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Abstract: Coal gangue is one of the industrial solid wastes that may harm the human body through
the ecosystem for a long time. Using coal gangue in geopolymer preparation can effectively reduce
cement output and meet the sustainability requirements. In this paper, the physical and chemical
characteristics, including the heavy metal content, of coal gangue from different producing areas are
described. Then, the mechanism of physical activation (mechanical and thermal activation), chemical
activation, and compound activation of coal gangue are illustrated. The machinability, as well as
the mechanical, microscopic, and toxicity consolidation properties of geopolymers prepared from
coal gangue, are summarized and analyzed. The results indicate that the coal gangue geopolymers
can have higher mobility and mechanical strength than cement-based composites by adjusting high
calcium element material, alkali activator content, Na2SiO3 modulus, and curing condition. After
physical activation, coal gangue is used in geopolymer preparation with a chemical activator (alkali
excitation agent), which effectively forms a three-dimensional silicon aluminate polymer network.
The pore structure is dense, the physical fixation and chemical bonding are strengthened, and the
solidification and adsorption of heavy metal ions are improved. Further, it can also be applied to
solidifying radioactive waste, which is following the future development direction.

Keywords: geopolymer; coal gangue; activation mechanism; toxic curing; solid waste utilization;
geopolymer property

1. Introduction

With the world’s attention on the circular economy, coal enterprises and organizations
have been committed to fundamentally changing the economic growth model to achieve a
circular economy. According to the BP Statistical Yearbook of World Energy 2020, global
coal production decreased slightly compared to last year, and the output could reach
7742 million tons [1]. Figure 1 shows the year-on-year worldwide coal consumption growth
since 2010. Coal consumption in China, North America, Europe, the USA, and India
significantly grew before 2015. However, coal consumption after 2016 declined in Europe
and North America, whereas in Asia it continued to increase till 2020 and was affected by the
COVID-19 pandemic. Except for China, Indonesia, and Vietnam, which increased slightly,
the rest of the countries have varying degrees of decline. Today, China accounts for about
50% of the global coal consumption, and its influence will be particularly significant [2].

Coal gangue (CG) is a hard rock produced during coal formation, which is formed at
the same time as coal seam formation. CG may enter coal from the associated coal rocks
in the form of excessive carbon growth. Its output generally accounts for about 10% of
the coal output. China’s annual raw coal output is 3.5–4 billion tons, and the annual CG
discharge is about 500–800 million tons [3]. As one of the 10 major industrial solid wastes
in the world, CG is also the second-most-utilized resource [4], and its resource utilization
has become a hot issue in countries where coal is the primary source of energy [5,6].
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Figure 1. Coal consumption year−on−year growth rate, 2010−2020 (PJ) (data from International 
Energy Agency Statistics, 2020). 
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source utilization has become a hot issue in countries where coal is the primary source of 
energy [5,6]. 

As shown in Figure 2a,b, CG accumulated into a mountain. All the CG accumulated 
together occupies land resources, pollutes the groundwater resources, and endangers 
the surrounding air quality. In addition, long-term exposure to the sun leads to the con-
tinuous accumulation of internal heat, leading to the spontaneous combustion of CG and 
the release of many harmful gases, such as sulfur dioxide (SO2) and carbon monoxide 
(CO), into the atmosphere. Some heavy metal elements are also released into groundwa-
ter that may harm the human body through the ecosystem [7]. In the last two decades, 
many countries have been actively trying to utilize CG in different industries to address 
the environmental issue of CG accumulation [8–10]. Comprehensive use of resources is 
mainly concentrated in landfills, road construction, power generation, brick manufactur-
ing, and chemical industries [2,11–13]. However, its utilization rate and added value are 
still low [14]. 
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Figure 2. Waste coal gangue: (a) Coal gangue pollution; (b) Coal gangue mountain. 

Figure 1. Coal consumption year−on−year growth rate, 2010−2020 (PJ) (data from International
Energy Agency Statistics, 2020).

As shown in Figure 2a,b, CG accumulated into a mountain. All the CG accumulated
together occupies land resources, pollutes the groundwater resources, and endangers the
surrounding air quality. In addition, long-term exposure to the sun leads to the continuous
accumulation of internal heat, leading to the spontaneous combustion of CG and the release
of many harmful gases, such as sulfur dioxide (SO2) and carbon monoxide (CO), into the
atmosphere. Some heavy metal elements are also released into groundwater that may
harm the human body through the ecosystem [7]. In the last two decades, many countries
have been actively trying to utilize CG in different industries to address the environmental
issue of CG accumulation [8–10]. Comprehensive use of resources is mainly concentrated
in landfills, road construction, power generation, brick manufacturing, and chemical
industries [2,11–13]. However, its utilization rate and added value are still low [14].
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Cement is the most commonly used cementing material in construction, especially
in China, where the production of Portland cement accounts for about 60% of the global
cement production [15]. Cement production involves huge carbon dioxide (CO2) emissions,
accounting for 5–7% of global anthropogenic CO2 emissions [16]. As the global greenhouse
effect exacerbates, the cement industry has developed various strategies to reduce CO2
emissions. Among them, replacing Portland cement clinker with geopolymers [17,18] and
supplementary cementing materials (SCMs) [19,20], which are aluminosilicate minerals or
solid wastes as raw materials, are very effective approaches.
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CG is a type of important polymer material. It is mainly composed of aluminum
silicate minerals, rich in silica and alumina. The component activity itself is extremely
low. However, through a certain physical and chemical excitation to change its chemical
composition and internal structure, the potential of gelation activity can be inspired [21].
With intense optimization, CG can be secondarily utilized in geopolymer preparation.

One of the keys to developing the industry is dealing with CG and making it widely
used in the construction industry instead of cement. Therefore, although many researchers
have undertaken much research on CG, no summative article is available in the published
literature. In this paper, Figure 3 shows the flow diagram for the selected study. A large
number of studies on coal gangue aggregate geopolymers are fully reviewed and analyzed
to achieve the following objectives:

(1) To summarize the physicochemical characteristics and heavy metal content of CG and
analyze its performance trend.

(2) To investigate all the activation methods and mechanisms of CG.
(3) To discuss the effects of activated CG on coal gangue geopolymer (CGG).
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Figure 3. Flow diagram of the study selection process.

First, the chemical composition of the polymer and the reaction mechanism were
demonstrated. Then, the physical and chemical characteristics of the CG and heavy metal
content were summarized. Additionally, different activation methods of CG and corre-
sponding mechanisms were analyzed. Further, the impact of activated CG on the worka-
bility, mechanical properties, microstructure, and toxicity consolidation properties of the
CGG were reviewed. Lastly, the discussion and conclusions were given to provide effective
theoretical support for CGG research, which helps its wide application in construction.

2. Chemical Composition and Reaction Mechanism of Geopolymers

Geopolymers—cementitious materials—were first discovered and named by French
scientist Professor Joseph Davidovits in the 1970s [22]. Geopolymer refers to aluminosilicate
mineral polymers formed by geochemistry or geological synthesis. It is a three-dimensional
network gel with amorphous and quasi-crystalline characteristics formed by the polymer-
ization of silicon–oxygen tetrahedron and aluminosilicate tetrahedron as raw materials
in the alkaline environment [23]. Many studies demonstrate its excellent properties, such
as high early strength, good volume stability, chemical corrosion resistance, permeability and
high-temperature resistance [24–27], and excellent mechanical properties and durability [28].
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2.1. Chemical Composition of Geopolymers

Geopolymers are amorphous silicon–aluminate inorganic polymers consisting of
a tetrahedral oligomer silicon–oxygen tetrahedron and aluminum–oxygen tetrahedron.
These oligomers form inorganic polymers with a three-dimensional network structure by
polymerization reaction under the activation of alkaline materials [29]. During geological
polymerization, Si(IV) is only replaced by Al(IV). The empirical r of a geopolymer is
Mn[(Si–O2)z–Al–O2] N·H2O, where M represents alkali metal cations such as potassium or
sodium, n represents the condensation degree, W represents the number of water molecules,
and Z represents the Si/Al ratio [23].

Since Si4+ is replaced by Al3+, the Si–O–Al–O– structure has a negative charge. The
excess negative charge in aluminum atoms is moderated by the positive charge of sodium
or potassium. The molecular structure of settlement network gels can be composed of three
different monomer units. According to the ratio relationship between Si/Al in the reaction
products, geopolymers can be divided into three types [30]: PS type (–Si–O–Al–), PSS type
(–Si–O–Al–O–Si–), and PSDS type (–Si–O–Al–O–Si–O–Si–), as shown in Figure 4.
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2.2. Geopolymer Reaction Mechanism

The geological polymerization process is initiated by the reaction of an active silicoalu-
minate source with an alkaline solution forming Si(OH)4 and Al(OH)4 monomers. Then,
the monomer is converted into oligomer by polymerization, and the silicoaluminate gel
is formed by oligomer condensation. For example, the low polymerization state of the
sodium silicate tetrahedron group and the active aluminum oxide layer in metakaolinite
have a combination reaction, i.e., the low polymerization degree of the tetrahedron group
and the metakaolinite aluminum oxide layer have a “bonding reaction”. The low-poly
siloxane tetrahedral group acts as a bond cooperation of “gelatinization” to “bond” metal
particles, forming a net-like three-dimensional spatial structure. The reaction model is
shown in Figure 5.

The reason for the performance difference between ordinary Portland cement and
geopolymer can be attributed to the difference between C–S–H and C–A–S–H. The alu-
minum tetrahedron of the polymer can replace the silicon tetrahedron of the structure. The
cross-linking between Dreiketten chains [31,32] offers greater rigidity and strength. The
occurrence of cross-links chemically unbalances the compounds formed by the alkaline
activation of the slag, which is why the presence of alkaline ions, preferably metals such
as Na+, K+, is necessary to promote the balance of charges [33]. The types of binding
systems formed depend on different precursor materials, i.e., systems rich in (Ca + Si)
and (Si + Al) [34]. The reaction product of calcium-rich slag is aluminum-calcium sili-
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cate hydrate (C–A–S–H) gel. The silica-rich CG and metakaolin form sodium (calcium)
aluminum–silicate hydrate (N(C)–A–S–H gel). Due to the combination of C–A–S–H and
N(C)–A–S–H gels, the blend system shows improved performance and has higher mechani-
cal properties and durability [35,36]. CG is mainly a system rich in (Si + Al), which has very
low activity. However, its potential cementitious activity can be stimulated by changing its
chemical composition and internal structure through physical and chemical activation [21].
The principle of CGG preparation is to grind CG mechanically into coal gangue powder
(CGP) to produce certain activity. CGP shows high activity due to the Si–O bond fracture.
The aluminum–oxygen layer easily bonds with the silicon-oxygen tetrahedral group with a
low polymerization degree, realizing secondary utilization as a resource.
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3. CG Properties and Preparation Process
3.1. Physical Characteristics

CG has a low carbon content, and a lot of coal powder adheres to the surface of
CG, which is needle-like, loose and porous, and brown and black in color. The apparent
density of CG aggregate is similar to that of natural stone, i.e., about 2600 kg/m3, and the
bulk density is about 1200 kg/m3. Water absorption and crushing value (about 5% and
20%, respectively) are relatively higher than those of natural stone (about 2% and 15%,
respectively) [37].

After ball milling, the CG structure becomes loose and porous. The porosity increases
again after calcination. Figure 6 shows the scanning electron microscope (SEM) image of
calcined CG powder. After the ball-mill grinding and calcination, CG powder particles are
dense and smooth at the surface, with pores and prismatic shape. After heating, calcined
CG powder becomes an irregular and porous structure, which may be caused by kaolinite
hydroxylation and the phase change of the metakaolin. At the same time, the carbon
content promotes irregular amorphous particles and pores [38].
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3.2. Chemical and Mineral Composition

Based on the oxide content of CG, CG can be divided into clay gangue (SiO2 (40–70%),
Al2O3 (15–30%)), sandstone gangue (SiO2 > 70%), aluminum gangue (Al2O3 > 40%), and
calcareous gangue (CaO > 30%) [40]. CG is mostly composed of silicon and aluminum. Table 1
shows the chemical components of CG in different regions. It can be seen that the cumulative
SiO2 and Al2O3 content in most of them is greater than 70%, which is considered to have a
certain volcanic ash effect. Mineral components in CG include kaolinite, quartz, illite, feldspar,
calcite, and muscovite, among which kaolinite, illite, and quartz have the highest content [41].
Although the contents of major components such as SiO2, Al2O3, and Fe2O3 in CG in south
and north China are not very different, their volcanic ash activity index is significantly different.
The total alkali content controlled by geographical conditions is one of the main reasons for
the difference in volcanic ash activity [42]. The kaolin content in CG in the northern areas
is higher than that in the southern areas, which is related to the high silicon and aluminum
content of clay coal gangue (also known as coal measure kaolin). CG in the south contains
more Muscovite and illite minerals, which are mica-type coal gangue [21]. As raw materials
for cementing materials, CG activity in the north is higher than in the south region.

Table 1. Chemical composition of CG from different producing areas.

Sources SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O TiO2 L.O.I Refs.

North China

Shandong 59.54 16.31 6.55 1.82 1.52 - - - 12.27 [43]

Huaibei 54.12 22.38 3.56 0.71 0.98 0.64 1.13 - - [15]

Fuxin 48.78 21.86 5.38 0.82 3.87 - - - 12.14 [44]

Heilongjiang 58.82 27.87 8.31 - 0.78 - 1.23 1.04 1.43 [45]

Shanxi 56.56 36.78 1.95 0.22 0.62 0.42 - 2.10 - [46]

Ordos 45.9 16.0 4.71 1.37 0.74 0.99 3.36 0.78 8.03 [47]

Hebei 52.4 42.26 0.14 0.08 0.76 0.03 0.02 - 2.52 [48]

Beijing 49.90 24.41 6.42 1.59 0.82 1.46 2.06 0.88 11.76 [49]

South China

Chongqing 58.10 24.50 5.31 1.05 5.73 1.14 1.54 - - [50]

Liuzhi 46.50 16.40 13.85 3.57 10.67 1.48 1.83 - [42]

Yichang 49.03 34.18 0.73 - 0.20 - 0.12 1.72 13.50 [51]

Pingxiang 52.56 16.57 3.35 2.01 1.24 0.21 2.39 - 20.71 [42]

Xuzhou 57.95 19.02 5.32 0.82 3.16 - - - - [52]

Xuzhou 60.24 18.50 2.58 0.52 1.48 0.14 1.53 - - [53]

Iran 37.8 13.14 2.85 0.73 0.76 0.28 2.02 1.17 40.96 [54]

Spain 56.4 26.34 6.42 1.07 1.06 0.17 4.02 1.21 2.38 [55]

America 34.4 14.4 3.4 0.93 1.3 0.34 3.5 1.2 38.7 [56]

Jerada 62.41 7.95 4.14 0.97 20.38 0.14 1.02 - - [57]



Polymers 2022, 14, 3861 7 of 24

Figure 7 shows the XRD pattern of CG. The figure shows that the main minerals include
quartz, kaolinite, and muscovite. Both kaolin (Al2(Si2O5) (OH)4) and quartz (SiO2) have
sharp crystallization peaks, indicating high crystallinity, which may hinder the formation of
hydration products to provide strength. However, CG has a high potential activity and can
effectively assist cement in preparing cementitious materials by stimulating its activity. The
microstructure of CG is shown in Figure 8. In Figure 8a, the feldspar has become sericite,
and albicite twins and cross twins are visible in the feldspar. Figure 8b shows that the
microstructure of one particle is enlarged, and the latter shows the overall microstructure
of a large amount of quartz. In Figure 8c, the darker minerals and detrital in the silicite are
disorganized in the particles of other minerals [49].
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3.3. Heavy-Metal Element Content

The contents of heavy metals in different CG samples are shown in Table 2. According
to the standard limits of hazardous ingredients stipulated in GB 5085.3-2007 (Leaching
Toxicity Identification Standard for Hazardous Wastes), Pb, Cr, and Ni in CG exceed the
prescribed limits. According to the results in Table 2, excessive heavy metal content of CG
is the main factor restricting the secondary utilization, and heavy metal leaching should be
considered in the preparation of geopolymers. Different ages of formation and weathering
are the two main reasons for the differences in the heavy metal contents of CG. The results
of 75 CG samples with different geological ages show that the contents of Pb, Se, and



Polymers 2022, 14, 3861 8 of 24

As are the highest in the samples formed in the Late Carboniferous and Early Permian.
The contents of Cr, Cd, Be, Cu, and Zn are the highest in the samples formed in the late
Permian. The later the formation of CG, the lower the overall enrichment degree of heavy-
metal elements [58]. In addition, five types of CG with different weathering degrees were
collected. The results showed that, with the increase in weathering degree, the contents of
Pb and Cu first decreased and then increased, and the contents of Cr and Zn reached the
lowest in the middle stage, indicating that CG may release and pollute the surrounding
soil and water [59].

Table 2. Contents of heavy metals in CG (mg/kg).

Sample Cd As Pb Cr Cu Ni Zn Refs.

CG

0.1 1.56 20.19 28.72 17.17 10.59 44.54 [60]

0.2 33.45 59.1 26.82 32.29 123.21 [61]

0.51 20.26 46.76 60.16 16.49 78.23 [62]

0.58 2.156 62.218 59.972 36.635 138.199 [58]

1.097 7.71 5.087 102.84 5.131 [63]

0.66 3.2 52.98 76.53 35.90 120.32 24.30 [59]

GB5085.3-2007 ≤15 ≤5 ≤5 ≤1 ≤100 ≤5 ≤100

3.4. Preparation Process of Coal Gangue Powder

CG has high crystallinity and low activity, making it difficult to generate hydration
products to provide strength. To use CG as a geopolymer raw material, CG needs to be
ground into powder to improve its activity. Figure 9 shows the preparation process of CGP.
CG is first transmitted and accumulated around the track. The rotor then crushes it. The
broken chinks are fed into the ball mill for grinding and eventually sieved to obtain a size
under 80 microns. The CGP has better reactivity in this form [64].
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4. Method and Mechanism of CG Activation

CG has a relatively stable (crystalline) chemical structure and, thus, has less pozzolanic
reactivity than other geopolymer raw materials. For the active component in CG, finding
ways to destroy its lattice structure and increase its amorphous phase is critical, which is
the most important part of using CG as a cementitious material. Many researchers have de-
veloped various methods to activate CG, which can be classified into three types—physical
activation (mechanical activation, calcination activation, and microwave activation), chemi-
cal activation, and compound activation.



Polymers 2022, 14, 3861 9 of 24

4.1. Physical Activation
4.1.1. Mechanical Activation

Mechanical activation is the physical and chemical change in CG by grinding or ball
milling. The lattice distortion and local destruction of the mineral under the action of
mechanical force will increase its internal energy and reactivity. The mineral components
in the material are more likely to precipitate. Compared with other activation processes,
mechanical activation is easy to operate, has high safety, and has stable material perfor-
mance [65–67]. Moreover, the experimental results demonstrate that mechanical grinding
can reduce the particle size, increase the specific surface area, and make the particle dis-
tribution more uniform. The results prove that the amorphous phase content is further
increased and the reactivity of CG particles is improved [68].

Figure 10 shows the micromorphology of CG with different mesh numbers before and
after mechanical activation. In Figure 10a, CG has a compact structure, weak adsorption
capacity on a solid surface, and a small and smooth contact area, which weakens the chemi-
cal reaction rate of CG. Figure 10b–f show the CGP with five mesh sizes (0–100, 100–180,
180–300, 300–400, and over 400) after mechanical grinding. With the increase in mesh sizes,
the structural micropores, internal voids, and cracks of particles increase. Accordingly, the
surface area of CGP is enlarged, the free energy of surface particles is increased, and the sur-
face adsorption capacity of CGP particles is enhanced [69]. Li et al. [70] proposed that with
the increase in grid number, the original structure of CG might be destroyed, and the active
reaction sites increase [71], so that the potential cementitious activity would be improved.
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Figure 10. Micromorphology of the CG sample and under different meshes: [69] (a) CG;
(b) 20–100 mesh; (c) 100–180 mesh; (d) 180–300 mesh; (e) 300–400 mesh; (f) Over 400 mesh. (Re-
produced from [69], Hindawi, 2021).

In addition, some scholars have studied the mechanical grinding time of CG. As the
grinding time increases, the particles experience the process of minimization, agglomera-
tion, and dispersion. After grinding for 10 h, the particle size will significantly decrease,
effectively improving the activity of CG, and the bulk density will reach the maximum
value of 600 kg/m3 [38]. On this basis, studies have shown that when the particle size
reaches a certain fineness, the increasing trend of CG activity decreases, which may be
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due to particle agglomeration during the grinding process, so it is necessary to control the
grinding time to avoid energy waste [72].

Although the kaolinite structure in CG is deformed after prolonged grinding, it cannot
completely change the mineral phase. Mechanical grinding is used to increase the surface
area and help activate the volcanic ash activity.

4.1.2. Calcined Activation

The main reaction of CG calcination activation is the dehydroxylation of clay minerals,
such as kaolinite (the endothermic reaction of kaolinite) [73], forming metakaolinite, an
amorphous mineral with high volcanic ash activity. Figure 11a shows the XRD patterns of
CG calcined at different temperatures. It can be seen that kaolinite and quartz are the main
crystalline minerals. After calcining at 550 ◦C, the diffraction peak of kaolinite weakens
and finally disappears at 650–850 ◦C when kaolinite is transformed into metacolinite.
When the calcination temperature is increased to 950 ◦C, the gentle diffraction peak of
mullite appears.
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Figure 11. CG activity analysis at different heating temperatures: (a) XRD patterns of CG calcined at
different temperatures [15]; (Reproduced with permission from [15], Elsevier, 2022.) (b) DG−TDA
atlas of CG at different temperatures [70]. (Reproduced with permission from [70], Elsevier, 2021).

XRD was used to test CG calcined at different temperatures. It has been found
that there is a low-temperature activation zone between 500 and 800 ◦C, and kaolinite is
dehydrated to form metakaolinite. Mullite appears when calcined at 1000 ◦C, and it is
determined that the activity is the highest when CG is calcined at 700–750 ◦C [74–78]. After
CG calcination, the activity indexes were studied based on the dissolved contents of silica
and alumina. When the calcination temperature was 700 ◦C, the dissolved contents of SiO2
and Al2O3 reached 92.31% and 64.44%, respectively [79].

Some researchers have also used thermogravimetric methods (TG-DTA) to analyze the
calcination activation of CG, as shown in Figure 11b. It is observed that the total weight loss
of CG is about 13.41% when it is heated from room temperature to 930 ◦C. Among them, the
weight loss is 6.27% at 0–300 ◦C due to the removal of adsorbed water in CG and the gradual
combustion and exothermic emission of residual carbon during the heating process [80].
At 535–720 ◦C, the weight loss is 2.02%, indicating that kaolinite gradually absorbs heat,
leading to lattice destruction and dehydration to form amorphous metakaolinite. An
endothermic valley appears after 900 ◦C, and metakaolinite may recrystallize into spinel
and other minerals when the activation temperature continues to rise [70].
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In conclusion, calcination activation is considered the most promising method used to
destroy the crystal structure and increase the reactivity of CG active substances. We can
describe the induced thermal induction process with the following reaction:

Al2O3·2SiO2·2H2O (kaolinite)→ Al2O3·2SiO2 (metakaolin) + 2H2O (at 900 ◦C) (1)

2(Al2O3·2SiO2) (metakaolin)→ 2Al2O3·3SiO2 (silicon aluminum spinel) + SiO2 (at 500 ◦C) (2)

2Al2O3·3SiO2 (silicon aluminum spinel)→ 2Al2O3·SiO2 (mullite) + 2SiO2 (at 1000 ◦C) (3)

4.1.3. Microwave Activation

Microwave activation refers to microwave radiation heating, which changes the crystal
and chemical structure of CG through its thermal effect. It is a fast and efficient new heating
technology [81]. Compared with traditional thermal activation, it has high efficiency, low
energy consumption, and no secondary pollution during treatment [82]. After microwave
radiation, heat is transferred outwardly in a circular radial shape. Figure 12 shows the tem-
perature of CGP after microwave irradiation. CGP reaches the melting state at 400–500 ◦C.
Small sintered particles are formed when the temperature is between 500 and 600 ◦C. When
the temperature exceeds 600 ◦C, about 4–5 cm of block material is observed in the center
of the CGP. This is because the indirect contact surface with microwave CGP particles
increases with the increase in temperature. Thus, the grain boundary area is increased
and rearranged. The viscous flow of particles and plastic flow is induced along with mass
transfer, leading to particles close to each other and gradually forming the grain boundary,
reducing the pore volume and holes, and forming part of the hard polycrystalline sintered
body [69].
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Figure 12. Temperature of CGP after microwave irradiation [69]. (Reproduced from [69], Hindawi, 2021).

The mineral composition of CGP is changed by microwave activation. Its active
substances are separated, and its particles become rounder and finer, thereby increasing the
volcanic ash activity. The strongest activity has been recorded in the microwave temperature
range of 600–650 ◦C [47]. Microwave oven power level, activation time, and water bath
temperature affect the activation. When microwave oven power is 595W and the activation
time is 20 min, greater active substances can be obtained [83]. Further, the influence of
CG activated by microwave has been simulated by finite element software ANSYS. After
microwave heating for 15 min, the temperature of the CG central node could reach about
640 ◦C, reaching the active condition. After heating for 15 min, the temperature of the CG
central node could reach about 720 ◦C. It has good activity conditions [84] and its results
are similar to those of the studies mentioned earlier.
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4.2. Chemical Activation

Chemical activation involves adding strong bases (e.g., Na2SiO3, NaOH, and KOH)
or acidic solutions (e.g., HCL or Na2SO4) into CG to enhance its surface area and porosity
by depolymerizing, removing mineral impurities, and dissolving the outer layer. Thus,
the cementing properties of CG are stimulated. The strength of CGP mortar specimens
with different chemical activators at the same water–binder ratio is shown in Figure 13.
With the increase in CaCl2 concentration, the strength of the specimen first increases
and then decreases. Ca2+ accelerated the calcium aluminum–silicate hydrate (C–A–S–H)
formation. The high charge density and mobility of Cl− contribute to the diffusion of alkali
solution [85]. However, the reaction of excess Ca2+ with OH− weakens the local alkalinity
and precipitation of the liquid phase. With the increased concentration of Na2OnSiO2, the
specimen strength decreases and then increases, causing enough [SiO4]4− and dissolved
Ca2+ to form C–S–H gel under the “concentration effect”. With the increase in Na2SO4
concentration, the strength increases, the Na2SO4 solution erodes effectively, and the Si–O
and Al–O bonds on the surface of CGP decompose [86]. With the increase in Ca(OH)2
content, the strength of the specimens first increased and then decreased. The OH− ions
in the Ca(OH)2 solution contribute to the decomposition of Si–O and Al–O bonds. Ca2+

promotes the formation of calcium aluminosilicate hydrate [87]. However, when the
addition of Ca(OH)2 exceeds 8%, it cannot diffuse in time and form crystals with weak
interfaces during the hydration reaction [69].
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Qin et al. [88] studied CG mortar test blocks prepared using three chemical
activators—Ca(OH)2, Na2SO4, and CaCl2. Except for the test blocks prepared by Na2SO4,
the mechanical characteristics of the test pieces prepared by other activators were similar
to those mentioned above. This result may be attributed to the insufficient dispersion of
Na2SO4 during hydration and the insufficient activation of CGP. Na2SiO3 with the modulus
of 2.3 was used to replace NaOH as a liquid chemical activator to study the strength of
CGG. The results showed that the compressive strength of all samples increased first and
then decreased with the addition of Na2SiO3. When the Na2SiO3 mass ratio increased from
0% to 50%, the compressive strength of samples was the highest and increased by about
207% [89]. Several studies [90,91] have also reported that Na2SiO3 content increases the
reaction intensity. The highest effect is obtained at a mass ratio of 80% Na2SiO3, which
favors polymerization and produces more reaction products. This may be because Na2SiO3
can provide a large amount of active SiO2 to react with Ca2+ and Al3+ to generate calcium
silicate hydrate (C–S–H), which promotes the further hydrolysis of CG and sodium silicate.
However, the decreased NaOH in excessive solution is not conducive to the hydration
reaction. In this regard, Han et al. [92] confirmed that Na2SiO3 could be hydrolyzed to
NaOH and soluble silica gel, which helps improve the CGG strength.

4.3. Composite Activation

Compound activation uses the two approaches mentioned above to benefit from their
advantages. Mechanical activation increases the contact area of particles, and the crystal
structure of kaolin is destroyed, transforming it into partially ordered semi-crystalline
metakaolin and increasing its amorphous phase content. Then, calcination activation can
remove the carbon component in CG and generate more amorphous metakaolinite with
pozzolanic properties [93]. Several studies have shown that the mechanical activation
followed by calcination can more effectively destroy the Si–O–Al(VI) synthesis in kaolinite
and leads to the formation of amorphous metakaolinite with a Si–O–Al(IV) structure. It
has been confirmed that the traditional mechanical–thermal activation (TMTA) technology
significantly increases the CG activity [38,71]. Some researchers have also investigated the
extraction rate of Al from the particle size perspective. CG activated at a lower calcination
temperature (400–600 ◦C) was used, and the results demonstrated that mechanical acti-
vation energy could reduce the particle size and increase the volume percentage of small
particles, while the reduction in particle size could improve the leaching rate of Al [94].

The increased activity of CG volcanic ash contributes to the amorphous transition of
minerals during thermal and chemical activation. The compound thermochemical activa-
tion method shows that the compressive strength of the mortar composed of the calcined
mixture of CG and CaSO + CaO increased by 10 MPa compared with the thermal activation
alone. In addition, CaO can also reduce the crystallinity of SiO2 during calcination [95].
Calcination and calcium addition were also used to activate CG. Calcination and activation
of CG contribute more to the strength than calcination and activation alone. The activated
CG system obtained at 1050 ◦C has the optimal strength [96].

5. The Performance of CGG
5.1. Fresh Properties

Setting time and fluidity affect the machinability of CGG. Figure 14 shows the effects
of different alkali activators and blast furnace slag (BFS). The increase in BFS content,
NaOH molar concentration, Na2SiO3 modulus, and SS(CaSO4·2H2O + NaOH + Na2SiO3)
activator dosage can shorten the initial and final setting times of CGG [64]. Additionally, the
increase in BFS content increases the number of calcium ions. The formation of C–A–S-H
and N(C)–A–S–H gels is accelerated [97], and the increasing molar concentration of NaOH
could effectively dissolve CGP. In addition, the increase in the modulus of Na2SiO3 and
the amount of SS activator provides a large number of active SiO3 tetrahedra and calcium
ions, effectively improving the polymerization reaction [64]. When the CGP content is
adjusted from 60% to 40%, the modulus of Na2SiO3 increases from 1.2 to 1.6, resulting in
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the increase in CGG flowability from 181 to 252 mm [98]. The decrease in CGP can release
water, while the increase in Na2SiO3 increases the concentration of silicate ions adsorbed
on the particle surface. The magnitude of the repulsive double layer power is increased,
thereby reducing the reduced shear stress [99]. With the increase in Na2SiO3 base activator
content in CGG, electrostatic repulsion between particles leads to greater dispersion of
free water on particles and easier dispersion of particles. The dynamic yield stress and
thixotropic area decrease with the increase in Na2SiO3 base activator content [100].
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In addition, increasing the liquid–solid ratio and adding fly ash are measures used
to increase the fresh mixing performance. A higher liquid–solid ratio leads to a larger
distance between particles, weakens the interaction between particles, and improves the
processability of CGG slurry [101], while fly ash particles can improve the fluidity of slurry
by using the morphological effect [102].

5.2. Mechanical Property

CGP contains a lot of silicon and aluminum and the obtained CGG has superior
strength. According to the activation mechanism above, the preparation of CGG on this
basis can effectively improve the chemical excitation (as shown in Table 3). In addition,
CGP is rich in silica–aluminum, highly active cementitious materials but has very little
calcium, hindering the formation of C–A–S–H gel. As shown in Table 3, in order to improve
the calcium content of CGG, scholars added blast furnace slag (BFS), sludge (S), calcium
carbide residue (CCR), red mud (RM), slaked lime (SL), and other materials rich in calcium
elements. The increase in calcium content (over 30%) is expected to improve the low
reactivity of CGG [103]. For example, Li et al. [89] prepared geopolymers by adding CCR
and showed that the corresponding compressive strength was significantly improved
compared to the pure CG geopolymer. The 3D compressive strength of samples with 10%,
20%, 30%, 40%, and 50% CCR content increased by 202.2%, 327.6%, 325.4%, 282.8%, and
221.6%, respectively. In addition, Table 3 also reflects some problems. In order to obtain the
geopolymer of coal gangue with good strength, the content of coal gangue is 50–60%, and



Polymers 2022, 14, 3861 15 of 24

grinding or calcination is required, which greatly increases the economic cost and reduces
the utilization rate of coal gangue.

Alkali exciter is an essential reagent for the preparation of geopolymers. Alkali exciter
increases the surface area and porosity of CGP particles by depolymerizing, removing
mineral impurities, and dissolving the outer layer. It then destroys the silica–aluminate
skeleton and dissolves SiO44−and AlO45−, which then react with CaO and Ca(OH)2.
C–S–H and calcium aluminate hydrate (C–A–H) are generated [49]. The commonly used
base activators are NaOH, Na2SiO3, and KOH reagents. However, due to the high modulus
of commercially available Na2SiO3 reagents (more than 2.56), NaOH will be added to
reduce the modulus of Na2SiO3 in the preparation of CGG. The effect of NaOH and
Na2SiO3 mixed reagent on the strength of CGG was studied. The results showed that
the 28d compressive strength of CGG prepared with Na2SiO3 and NaOH mixed reagent
was 1.73 times higher than that of NaOH reagent. The analysis showed that the optimal
concentration of the mixed activator was 18–20%. The optimal modulus is 0.6–0.8 [64,104].
Guo et al. [98] proposed that the modulus of Na2SiO3 affects the polymerization reaction.
When the modulus of Na2SiO3 is too high, excessive silicate ions are generated, affecting
the slag hydrolysis and reducing the precipitation of calcium ions. The low modulus of
Na2SiO3 leads to the reduction in the content of Si–O tetrahedra and the reduction in the
CG bonding reaction. Therefore, the appropriate base initiator is conducive to destroying
Si–O and Al–O bond breaking and increasing the bond reaction in polymers.

The calcined coal gangue can effectively improve the compressive strength. After
adding coal gangue (500–900 ◦C), the 3 and 7 d compressive strength significantly increased
by 7–32% and 4–27%, respectively, with the highest compressive strength at 800 ◦C [105].
Researchers have also studied the curing temperature effects on the resulting properties
of CGG. It is shown that increased curing temperature speeds up the movement between
molecules and accelerates the hydrolysis of alkaline excitation agents. The compressive
strength and flexural strength are, thus, increased with the increase in curing temperature.
The temperature rise accelerates the damage to the structure of the aluminum–silicon glass
network in CG. However, it can lead to high CGG concrete hardening in a short time. The
rapid formation of the CGG frame structure hinders the polymerization reaction. The
optimal curing temperature of CGG is found at 100 ◦C [106].

Table 3. Polymer strength of CG in different literature.

Cementing Material
(Particles; Calcined) Alkali-Activator Optimum Condition

Compressive Strength
(MPa) Refs.

3 d 7 d 28 d

Coal gangue (<80 µm; 700 ◦C),
Blast furnace slag NaOH, Na2SiO3

CG:BFS = 60:40,
Na2SiO3 modulu: 0.8,

alkali dosage: 18%
24.5 29.5 46.4 [104]

Coal gangue (<80 µm; 700 ◦C),
Blast furnace slag CaSO4·2H2O, NaOH, Na2SiO3

CG:BFS = 60:40,
CaSO4·2H2O dosage: 6%,

Na2SiO3 modulus: 0.8,
Na2SiO3: 16%

17 29.8 40.1 [64]

Coal gangue (<75 µm), Calcium
carbide residue NaOH, Na2SiO3

CG:CCR = 70:30,
Na2SiO3 modulus: 2.3,
NaOH:Na2SiO3 = 30:70

18.7 24.7 44 [89]

Coal gangue (<80 µm),
Fly ash NaOH, CaCO3

CG:FA = 50:50,
NaOH:CaCO3 = 36.4:65.6,

curing temperature: 100 ◦C
- 71 101 [106]

Coal gangue (<100 µm), Blast
furnace slag, Fly ash NaOH, Na2SiO3, KOH

CG:BFS:FA = 50:25:25,
Na2SiO3 modulus: 2.2,

NaOH:Na2SiO3:KOH =
5.1:66.4:28.5

18.8 23.3 29.4 [107]
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Table 3. Cont.

Cementing Material
(Particles; Calcined) Alkali-Activator Optimum Condition

Compressive Strength
(MPa) Refs.

3 d 7 d 28 d

Coal gangue (700 ◦C), Blast
furnace slag NaOH, Na2SiO3

CG:SFS = 50:50,
Na2SiO3 modulus: 1.3,

liquid-to-solid ratio: 0.36
41 86 93 [108]

Coal gangue, Blast furnace slag,
Slaked lime NaOH, Na2SiO3

CG:GBFG:SL = 55:40:5,
Na2SiO3 modulus: 2.7,

NaOH:Na2SiO3 = 27.7:72.3
39 - 60.5 [103]

Coal gangue (<250 µm), Sludge NaOH, Na2SiO3
CG:S = 60:40,

Na2SiO3 modulus: 1.0 - 30 39.8 [109]

Coal gangue (<75 µm), Red mud NaOH, Na2SiO3
CG:RM = 20:80,

Na2SiO3 modulus: 2.21 17 22.5 26.3 [110]

Coal gangue (<80 µm), Blast
furnace slag, Fly ash NaOH, Na2SiO3, NaO CG:BFS:FA = 50:40:10,

Na2SiO3 modulus: 1.2 5.41 - 11.5 [98]

Note: Na2SiO3 modulus: the ratio of SiO2 to Na2O.

5.3. The Micro Performance

The effects of CG activity on CGG properties were analyzed from a microscopic
perspective. The effects of different particle sizes and calcination temperatures on CGG
activity were studied. The porosity of CGG with 50 mesh (CG-50), 150 mesh (CG-150), and
200 mesh (CG-200) was lower than that with 100 mesh (CG-100) and 250 mesh (CG-250)
(Figure 15a). Among them, the CG porosity of CG-50, CG-150, and CG-200 was higher
than that of CG-100 and CG-250 [111]. The higher the particle porosity, the easier the
leaching of Al3+ and Si4+ and the denser the CGG. The pore size distribution curves of
CGG calcined at 700, 600, 200, 800, and 900 ◦C moved to the right successively (as shown
in Figure 15b). Above 500 ◦C, the activity of CG starts to excite. The activity increases
first and then decreases, and the dissolution amounts of Al3+ and Si4+ increase first and
then decrease. The amount of CGG gel formed is positively correlated with the amount of
dissolved Al3+ and Si4+ [111], which leads to the first decrease and then increase in the pores
of CGG [70]. The activity of CGG was tested using SEM, and SiO2 and Al2O3 in the early
CGG could react with the residual cement slurry in the recycled coarse aggregate, filling
the micropores between CGG and the recycled coarse aggregate (Figure 16a,b). However,
the hydration products at the 28-day age of CGG were mainly calcium aluminate hydrate, a
small amount of calcium hydroxide, and spiculate ettringite. Due to the lack of an alkaline
environment, there is a large amount of unreacted free silica in the system, which produces
a CGG hardening body in the form of amorphous silicate, leading to a large number of
cracks on the concrete surface (Figure 16c) [107].

In addition to the effect of CG activity on CGG, the effects of alkali activators have
also been studied. The molecular structure of CGG with different Na/Al and H2O/Al was
established using Na2Si2O5. Within a certain range, with the increase in Na+ and H2O, the
energy of mineral polymer decreases, and the average bond length of Si–O, Al–O, H–O,
and O–O shortens. Additionally, the molecular structure of CGG becomes more stable.
Moreover, with the increase in Na/Al and H2O/Al, the bond angle distribution becomes
more concentrated, and the mechanical strength increases [112]. The surface of CGG is
prepared with different Na2Si2O5 base activator content and modulus. It has been observed
by SEM that a large number of relatively dense gels with different forms of flocculants,
clusters, webs, and flowers were formed [104]. This is because, with an appropriate amount
of alkali initiator (dosage of 18–20%, modulus of 0.6–0.8), the silica–oxygen tetrahedra is
easy to polymerize in sodium silicate rapidly forming long-chain silicate oligomers with
the substrate and three-dimensional mesh silica–aluminate polymer [113].
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5.4. Heavy Metal Solidification

Curing is an important method used to treat heavy-metal-containing waste, which
is economical and effective [114]. Geopolymers, as a new curing system, can effectively
cure heavy metal ions. When CG was used to replace low-calcium fly ash and metakaolin
to produce CGG, the leaching toxicity of Zn2+, Cr3+, Ni2+, and Co2+ solidified bodies
increased steadily with the increase in ion dose (as shown in Figure 17). The maximum
leaching concentration was below 1.5 mg/L, which is far below the national standard
value of leaching toxicity [115]. The leaching toxicity of heavy metals of CGG cured for
90 days is lower than that of CGG cured for 30 days. With the increase in curing age, the
active substances in CGG undergo volcanic ash reaction and polymer gelation, making its
three-dimensional network structure more compact. Thus, it has better physical fixation
and chemical bonding to metal ions. Additionally, it is not easy to leach and has good
stability [116,117].
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The gel-like substances of CGG are mainly amorphous N–A–S–H (sodium alumi-
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The gel-like substances of CGG are mainly amorphous N–A–S–H (sodium aluminate-
silicate hydrate) and C–S–H (calcium silicate hydrate) or aluminum-substituted C–A–S–H
forms which are solidified by physical and chemical means due to their porous structure
and the presence of negative aluminum tetrahedral charges in these gels [118]. The leaching
concentrations of Zn2+, Pb2+, and Cd2+ in the solidified body supplemented with 70% LZT
did not exceed the corresponding standard limits. In addition, it was found that amorphous
gels and new crystalline phases containing Zn2+ were formed, and Pb2+ and Cd2+ may
become part of the amorphous phase. In addition, studies have also shown that CGG can
solidify the heavy metal ions contained in itself and effectively absorb metal ions [119].
Moreover, CGG was used to adsorb heavy metals (Pb2+ and Cu2+) from the solution, and
the results showed that the gel was positively correlated with the adsorption capacity of
Pb2+ and Cu2+, with the maximum adsorption capacity of Pb2+ and Cu2+ being 137.7 and
90 mg/g, respectively [120].

The principle of heavy-metal solidification is that the insoluble heavy metals are
mainly encapsulated in the three-dimensional network structure of CGG. The dissolved
heavy metal ions react with CGG mainly through chemical bonds or pore structures. Given
the solidification principle, some researchers applied it to radioactive waste. Li et al. [121]
studied the fixation effect of CGG on uranium, and the results confirmed that after curing
for 28 days, the lowest static leaching concentrations of solidified uranium soil were
15.94 and 21.27 mg/kg, respectively. The mechanism of this process is that uranium is
physically encapsulated and adsorbed by C–A–S–H and N–A–S–H gels, and at the same
time, negatively charged [AlO4] tetrahedra exchange ions with uranium. In this study,
Zhou et al. [122] proposed that higher base activator content and lower base activator
modulus of CGG promoted the increase in 3D network structure, which could not only seal
more uranium but also provide more pore structure, thus, promoting uranium adsorption.

6. Discussion and Gap

In summary, CG has poor physical properties and many active substances. It has
high crystallinity and low activity. Therefore, CGG can only be effectively prepared after
CG activation. This paper focused on the activation mode and mechanism of CG and
discussed and evaluated the machinability, mechanical properties, microscopic properties,
and heavy-metal-curing properties of CGG.

It was found from the summary research that the following problems need to be solved
before CGG is promoted and applied in structural engineering.
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(1) According to different weathering ages and weathering degrees, the content of heavy
metal elements varies greatly, Pb, Cr, and Ni elements exceeding the standard to
different degrees, but there are few studies focused on CGG leaching, which is not
conducive to the application of coal gangue preparation geopolymers.

(2) There are many studies on CGG in the existing literature, but few study durability,
which has a great impact on the service life of buildings. The lack of research on
durability affects the promotion of gangue geopolymers.

(3) The research purpose of CGG is to replace cement. Most of the existing studies are
focused on the properties of cement materials. However, there are few studies on the
combination of CGG and aggregate to prepare concrete, which cannot be applied in
practical engineering quickly.

(4) The admixture of CGG is millimeter-level mineral waste, while the research on
CGG of nanoscale materials is less common. The morphology effects, activity ef-
fects, and micro-aggregate packing effects of nanoscale materials (such as nano-
silica, graphene oxide, and nano-calcium carbonate) are much higher than those of
millimeter-scale materials.

7. Conclusions

In this paper, the properties and activation mechanism of CG were reviewed, and
the performance research of CGG by various researchers from various countries was
summarized and analyzed in a wide range. The study aimed to expand the resource
utilization of CG. The main conclusions are as follows.

(1) The CG performance difference in different parts is very significant. CG has poor
physical characteristics, and most of its chemical composition is SiO2, Al2O3, and
Fe2O3. Kaolinite is the main mineral composition. The higher crystallinity causes
difficulty in generating hydration products to promote strength. In addition, because
of the different sources of CG, it has different levels of heavy metal element content in
the paint.

(2) The CG activation methods are physical activation (mechanical activation, calcination
activation, and microwave activation), chemical activation, and composite activation.
With three activation methods, the activity of CG can be effectively improved, and the
gelling properties of CG can be stimulated. The composite activation, in combination
with other activation methods, effectively plays respective advantages, and activation
is more efficient.

(3) CG is a silica–alumina material. Reducing the content of CG or increasing the liquid–
solid ratio of CGG can effectively improve fluidity. Increasing the content of the CGG
base activator and the modulus of Na2SiO3 can shorten the setting time and improve
fluidity. Adding high-calcium material can effectively promote the formation of
C–S–H gel and increase the alkali initiator content as well as the modulus of Na2SiO3
to effectively dissolve the silicon–oxygen tetrahedra, improve the bonding effect,
increase the curing temperature, and accelerate the hydrolysis of the polymer using
an alkali initiator. Changing these factors appropriately can effectively improve the
mechanical strength of CGG. The activation reaction of CG affects the microstructure
of CGG. The higher the activity of CG, the denser the structure of CGG, and the
increase in Na+ and H2O in CGG decreases the energy of the mineral polymer, the
average bond length of Si–O, Al–O, H–O, and O–O becomes shorter, and the molecular
structure of CGG becomes more stable. With the increase in Na/Al and H2O/Al, the
distribution of bond angles becomes more concentrated, and the mechanical strength
increases. CGG prepared after CG activation forms a three-dimensional network of
silica–aluminate geopolymer with a tight pore structure, strong physical fixation, and
chemical bonding, which can effectively solidify and adsorb heavy metal ions and
radioactive wastes.
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8. Outlook

Finally, the future development of coal gangue geopolymer (CGG) is suggested.

(1) The heavy metal elements of CG exceed the standard and the heavy metal curing of
CGG needs much research.

(2) Increasing the durability research of CGG can effectively popularize and apply CGG
in the engineering field.

(3) It is necessary to evaluate the concrete prepared by combining CGG with aggre-
gate. The future sustainable development direction is to use CGG instead of cement
in concrete.

(4) Nanomaterials (such as nano-silica, graphene oxide, and nano-calcium carbonate)
have been used in the research on concrete, and the use of nanoscale materials to
prepare CGG should be considered in the future.
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