth factor, elevated phosphorylation 
levels of Smad1/5/8 but suppressed Smad2/3 phosphorylation in stromal fibroblasts44. Although it is unclear 
how CD109, BMAL1 and neuropilin-1 control phosphorylation levels of Smad1/5/8 and Smad3 with TGF-β 
treatment, these reports strongly suggest the importance of controlling the balance between TGF-β–mediated 
ALK5-Smad2/3 and ALK1-Smad1/5/8 signalling. To analyse the relationship between these proteins and FAD104 

Figure 6.  FAD104 negatively regulates phosphorylation level of Smad3 with TGF-β1 treatment in HeLa cells. 
(A) Phosphorylation levels of Smad3 in fad104 knockdown HeLa cells. HeLa cells were transfected with siRNA 
targeting fad104 (sifad104-A) and treated with 1 ng/mL TGF-β1 for 6 h. (B) Phosphorylation levels of Smad3 in 
HeLa cells overexpressing FAD104. HeLa cells were infected with FAD104 and treated with 1 ng/mL TGF-β1 for 
6 h. Whole-cell lysates were subjected to Western blot analysis and β-actin was used as a loading control. Signal 
intensities from phospho-Smad3, total Smad3, and β-actin were quantified using NIH-Image software. Each 
column represents the mean with standard deviation (n = 3). Significant differences are indicated as **p < 0.01 
and *p < 0.05.
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in TGF-β–induced EMT of cervical cancer cells, we clarify the molecular mechanism by which FAD104 regulates 
the phosphorylation of Smad1/5/8 and Smad3 in the next paper.

As shown in Fig. 5, the reduction of fad104 expression increased the migration ability of HeLa cells that 
had undergone TGF-β–mediated EMT. Furthermore, fad104 knockdown also facilitated migration of HeLa cells 
treated with vehicle. Since the expression levels of EMT related markers in fad104 knockdown cells treated with 
vehicle did not differ from those in control cells (Fig. 5A), it seems that FAD104 also regulates the migration 
ability of cells that had not undergone EMT. Our previous report showed that FAD104 suppressed the TGF-β–
independent migration of melanoma cells by inhibiting activation of the STAT3 signaling pathway24. Liu et al. 
demonstrated that JAK/STAT3 signalling is required for TGF-β-mediated EMT in lung cancer cells45. Therefore, 
we next examined whether FAD104 regulated STAT3 phosphorylation during TGF-β–mediated EMT in HeLa 
cells. As a result, the knockdown of fad104 did not influence on the phosphorylation level of STAT3 in HeLa cells 
treated with both vehicle and TGF-β1 (Supplementary Figure S6). This result suggests that unlike in melanoma 
cells, FAD104 does not contribute to the regulation of STAT3 activity in HeLa cells. The role of FAD104 in the 
regulation of migration ability in various cancer cells needs to be investigated.

Considering results obtained from knockdown and overexpression experiments, it seemed that FAD104 has 
greater effect on the expression of Snail than that of Slug. It is needed to clarify the molecular mechanism by 
which FAD104 regulates the expression levels of Snail and Slug in TGF-β-mediated EMT in future studies.

In summary, we revealed that expression of FAD104 is upregulated during TGF-β–mediated EMT in HeLa, 
CaSki and NMuMG cells. Furthermore, the reduction of fad104 expression enhanced TGF-β–mediated EMT and 
migration in HeLa cells. Overexpression experiments showed that FAD104 suppressed TGF-β–induced EMT 
in HeLa cells. In addition, we demonstrated that FAD104 negatively regulated TGF-β–induced phosphoryla-
tion of Smad2 and Smad3 but positively regulated phosphorylation of Smad1/5/8. These results strongly suggest 
that FAD104 suppresses TGF-β–mediated EMT in cervical cancer cells through the control of TGF-β–Smad 
signalling.

Materials and Methods
Cell culture.  HeLa cells were purchased from RIKEN Cell Bank and cultured in Minimum Essential Medium 
(MEM) containing 10% calf serum. NMuMG cells were kindly provided by Dr. Yasumichi Inoue (Nagoya City 
University) and maintained in high-glucose Dulbecco’s modified Eagle’s medium supplemented with 10% fetal 
bovine serum (FBS) and 10 μg/mL insulin. CaSki cells were purchased from JCRB Cell Bank and cultured in 
RPMI1640 containing 10% FBS. Recombinant human TGF-β1 was purchased from R&D systems.

Figure 7.  FAD104 positively regulates phosphorylation level of Smad1/5/8 with TGF-β1 treatment in HeLa 
cells. (A) Phosphorylation levels of Smad1/5/8 in fad104 knockdown HeLa cells. HeLa cells were transfected 
with siRNA targeting fad104 (sifad104-A) and treated with 1 ng/mL TGF-β1 for 30 min. (B) Phosphorylation 
levels of Smad1/5/8 in HeLa cells overexpressing FAD104. HeLa cells were infected with FAD104 and treated 
with 1 ng/mL TGF-β1 for 30 min. Whole-cell lysates were subjected to Western blot analysis and β-actin was 
used as a loading control. Signal intensities from phospho-Smad1/5/8, total Smad1/5/8, and β-actin were 
quantified using NIH-Image software. Each column represents the mean with standard deviation (n = 3). 
Significant differences are indicated as **p < 0.01.
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RNA interference experiments.  Two different human fad104 siRNAs (sifad104-A and sifad104-B) and 
control siRNA were purchased from Nippon EGT and introduced into HeLa cells using Lipofectamine2000 as 
previously described24.

Adenoviral infection.  Adenoviral infection has been described previously24. HeLa cells were infected with 
recombinant adenoviruses expressing FAD104 or LacZ by incubation with adenoviruses at a multiplicity of infec-
tion of 200.

F-actin staining and quantification of elongated cell morphology.  HeLa cells transfected with 
control siRNA or sifad104 were treated with TGF-β1 for 72 h. After washing, cells were fixed for 10 min in 
2% paraformaldehyde and stained with TRITC-conjugated phalloidin for detection of the F-actin structure. 
Measurements of elongated cell morphology were performed as previously reported with slight modifications46. 
The lengths of the major and minor cell axes were measured using NIH-Image software. The ratios of the major 
to minor axes of cells were used to determine the degree of elongated cell morphology. For each experiment, over 
20 cells in each condition were measured.

Quantitative real time PCR.  Total RNA was extracted with RNAiso Plus (TaKaRa) according to the 
manufacturer’s instructions. Reverse transcription and qPCR were performed as described47. The specific prim-
ers for human snail, slug, and fibronectin were as follows: human snail-forward, 5′-cctcaagatgcacatccgaag-3′; 
human snail-reverse, 5′-acatggccttgtagcagcca-3′; human slug-forward, 5′-cccacacattaccttgtgtttgcaa-3′; human 
slug-reverse, 5′-caaatgctctgttgcagtgagg-3′; human fibronectin-forward, 5′-gtgttgggaatggtcgtggggaatg-3′; human 
fibronectin-reverse, 5′-ccaatgccacggccatagcagtagc-3′. The predesigned primers and probe sets for fad104 and 18 S 
rRNA were obtained from Applied Biosystems.

Western blotting.  Cells were lysed in radioimmunoprecipitation assay buffer as previously described47. 
Equal amounts of total protein were resolved using sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
and were transferred to a polyvinylidene difluoride membrane, and probed using primary antibodies and sec-
ondary antibodies conjugated with horseradish peroxidase (Jackson ImmunoResearch Laboratories). Specific 
proteins were detected using an enhanced chemiluminescence system (GE Healthcare). Primary antibodies rec-
ognizing Fibronectin, ZO-1, N-cadherin, Snail, Slug, phospho-Smad3, Smad3, phospho-Smad1/5/8, Smad1/5/8, 
phospho-Smad2, phospho-STAT3, STAT3 (Cell Signaling Technology), and β-actin (SIGMA) were used. Primary 
antibody recognizing Smad2 was kindly provided by Dr. Yasumichi Inoue (Nagoya City University). A polyclonal 
FAD104 antibody was prepared in our laboratory21. Quantification of the band intensity of the blots was per-
formed using NIH-Image software.

Migration assays.  Migration assays using transwell plates were performed as previously reported with slight 
modifications48. After the addition of TGF-β1 for 72 h, half of the cells were lysed and used for Western blotting to 
analyze the expression levels of EMT related markers. The other half of cells were used for migration and cell pro-
liferation assays. For migration assay, HeLa cells transfected with control siRNA or sifad104 were trypsinized and 
added to fibronectin-coated inserts in serum-free medium. These were then placed in MEM with 10% calf serum 
for 24 h. Cells on the upper surface of the membrane were removed by scrubbing with cotton swabs. Chambers 
were fixed in 4% paraformaldehyde for 10 min and stained with crystal violet. Cells that penetrated the filter were 
observed with a microscope and cells from 5 randomly fields were counted. For cell proliferation assay, the cells 
were seeded into 24-well tissue culture plates. After 24 h, numbers of cells were counted.

Statistical tests.  Analyses were performed using Excel 2010 and R (http://cran.r-project.org/). The statistical 
significance of differences between 2 groups was evaluated using a two-tailed Student’s t-test. For the multigroup 
analysis, significance was assessed using one-way ANOVA with post hoc Tukey–Kramer HSD test.
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