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Böck3, Stefan Frentzel2, Christine E. Bandtlow1*

1 Innsbruck Medical University, Biocenter, Division of Neurobiochemistry, Innsbruck, Austria, 2 Novartis Pharma Research, Basel, Switzerland, 3 Innsbruck Medical

University, Biocenter, Division of Experimental Pathophysiology and Immunology, Innsbruck, Austria

Abstract

Myelin-associated glycoprotein (MAG) is a sialic acid binding Ig-like lectin (Siglec) which has been characterized as potent
myelin-derived inhibitor of neurite outgrowth. Two members of the Nogo-receptor (NgR) family, NgR1 and NgR2, have been
identified as neuronal binding proteins of MAG. In addition, gangliosides have been proposed to bind to and confer the
inhibitory activity of MAG on neurons. In this study, we investigated the individual contribution of NgRs and gangliosides to
MAG-mediated inhibition of sensory neurons derived from dorsal root ganglia (DRG) of ngr1, ngr2 or ngr1/ngr2 deletion
mutants. We found no disinhibition of neurite growth in the absence of either NgR1 or NgR2. Sensory neurons deficient for
both NgR proteins displayed only a moderate reduction of MAG-mediated inhibition of neurite growth. If treated with
Vibrio cholerae neuraminidase (VCN), inhibition by MAG is further attenuated but still not annulled. Thus, disrupting all
known protein and ganglioside receptors for MAG in sensory neurons does not fully abolish its inhibitory activity pointing
to the existence of as yet unidentified receptors for MAG. Moreover, by employing a variety of protein mutants, we
identified the Ig-like domains 4 or 5 of MAG as necessary and sufficient for growth arrest, whereas abolishing MAG’s ability
to bind to sialic acid did not interfere with its inhibitory activity. These findings provide new insights into the inhibitory
function of MAG and suggest similarities but also major differences in MAG inhibition between sensory and central nervous
system (CNS) neurons.
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Introduction

MAG/Siglec-4a is expressed in myelinating glia of the central

and peripheral nervous system (PNS). It is a member of the Siglecs

[1], a sialic acid binding subgroup of the immunoglobulin-

superfamily (IgSF). Membrane-bound MAG contains five extra-

cellular Ig-like domains with the N-terminal V-type Ig-domain

harboring the sialic acid binding site [2,3]. Besides its role in long-

term maintenance of myelin sheaths and axonal integrity [4,5,6],

MAG is known to affect axon growth. Originally described to

support fiber growth of cultured embryonic and early postnatal

neurons [7,8], MAG was later found to impair fiber growth of

mature peripheral and central neurons [9,10]. Two neuronal

proteins of the Nogo-receptor family, NgR1 and NgR2, have been

shown to bind MAG with similar affinity and to confer growth

arrest [11,12,13]. Both receptors are glycosylphosphatidylinositol-

linked proteins and require partner proteins for signal transduc-

tion. NgR1 forms a tripartite receptor complex with the

neurotrophin receptor p75NTR [14,15] or TROY/TAJ [16,17],

two members of the TNFR superfamily, and the transmembrane

leucin rich repeat protein Lingo-1 [18]. However, recent studies

question whether TROY can serve as a functional substitute for

p75NTR [19,20]. Membrane spanning constituents of an NgR2

receptor complex have not been identified yet. Besides NgRs,

neuronal gangliosides, notably GT1b and GD1a, seem to directly

interact with MAG via sialic acid residues that are recognized by

MAG’s lectin domain and were proposed to act as independent

functional MAG receptors [21,22,23,24]. Thus far, resolving the

relative contribution of each neuronal MAG receptor constituent

in neurite growth inhibitory signaling has been hampered for two

reasons. First, for lack of genetic deletion mutants, many

experiments on neuronal MAG receptors had to rely on,

sometimes ambiguous, biochemical read-out assays. Second,

MAG and its receptors were studied in different types of neurons.

However, only now is it becoming evident that there are

significant differences in the molecular machinery mediating

MAG inhibition between various neuronal cell types [20,24].

To better understand the function and relative contribution of

NgR1 and NgR2 in MAG-mediated neurite growth inhibition we

analyzed DRG neurons of ngr12/2, ngr22/2 and ngr1/ngr2

double mutant mice in vitro. Sensory neurons are an ideal model

system since they are strongly inhibited by MAG and express all

identified receptor components [13,16,17,25]. We found that only

the combined absence of NgR1/NgR2 and the disruption of
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gangliosides reduced MAG inhibition, but was still insufficient to

fully disinhibit sensory neurons. Furthermore, we found that the

inhibitory domains of MAG essential to trigger growth arrest differ

between sensory and CNS neurons. Collectively, our findings

support a model of MAG inhibition that is cell-type specific and

relies on at least three distinct signaling modes.

Materials and Methods

Generation of an ngr2 knock-out mouse strain
For generation of the targeting vector ngr2 genomic sequences

corresponding to intron 1 as well as the 39 untranslated region

(UTR) were amplified and subcloned into the vector pRAY2

(Accession No. U63120). Primers used for amplification of

genomic DNA were (for) 59-TAT AGT CGA CCC TTG GGC

TTT GAC CAT GAT C-39 and (rev) 59-TCT GGG AGC AAC

ACC AGC C-39 for the amplification of the intron 1 homology

region, and (for) 59-TAT AAT CGA TAA GAC CTC AAA GGC

AGC GG-39 and (rev) 59-TAT AGC GGA AGC ACG TGA

TGG GCG TCC CTT GG-39 for the amplification of the 39-

UTR homology region. C57Bl/6 mouse ES cell culture (ES cell

line Bl6-III) [26,27] was performed with primary X-ray-inactivat-

ed embryonic fibroblasts derived from DR4 mice. ES cells were

transfected by electroporation using 12 mg of linearized target

plasmid. Transfected ES cells were selected for neomycin

resistance using 0.2 mg/ml G418 (Invitrogen #10131-019). Ten

days after transfection, G418-resistant ES cell clones were isolated

and analyzed by PCR for homologous recombination. Nested

PCR reactions were carried out using the Qiagen Taq PCR

Master Mix (Qiagen #201445) with the first primer pair: Neo-

fw1: 59-CTT GCC GAA TAT CAT GGT GG-39; NgRH1-rev1:

59-TGG CTG GTG TGC TTA CAC TT-39 and the second

primer pair: Neo-5: 59-CAG GAC ATA GCG TTG GCT AC-39;

NgRH1-F1: 59-CTG AGG TGC ATC TGC CTG TT-39. A

targeting frequency of 6.25% was observed yielding a total of five

targeted ES cell clones. Homologous recombination was con-

firmed by Southern Blot analysis. Ten micrograms of genomic

DNA were digested with 50 units of RsrII and separated on a

0.9% agarose gel. After denaturation the DNA was blotted onto a

Hybond N+ membrane (GE Healthcare #RPN203B) followed by

UV crosslinking. An NgR2 DNA probe was amplified by PCR

using primers NgRH1-SpFw: 59-AGG CTC AGG TTC TGT

TGT CC-39 and NgRH1-SpRv: 59-GCT GCC AGA CCT TGG

AGT AC-39. Hybridization with the 32P-labeled DNA probe

(Rediprime II Random prime labeling kit; GE Healthcare

#RPN1633) was performed in Perfect Plus Hybridization buffer

(Sigma-Aldrich #H7033) at 65uC overnight. After washing the

hybridized membrane, image analysis was performed using a Fuji

FLA-5000. Following karyotype analysis ES cells of three targeted

clones were injected into Balb/c host blastocysts, which were

subsequently transferred into pseudopregnant CB6F1 foster

mothers. Chimeric offspring were identified by coat pigmentation

(black C57Bl/6 on a white Balb/c background). Black offspring

indicated the germline transmission of the targeted ES cells.

Genotyping of targeted mice was done via PCR assaying for

deletion of exons 2 and 3. Using genomic DNA obtained from tail

biopsies two separate PCR reactions were applied in order to

discriminate between heterozygous, homozygous and wildtype (wt)

mice. PCR primer to detect the wt allele: NgRH1: 59-TTG TCT

GCA GAG CAC CTT CCA C-39; NgRH1 rev: 59-TTC TCT

GTG TAA CAG CCT TGG G-39. A 500 bp amplification

product is expected. PCR primer to detect the targeted allele: Neo

starts: 59-ATG GGA TCG GCC ATT GAA CAA-39; NgRH1

rev: 59-TTC TCT GTG TAA CAG CCT TGG G-39. A 1.1 kb

amplification product is expected. The absence of an NgR2

transcript in brain tissue from homozygous null mice was tested

with real-time and reverse transcription PCR. To this end, total

RNA was isolated from mouse brain using Tripure Isolation

Reagent (Roche #1 667 165) followed by DNaseI treatment.

Reverse transcription of RNA was performed with Omniscript RT

Kit (Qiagen #205111). PCR was carried out with Taq-polymerase

(Roche #1 146 173) and NgR2 specific primers (NgR2for: 59-

TGA CTT GTT CGC GGA CCT GG-39; NgR2rev: 59-GAG

GAT GGT GAG GCG GCT GA-39) yielding a product of

181 bp. Real-time PCR was done with a Light Cycler (Roche)

using Quantitect SYBRH Green PCR Kit (Qiagen #204143).

NgR2 signals were normalized to GAPDH mRNA. The ngr2

knock-out mouse line was named Bl6-TgH(NgRH1)143Npa,

according to the guidelines of the International Committee on

Standardized Genetic Nomenclature for Mice.

The ngr12/2 mice are described elsewhere [27]. The absence

of NgR1 in knock-out animals was verified by PCR-genotyping of

tail biopsies using the following primers: NR3F1: 59-TCG GCA

CAT CAA TGA CTC TCC-39, NR3R3: 59-TAT GTA CAC

ACA CCT GGT GGC-39 and bpA2: 59-TGG GCT CTA TGG

CTT CTG AG-39. A 325 bp amplicon is expected for the

wildtype allele and a 210 bp amplicon for the targeted allele.

DNA constructs
MAGp72_pXM plasmid containing full-length rat L-MAG was

a kind gift from Rainer Hillenbrand, Basel, Novartis Institutes for

BioMedical Research [28], MOG_pCMV containing full-length

human MOG alpha variant was provided by Markus Reindl,

Innsbruck Medical University and N-CAM_pBK-CMV contain-

ing full-length chicken N-CAM180 was given to us from Jozsef

Kiss, Geneva, University Medical Center. The coding sequence of

MAG was subcloned in the pKS+ vector using KpnI and BamHI

for further cloning steps (MAG_pKS+). The MAG mutant R118A

was generated by site-directed mutagenesis using the ‘‘Quik-

ChangeTM site-directed mutagenesis kit’’ of Stratagene (#200519)

and MAG_pKS+ as template. The primer sequence was: 59-GGA

GGG AAA TAC TAT TTC GCA GGT GAC CTG GGC GG-39

and 59-CC GCC CAG GTC ACC TGC GAA ATA GTA TTT

CCC TCC-39, changing the original Arg118 codon ‘‘CGA’’ to Ala

codon ‘‘GCA’’. The mutation was confirmed by sequencing.

MAG Ig1–3 was generated by PCR using MAG_pKS+ as

template and primers sparing the sequence encoding Ig-like

domains 4 and 5 (for: 59-TAA CCC GGG CTG ATG TGG GCC

AAA ATC GGC-39; rev: 59- TCC AAC CCG GGT GCA TAC

ATG ACG CTG TCG-39). The MAG replacement mutants rIg4

and rIg5 were constructed from MAG_pKS+ and N-CAM_pBK-

CMV plasmid. MAG sequence lacking Ig-like domain 4 or 5 was

PCR-amplified using MAG_pKS+ as template and primers

containing linkers for HindIII and KasI. The primer sequences

were: rIg4 (for: 59-ATT GGC GCC CCC ATA ATC CTT CTG

GAA TCG CAC-39; rev: 59-CCC CAA GCT TAG GTG CAT

ACA TGA CGC TCA GC-39; linkers marked) and rIg5 (for: 59-

ATC GGC GCC CTG ATG TGG GCC AAA ATC-39; rev: 59-

CCC CAA GCT TAG CAA ACT CCA CAG ACA GG-39;

linkers marked). The sequence encoding the Ig4 domain of N-

CAM was PCR-amplified using N-CAM_pBK-CMV as template

and primers containing linkers for HindIII and KasI (for: 59-CCC

AAG CTT GAG GAT CAG ATC ACA CTG ACC-39; rev: 59-

ATC GGC GCC GAT GGT GTT GCT GGC C-39; linkers

marked). The N-CAM Ig4 amplicon was inserted into the MAG

amplicon lacking the sequence for either Ig-like domain 4 or 5.

The chimeric cDNAs were finally cloned into the expression

vector pBK-CMV (Stratagene #212209) using KpnI and BamHI

MAG Acts in Absence of NgRs
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sites. For generation of chimeric MOG/MAG constructs, the

sequence encoding MAG Ig-like domains 4, 5 and 4/5 was PCR-

amplified using MAG_pKS+ as template and primers containing

StuI and KasI linkers (for Ig4: 59-AGG CCT TGG AAG CCC

ACA GTG AAT-39; rev Ig4: 59-GGC GCC GGG AGC AAA

CGC CA-39; for Ig5: 59-AGG CCT ATA ATC CTT CTG GAA

TCG CAC-39; rev Ig5: 59-GGC GCC TCG GTG TGC TCC-39;

linkers marked). Amplicons were cloned into MOG_pKS+ cut

with StuI and KasI thus inserting the MAG domains between

Arg130 and Asp131 of MOG. Chimeric MOG/N-CAM was

generated by PCR-amplifying the sequence encoding the Ig4

domain of N-CAM using N-CAM_pBK-CMV as template and

primers with StuI and KasI linkers (for: 59-CCT AGG CCT GAG

GAT CAG ATC ACA CTG ACC-39; rev: 59-ATC GGC GCC
GAT GGT GTT GCT GGC C-39; linkers marked) and inserting

the amplicon into MOG_pKS+ cut with StuI and KasI. The

MOG/MAG and MOG/N-CAM constructs without the signal

peptide were subcloned in a modified pAPtag-5 vector (GenHun-

ter #Q202) containing an N-terminal V5-tag.

CHO-K1 cell lines
CHO-K1 cells were grown as described previously [29]. To

generate CHO-K1 clones stably expressing wildtype or mutant

MAG, cells were transfected with respective constructs using

Lipofectamine 2000 (Invitrogen #11668-019) and selected with

1 mg/ml G418 (pBK-CMV-constructs; Invitrogen #11811-031)

or 200 mg/ml zeocin (pAPtag-5-constructs; Invitrogen #45-043).

Transfected cells were subjected two to three times to fluores-

cence-activated cell sorting (FACS) using the monoclonal anti-

MAG 513 antibody (Millipore #MAB1567) for MAG R118A,

MAG Ig1–3, MAG rIg4 and MAG rIg5, the monoclonal anti-V5

antibody (Invitrogen #R960-25) for the MOG/MAG and MOG/

N-CAM chimeric proteins and the monoclonal anti-MOG (clone

8.15-C5; kind gift from Markus Reindl, Innsbruck Medical

University) for MOG transfected cells. Clonal cell lines were

obtained by limiting dilution of the sorted cell populations.

Aliquots of a dilution containing in theory 1 cell/100 ml were

seeded in a 96-well plate. Screening for positive clones was done

with live cell surface immunofluorescent staining. Clones with

highest expression level were chosen for neurite outgrowth assays.

Immunocytochemistry
For live-staining CHO cells expressing MAG or MAG-mutants

were seeded onto glass cover slips. After overnight culture they were

washed once with PBS and incubated with 10 mg/ml anti-MAG

513 antibody or 1 mg/ml anti-V5 antibody or 2.5 mg/ml anti-

MOG (clone 8.15-C5) for 25 min at room temperature. Following

fixation with 4% (w/v) paraformaldehyde and 5% (w/v) sucrose in

PBS cells were incubated for one hour at room temperature with a

Rhodamine-labeled goat anti-mouse IgG (1:700; Millipore

#AP124R). The coverslips were mounted (Fluorescence mounting

medium; Dako #S3023) and pictures were taken with a Zeiss

Axioplan2 microscope equipped with a spot camera (RT-Slider

2.3.1, Visitron Systems, Puchheim, Germany).

Sensory neurons
Preparation of sensory neurons from DRG was described

previously [30]. Briefly, ganglia were obtained from P7-P9

wildtype or transgenic mice. Ganglia were digested two times,

30 min each, at 37uC with 0.09 mg/ml liberase blendzyme 1

(Roche #11 988 409 001) in DMEM, washed twice with PBS and

incubated for another 30 min with 0.05% (w/v) trypsin (Invitro-

gen #15090). After trituration cells were spun through DMEM/

3.5% (w/v) BSA and resuspended in complete medium [31].

Sensory neurons were plated in complete medium onto monolay-

ers of CHO-K1 cells.

Neurite outgrowth assay and statistical analysis
Neurite outgrowth assays on confluent monolayers of parental

CHO-K1 cells or CHO cells overexpressing wildtype MAG,

mutant MAG, MOG/MAG or MOG/N-CAM chimeras was

performed as described previously [32]. Briefly, approximately 6000

sensory neurons were added to the CHO-K1 monolayers in

complete medium. Where indicated Vibrio cholerae neuraminidase

(VCN; Sigma-Aldrich #N7885) was added at the indicated

concentration one hour after plating the neurons. Specificity of

VCN treatment was revealed as described in Method S1. Following

an incubation period of approximately 20 hours cells were fixed and

neurons were stained for better visualization with anti-GAP43 as

described [32]. The coverslips were mounted and fluorescent

pictures from isolated neurons were taken in a systematic manner

with a Zeiss Axioplan2 microscope equipped with a spot camera

(RT-Slider 2.3.1, Visitron Systems, Puchheim, Germany). Neurite

length was determined by measuring the maximal distance from the

center of the cell body to the furthest neurite from digitized images

of approximately 50 individual neurons per experiment and

condition using MetaVue 5.0r3 software (Universal Imaging

Corporation, PA, USA). The mean and SEM of neurite-bearing

cells were calculated from at least three to seven independent

experiments. Data were analyzed by one-way ANOVA, followed by

Tukey post hoc analysis with SPSS 15.0.1 2006 for Windows (SPSS,

IL, USA). Error bars indicate SEM.

Western Blotting
Cells were lysed in 50 mM Tris-HCl pH 7.5, 150 mM NaCl,

0.1% (w/v) SDS, 1% (v/v) NP40, 10 mg/ml aprotinin, 5 mg/ml

leupeptin, 1 mg/ml pepstatin and 174 mg/ml phenylmethylsulfonyl

fluoride (PMSF). Lysates were sonicated for 10 sec and centrifuged

for 15 min at 4uC at 21.0006g. Protein concentration was

determined using BioRad Protein Assay (#500-0006), b-mercapto-

ethanol was added and lysates were incubated at 95uC for 5 min

before they were subjected to SDS-PAGE. Proteins were transferred

onto polyvinylidene difluoride membrane (Millipore, Immobilon-P,

#IPVH00010) and blocking was carried out with 3% (w/v) gelatine

(hydrolysed gelatine #17079/1; Naumann – Gelatine und Leim

GmbH, Memmingen, Germany) in TBS/0.1% (v/v) Tween-20 for 1

hour. Proteins were detected with antibodies as indicated: 0.2 mg/ml

polyclonal goat anti-MAG (L-20; Santa Cruz #sc-9543), 0.25 mg/ml

monoclonal mouse anti-MOG (clone 8.15-C5), 0.107 mg/ml

monoclonal mouse anti-V5 (Invitrogen #R960-25), 0.29 mg/ml

polyclonal goat anti-Flotillin-1 (K-19; Santa Cruz #sc-16640),

0.1 mg/ml monoclonal mouse anti-a-Tubulin (DM1A; Sigma-

Aldrich #T 9026) overnight at 4uC in 1.5% (w/v) gelatine in

TBS/0.1% (v/v) Tween-20. After three washes with TBS/0.1% (v/

v) Tween-20, membranes were incubated with the HRP-conjugated

secondary antibodies rabbit anti-goat IgG (1:14.000; Pierce #31402)

or goat anti-mouse IgG (1:20.000; Pierce #31432) for one hour at

room temperature in 1.5% (w/v) gelatine in TBS/0.1 % (v/v)

Tween-20. After three washing steps HRP activity was detected with

ECL-Plus Western blotting detection reagent (GE Healthcare

#RPN 2132) using a Typhoon 9410 scanner (GE Healthcare).

Glycosylation patterns were revealed as described in Method S2.

Results

Generation of ngr mutant mouse strains
Inactivation of the murine ngr2 gene was achieved by targeted

disruption of exons 2 to 3 with a strategy depicted in Figure 1A.

MAG Acts in Absence of NgRs
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Except for exon 1, which encodes only 10 amino acids, the entire

coding sequence was deleted and the mutation was therefore

expected to be a null allele. The targeted allele was obtained in

C57Bl/6 ES cells (B16-III cell line; [26]) as confirmed by Southern

Blotting of ES cell genomic DNA (Fig. 1B). ES cells of three

targeted clones were injected into Balb/c host blastocysts and

germline transmission was achieved with one clone. Real-time and

reverse transcription PCR with brain cDNA of homozygous null

Figure 1. Generation of ngr2 deletion mutant mice. (A) Targeting strategy for the ngr2 mutant. Genomic sequences in intron 1 and 39UTR of
the ngr2 gene were used as targeting sites. (B) Southern analysis of ES cell clones; the expected signal for a targeted clone is at 6.2 kb. Germline
transmission after blastocyst injection was obtained for ES cell clone 9H (circled). (C) Real-time-PCR (left) and reverse transcription PCR (right) for NgR2
with mouse brain cDNA confirm the absence of NgR2 in 2/2 animals. (D) Genotyping of mice using genomic DNA from tail biopsies of wt, ngr12/2,
ngr22/2 and ngr1/22/2 animals. HSVtk, Herpes simplex virus thymidine kinase gene; neo, neomycin resistance gene; polyA, polyadenylation site.
doi:10.1371/journal.pone.0005218.g001
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mice confirmed the absence of the NgR2 transcript (Fig. 1C). At

genomic level, the mutant allele was detected by PCR-based

genotyping of tail biopsies (Fig. 1D). Expression of NgR1 or other

known receptor components conferring MAG responsiveness such

as p75NTR or TROY/TAJ were unaltered in cultured sensory

neurons (data not shown). Heterozygous ngr2 mice appeared

phenotypically normal and fertile, and intercrosses between

heterozygous mice yielded homozygous ngr2 knock-out animals

at a normal Mendelian frequency. Similar to ngr1 deletion mutants

[27], homozygous adult ngr2 null mice appeared healthy, and

histological examination showed no obvious abnormalities in the

brain, liver or heart (not shown). ngr1/2 double null mice were

generated by cross-breeding ngr1 and ngr2 deletion mutants and

the absence of both the ngr1 and ngr2 wildtype allele was

demonstrated by PCR-based genotyping of tail biopsies (Fig. 1D).

ngr1/2 double null mice are viable and fertile and morphologically

indistinguishable from wildtype animals.

Absence of NgR1 or NgR2 alone does not attenuate MAG
inhibition of sensory neurons

Previous studies showed that MAG transduces its repulsive

signals by binding to NgR1 [11,12] or NgR2 [13]. Because both

receptors are abundantly expressed on DRG neurons [13,25] we

were interested to study their relative contribution to MAG

inhibition in a mouse genetic approach. In order to present MAG

to neurons in a physiological manner, we used a CHO-K1 cell line

that expressed significant levels of MAG on the cell surface as

revealed by live-staining (Fig. 2A) and tested its ability to modulate

neurite outgrowth of postnatal sensory neurons from mice

deficient for NgR1 or NgR2. As reported previously [10], sensory

neurons grown on a CHO-MAG substrate have shorter and less

branched neurites compared with those grown on a CHO control

substrate (Fig. 2B). Quantitative analysis revealed that neurite

length of wildtype murine sensory neurons is significantly reduced

by approximately 40% on CHO-MAG cells compared to parental

CHO-K1 cells (Fig. 2B,C). In agreement with recent reports

[27,33] we found no difference in MAG inhibition between

wildtype neurons and ngr1 null neurons (Fig. 2B,C). Likewise,

neurite extension of sensory neurons from ngr22/2 mice was as

potently inhibited as that of wildtype or ngr12/2 animals

(Fig. 2B,C). Thus, sensory neurons of wildtype and ngr mutant

genotype were indistinguishable in neurite extension on control

CHO cells and equally inhibited on CHO-MAG cells (Fig. 2C).

Together these observations imply that deletion of NgR1 or

NgR2 alone is not sufficient to render sensory neurons insensitive

to MAG inhibition.

Additive, but incomplete, attenuation of MAG inhibition
upon combined deletion of NgR1 and NgR2 and
neuraminidase treatment

Given the high degree of homology between NgR1 and NgR2

we hypothesized that the lack of a robust phenotype in the neurite

outgrowth response to MAG from neurons deficient for either

NgR1 or NgR2 was attributed to functional redundancy between

the two receptor constituents. To test this hypothesis, we analysed

sensory neurons from ngr1/ngr2 double knock-out mice for their

MAG responsiveness. Surprisingly, in comparison to wildtype or

single mutant neurons, combined deletion of NgR1 and NgR2

resulted in only a moderate, albeit significant, release of inhibition

of approximately 33% (Fig. 3). No difference was observed

between wildtype and double null neurons on control CHO cell

substrate. This result demonstrates a partial functional redundancy

between NgR1 and NgR2 in sensory neurons with regard to

inhibitory MAG signaling, and implies that additional neuronal

constituents account for the residual response.

Because recent findings suggest that gangliosides, notably GT1b

and GD1a, can act as functional MAG receptors on neurons in a

sialic acid dependent manner [21,22,23,24], we examined whether

disrupting gangliosides on ngr1/ngr2 double null neurons would

result in full release of MAG inhibition. For this purpose we

cultured wildtype and mutant sensory neurons in the presence of

different concentrations of vibrio cholerae neuraminidase (VCN).

This enzyme removes terminal sialic acid residues from sialylated

cell surface molecules including gangliosides and was shown to

render sensory neurons less responsive to MAG [24]. In control

experiments we demonstrated the effectiveness and specificity of

VCN in our neuronal cell culture by showing that VCN treatment

caused an increase in the level of membrane monosialylated GM1

as determined by cholera toxin binding (Fig. S1). To our surprise,

in the presence of 5 mU/ml of VCN MAG inhibition of double

null sensory neurons was attenuated from 73% (untreated) to only

86% (VCN-treated) (Fig. 3). Also at higher VCN concentrations

the inhibitory response could not be further reduced (data not

shown), indicating that the VCN concentration was at saturation.

Thus, the combined absence of NgR1, NgR2 and sialic acid

bearing gangliosides diminished MAG inhibition of sensory

neurons by only 65%. Consistent with a previous study using

wildtype rat retinal ganglion cells [20], we found that the presence

of VCN did not result in a significant MAG disinhibition of

wildtype sensory neurons (Fig. 3), presumably due to functional

compensation by the NgR receptors.

Together, these results indicate that both NgR proteins and

gangliosides are involved in MAG inhibition, but are not the only

molecules to trigger MAG-mediated growth arrest of sensory

neurons.

Construction and functional analysis of MAG deletion
and replacement mutants

Given significant differences in the configuration of the MAG

receptor complex between sensory neurons and cerebellar granule

cells [20,24] we next asked whether cell-type specific differences of

MAG inhibition exist also at the ligand level. Previous reports by

Filbin’s lab suggested that the neurite inhibitory domain on MAG

resides within the Ig-like domains 4 to 5 since mutant MAG

comprising Ig1–3 (MAG Ig1–3) does not inhibit neurite outgrowth

[3]. More recently, the inhibitory site on MAG was mapped to Ig-

like domain 5 for cerebellar granule neurons (CGN) [34]. To test if

the same or other domains are responsible for mediating MAG’s

growth inhibiting activity for murine DRG neurons, we created

several deletion and chimeric mutants as shown in Fig 4A. To

determine whether the deletion and chimeric proteins were

expressed in cells and translocated to the cell surface we produced

CHO cell lines expressing these mutant MAG constructs. Live

stainings of the transfected cell lines as is shown in Fig. 4C revealed

that all mutant proteins were expressed on the cell surface of CHO

cells, suggesting that none of these proteins was impaired in

expression, overall folding or translocation to the cell surface.

Independent stable lines were obtained following FACS and serial

subcloning. Clones expressing near-equivalent amounts of full-

length and mutant forms of MAG (Fig. 4B) were used for neurite

outgrowth experiments described below.

MAG Ig4 or Ig5 is necessary for inhibition of sensory
neurons

Quantification of neurite outgrowth of wildtype sensory neurons

on CHO-MAG Ig1–3 cells revealed that neurite elongation is not
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impaired (Fig. 4D) and does statistically not differ from neurons

grown on CHO control cells. This finding is in agreement with an

identical approach using CGN [34] and suggests that the

inhibitory region of MAG for sensory neurons lies within the Ig-

like domains 4 and/or 5. To examine which of the two Ig domains

is responsible for mediating the growth inhibiting activity, we

replaced MAG Ig4 or Ig5 by the Ig4 domain of the chicken N-

CAM molecule, a related molecule that lacks inhibitory activity.

Although the N-CAM Ig4 domain is slightly smaller than the

MAG Ig domains (74 aa versus 86 aa for Ig4 and 96 aa for Ig5),

the resulting chimeras MAG rIg4 and MAG rIg5 retained the

domain organization of the parental MAG molecule.

As observed with CGN [34], neurite length of DRG neurons

was found to be equally inhibited on CHO-MAG rIg4 as on

wildtype MAG (Fig. 4D). To our surprise, however, sensory

neurons were also fully inhibited on CHO-MAG rIg5 (Fig. 4D),

despite the fact that MAG rIg5 expression was lower in

comparison to wildtype MAG or MAG rIg4 (Fig. 4B). This result

clearly demonstrates a redundancy between the Ig-like domains 4

and 5. If both are deleted the inhibitory activity of MAG is

abolished, but the presence of either domain 4 or 5 is sufficient to

confer full inhibition. These findings add significantly to the

concept of cell-type specific mechanisms of MAG inhibition, in

particular when comparing sensory and cerebellar granule

neurons.

Introduction of MAG Ig4 or Ig5 is sufficient to convert a
non-inhibitory molecule into a neurite outgrowth
inhibitor

To test whether the Ig4 and/or Ig5 domains of MAG are

sufficient to inhibit neurite growth as single domains, we created a

second set of chimeras, where Ig4 and/or Ig5 were fused to the Ig

domain of MOG (myelin oligodendrocyte glycoprotein; Fig. 5A).

MOG is a CNS myelin specific cell-adhesion molecule with no

inhibitory activity on postnatal DRG (Fig. 5D). We placed Ig-like

domains 4, 5 and 4/5 of MAG between the transmembrane

domain and Ig-V of MOG giving rise to chimeric MOG-MAG

proteins MOG-MAG Ig4, MOG-MAG Ig5 and MOG-MAG

Ig4–5, respectively (Fig. 5A). CHO cells transfected with the

various constructs expressed the chimeric molecules on the cell

surface (Fig. 5C) and clonal cell lines expressing comparable levels

of wildtype MAG and chimeras (Fig. 5B) were used for neurite

growth analysis. Results of neurite outgrowth assays obtained with

these gain-of-function constructs are shown in Fig. 5D. While

growth of sensory neurons was not impaired on MOG, we found

that MOG-MAG Ig4 and MOG-MAG Ig4/5 achieved virtually

the same inhibitory activity as full-length MAG (Fig. 5D). Neurite

growth was significantly, albeit slightly less inhibited on MOG-

MAG Ig5 (Fig. 5D), suggesting that the Ig-like domain 5 of MAG

has somewhat weaker inhibitory potential than the Ig-like domain

4, at least in the structural context of the MOG molecule.

Figure 3. MAG-mediated inhibition of neurite outgrowth of ngr1/22/2 sensory neurons with and without VCN treatment. Sensory
neurons derived from wildtype or ngr1/22/2 mice were seeded onto parental and MAG expressing CHO-K1 cells. Treatment with 5 mU/ml Vibrio
cholerae neuraminidase (VCN) was started one hour after plating. Cells were fixed approx. 20 hours after plating. Graph shows % neurite length6SEM
of wildtype and ngr1/ngr2 double knock-out neurons on the different substrates. At least three separate experiments were examined for each
experimental condition, with 100–150 neurons measured for each substrate. *** represents P#0.001, ** represents P#0.01 one-way analysis of
variance with post-hoc Tukey test.
doi:10.1371/journal.pone.0005218.g003

Figure 2. MAG-mediated inhibition of neurite outgrowth of ngr12/2 and ngr22/2 sensory neurons. (A) A clonal CHO-K1 cell line stably
expressing MAG was raised and characterized. Live anti-MAG immunostaining (parental CHO-K1 versus MAG overexpressing clone) demonstrated
surface expression of MAG. Scale bar 20 mm. (B) Photomicrographs show GAP-43-positive DRG neurons from wildtype, ngr12/2 and ngr22/2 mice
after a culture period of 20 hours on CHO control or CHO-MAG substrates. Neurite extension of all genotypes is markedly reduced on MAG
expressing CHO-K1 cells. Scale bar 40 mm. (C) Quantification of neurite length of DRG neurons from wildtype, ngr12/2, or ngr22/2 mice grown on
MAG-expressing CHO cells. CHO-K1 cells served as the control substrate. Graph shows % neurite length on the different substrates6SEM. At least five
separate experiments were examined for each experimental condition, with 100–150 neurons measured for each substrate. *** represents P#0.001
compared to CHO-K1, one-way analysis of variance with post-hoc Tukey test.
doi:10.1371/journal.pone.0005218.g002
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Figure 4. Inhibition of neurite outgrowth by MAG mutants lacking the Ig-like domains 4 and/or 5. (A) Domain composition of the full-
length MAG protein and chimeric proteins used to transfect CHO cells in this study. Specific regions within the MAG ectodomain were either deleted
(MAG Ig1–3) or replaced by the N-CAM Ig4 domain (dashed line). (B) Western Blot analysis of clonal cell lines expressing MAG mutants (arrow points
to not fully glycosylated form; see Fig. S2). Ten micrograms of total protein lysate were loaded in each lane. Goat anti-MAG antibody was used to
detect MAG; to reveal equal protein load, blots were incubated with anti-flotillin antibody. (C) Cell surface expression of full-length MAG and chimeric
MAG proteins by transfected CHO cells after FACS and clonal selection as revealed by live-staining with anti-MAG antibody. Scale bar 20 mm. (D)
Analysis of neurite length of wildtype DRG neurons grown on CHO cell monolayers expressing full-length or chimeric forms of MAG. Parental CHO
cells served as the control substrate. Graph shows % neurite length on the different substrates6SEM. Three to seven separate experiments were
examined for each experimental condition, with 50 to 100 neurons measured for each substrate. *** represents P#0.001 compared to CHO-K1,
**p#0.01, *p#0.05 one-way analysis of variance with post-hoc Tukey test.
doi:10.1371/journal.pone.0005218.g004
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Although these results already suggest that the presence of each

single Ig domain is sufficient to convey inhibition, we wanted to

exclude that these effects are induced by the altered structure of

the MOG protein backbone. As control, we constructed a MOG-

N-CAM chimera, MOG-N-CAM Ig4, with the Ig4 domain of

chicken N-CAM inserted into MOG (Fig. 5A). Chimeric MOG-

N-CAM Ig4 failed to inhibit neurite outgrowth suggesting that the

observed effects were not due to a possible conformational change

of MOG protein (Fig. 5D). In essence, these data fully confirm our

findings obtained with the MAG replacement mutants.

Taken together, for sensory neurons the inhibitory region of

MAG seems to cover the Ig-like domains 4 and 5; either domain -

Figure 5. Inhibition of neurite outgrowth by chimeric MOG-MAG molecules. (A) MOG-MAG chimeras, in which either one or two domains of
MAG (grey lines) were fused to the MOG Ig-V domain. MOG-N-CAM Ig4 indicates the fusion of the Ig4 domain of the N-CAM molecule to the MOG Ig-
V domain. All chimeric proteins have a signal peptide (SP) and carry the cytoplasmic part of MOG along with a V5-tag at their N-terminus. Stable CHO-
K1 clones expressing either of these chimeras were generated and characterized by (B) Western Blotting and (C) live anti-V5 immunostaining
demonstrating surface expression of each chimera. Scale bar 20 mm. Respective analysis of a MOG expressing CHO-K1 clone was done using an anti-
MOG antibody. a-tubulin served as loading control for Western Blots. (D) Analysis of neurite length of wildtype DRG neurons grown on CHO cell
monolayers expressing full-length or chimeric forms of MAG. Parental CHO cells served as the control substrate. Graph shows % neurite length on the
different substrates6SEM. Three to seven separate experiments were examined for each experimental condition, with 50 to 100 neurons measured
for each substrate. *** represents P#0.001 compared to CHO-K1, **p#0.01, *p#0.05 one-way analysis of variance with post-hoc Tukey test.
doi:10.1371/journal.pone.0005218.g005
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4 or 5 - is necessary and sufficient to confer full inhibitory activity

on neurite outgrowth. This finding is in marked contrast to

cerebellar granule neurons which are inhibited by MAG’s Ig-like

domain 5, but not 4 [34], and demonstrates that cell-type specific

mechanisms of MAG inhibition exist not only at the receptor, but

also at the ligand level.

Removal of the sialic acid binding site does not attenuate
MAG inhibition

A characteristic feature of MAG is its sugar binding ability and

it was investigated early on whether the lectin activity of MAG is

related to its inhibitory effect on neurons. Previous studies showed

that Arg118 in Ig domain 1 is crucial for sialic acid binding of

MAG [3], but that the sialic acid binding ability of MAG is not

necessary for inhibition [3]. The latter experiments were carried

out with CGN and we wondered whether sialic acid binding of

MAG is of any significance for conferring inhibitory activity on

sensory neurons. By site-directed mutagenesis we constructed a

MAG mutant that had Arg118 replaced with Ala, termed MAG

R118A (Fig. 6A). A CHO clone that stably expressed MAG

R118A on the cell surface (Fig. 6B, C) was used as a substrate for

sensory neurons. No difference in the neurons’ responsiveness to

the MAG mutant in comparison to wildtype MAG was observed

neither with wildtype nor ngr1/ngr2 double knock-out neurons

(Fig. 6D), confirming that the sialic acid binding ability of MAG is

not necessary for its inhibitory activity on neurons.

Discussion

In the present study we investigated the distinct contribution of

the known protein and lipid-type MAG receptors to neurite

outgrowth inhibition in DRG derived sensory neurons. Using a

direct mouse genetic approach we found that neither NgR1 nor

NgR2 play a prominent role in transducing MAG’s inhibitory

growth effects. Likewise, removal of cell surface terminal sialic

Figure 6. Inhibition of neurite outgrowth by a MAG mutant lacking the sialic acid binding site. (A) The name MAG R118A refers to a
point-mutation within the sialic-acid binding domain of MAG (asterisk), that abolishes MAG binding to specific gangliosides. (B) Western Blot analysis
of a CHO clone stably expressing MAG R118A. Ten micrograms of total protein lysate were loaded for each lane. Goat anti-MAG antibody was used to
detect MAG; to reveal equal protein load, blots were incubated with anti-flotillin antibody. (C) Cell surface expression of full-length MAG and MAG
R118A proteins by transfected CHO cells after FACS and clonal selection as revealed by live-staining with anti-MAG antibody. Scale bar 20 mm. (D)
Analysis of neurite length of wildtype and ngr1/ngr2 double knock-out DRG neurons grown on CHO cell monolayers expressing full-length MAG or
MAG R118A. Parental CHO cells served as the control substrate. Graph shows % neurite length on the different substrates6SEM. Three separate
experiments were examined for each experimental condition, with 50 to 100 neurons measured for each substrate. *** represents P#0.001 compared
to CHO-K1, one-way analysis of variance with post-hoc Tukey test.
doi:10.1371/journal.pone.0005218.g006
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acids alone did not attenuate MAG inhibition. Remarkably, even

the combined loss of NgRs and terminal sialic acids was not

sufficient to fully overcome MAG inhibition. Based on these

observations we suggest that MAG can signal via other, yet

unidentified receptor molecules. In addition, we provide evidence

that cell-type specific differences of MAG inhibition exist not only

at receptor level, as suggested by previous studies, but also at

ligand level.

MAG is one of the best characterized myelin-associated proteins

found in both the PNS and CNS [35]. Prior studies demonstrated

that MAG not only contributes to the long-term maintenance of

axon-myelin integrity [4,5,6], but impairs axon growth. MAG

effectively restricts neurite outgrowth of late postnatal neurons in

vitro [9,10] and appears to inhibit fiber regeneration in the injured

peripheral [36] and central [37] adult nervous system in vivo.

Characterizing the neuronal receptor complex that mediates

inhibitory MAG signaling revealed that MAG binds independent-

ly to different receptors, including NgR1 [11,12,13] and NgR2

[13], two GPI-anchored receptor proteins, as well as to GT1b and

GD1a [21,22], two major neuronal gangliosides (sialylation was

shown to be mandatory for MAG binding). Based on biochemical

and immunological experiments, all four interactions were

proposed to be relevant for MAG inhibition, but the relative

contribution of each interaction remained elusive. The functional

significance of NgR1 has recently been challenged, since the

absence of NgR1 on sensory neurons or cerebellar granule cells

did not lead to disinhibition of neurite growth on preparations of

total myelin [27] or on MAG presenting CHO-K1 cells [20,33].

Since MAG binds with similar affinity to the structurally related

NgR2 protein [13], the role of NgR1 might have been

compensated partly by that of NgR2 in ngr1 knock-out mice.

Alternatively, the selective interaction of MAG with gangliosides

could compensate for the loss of NgR1. Hence, the generation of

ngr2 and ngr1/2 deletion mutant mice provides unique animal

models that permit investigation into the relative contribution of

these receptors in MAG-dependent neurite growth inhibition. As

prior studies noted for NgR1 [20,33], absence of NgR2 alone was

not sufficient to release sensory neurons from MAG inhibition.

Also the enzymatic removal of terminal sialic acids did not

disinhibit sensory neurons as was reported recently for rat retinal

ganglion cells [20]. If NgR1 and NgR2 are functionally redundant,

neurons of ngr1/2 double knock-out mice would be expected to be

significantly less inhibited by MAG. However, inhibition of

sensory neurons was only moderately released, suggesting that

NgR proteins play only a minor role as functional inhibitory MAG

receptors. We hypothesized that compensation at the level of

gangliosides might account for these unexpected findings because

MAG independently binds to the gangliosides GT1b and GD1a.

Consistent with this idea VCN further alleviated the inhibitory

effect of MAG, but failed to annul it. These data not only suggest

that MAG uses independent pathways to signal growth inhibition,

but in addition support the existence of as yet unidentified

functional receptors on sensory neurons which are independent

from NgRs and terminal sialic acids. Precisely which additional

receptor components may play a role for MAG inhibition remains

to be elucidated. Although the neurotrophin receptor p75NTR has

been reported to be involved in inhibitory MAG signaling

[14,15,20,38], the mechanism seems to be an indirect one,

possibly by forming a receptor complex with NgR1, because MAG

does not physically interact with p75NTR [38].

Interestingly, further in vitro studies on the role of p75NTR in

MAG inhibition pointed to cell-type specific differences in the

molecular machinery of MAG signaling. While DRG derived

sensory neurons deficient for p75NTR are partially released from

MAG inhibition, no disinhibition could be observed for CGNs

lacking p75NTR [20]. Such cell-type specificities are supported by a

recent study using pharmacological agents to determine the roles of

different neuronal MAG receptors [24]. These findings prompted

us to investigate whether cell-type specific variations in MAG

signaling on the receptor side are reflected at the ligand level. MAG

as ligand has been well characterized with regard to inhibition of

CGN. Although MAG, as lectin, binds with high specificity to a2,3-

linked sialic acid residues, this feature does not seem to play a role

for conferring inhibitory activity as demonstrated with a MAG

mutant, MAG R118A, that has lost its affinity to sialic acid but is still

inhibitory to CGN [3]. Furthermore, the inhibitory region on MAG

was mapped to the Ig-like domain 5 using CGN as responsive

neurons. Replacing the Ig-like domain 5 of sialoadhesin, like MAG

a member of the siglec family, with the Ig-like domain 5 of MAG

was shown to be necessary and sufficient to convert non-inhibitory

sialoadhesin into an inhibitory molecule with similar potency as

wildtype MAG [34]. To characterize MAG as ligand for sensory

neurons, we tested MAG R118 for its inhibitory potential. We did

not see disinhibition with MAG R118A indicating that sialic acid

binding of MAG is not necessary for inhibiting sensory neurons,

thus confirming data obtained with CGN. However, we did find a

significant difference to CGN inhibition with regard to the

inhibition site of MAG. In contrast to results obtained with CGN

[34], we localized the inhibitory region of MAG, using sensory

neurons and two types of chimeric proteins, over both Ig-like

domains 4 and 5. These data clearly indicate that the growth

inhibitory site on MAG is defined via the neuronal cell-type MAG is

interacting with. Furthermore, these results illustrate that variations

on the MAG receptor side might indeed go along with cognate

variations on the ligand side. It will be interesting to learn about

structural details of these apparently flexible ligand-receptor

interactions.

In sum, our findings support a model of MAG inhibition that is

cell-type specific and relies on at least three distinct, but partially

redundant, signaling modes. In sensory neurons, NgR1 and NgR2

account only to a minor extent for inhibitory signaling; sialylated

components, presumably including the gangliosides GT1b and

GD1a, as well as presently unknown factors which exert their

inhibitory activity independently from sialylation account for the

major effect or can effectively compensate for the loss of the NgR-

type MAG receptors. On the other hand, preventing MAG from

binding to sialic acid (and thus to gangliosides) or disrupting

gangliosides with VCN does not interfere with MAG’s inhibitory

activity, presumably because NgRs and presently unknown

sialylation independent factors can functionally compensate.

NgR1 has in fact been demonstrated to mediate MAG inhibition

in a VCN-insensitive manner [11,12]; the same holds true for

NgR2, although its preferred way seems to depend on sialic acid

binding of MAG [13]. The latter observation is significant because

it raises the possibility that the NgR and ganglioside pathways,

while distinct with regard to MAG binding, are not necessarily

independent from each other. Gangliosides are small lipid

molecules which are not likely to transduce signals by their own,

but rather depend on specific carrier proteins. NgR1, intriguingly,

has recently been identified as GT1b binding protein [39]. As

further shown, the GT1b-binding site is spatially distinct from the

MAG interaction site [39,40]. It is thus tempting to speculate that

NgR1 forms a dual MAG receptor complex with two distinct

binding sites for MAG; an indirect and VCN-sensitive one via the

GT1b-binding site and a direct and VCN-insensitive one via its

MAG interaction site.

Our data presented herein will help integrate knowledge on the

intricacies of MAG inhibition. Detailed information on the
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underlying mechanisms will be vital for conceiving therapeutic

strategies to promote regeneration in the lesioned central and

peripheral nervous system.

Note
While this work was under review, Tessier-Lavigne and

colleagues published results showing that PirB, an Ig-like domain

containing transmembrane protein, is a functional MAG receptor

transducing inhibitory activity in CGN and DRG neurons [41], a

finding that is in perfect line with our data presented herein.

Supporting Information

Figure S1 Activity of VCN on cultured sensory neurons. In

order to address the specificity and effectiveness of VCN in our

neuronal culture, we treated sensory neurons after plating with

5 mU/ml of VCN and (A) lysed the cells after approx. 20 hours.

Immunoblotting of p75NTR, of which there are no reports about

sialylation, demonstrates the absence of proteolytic side-effects of

VCN. (B) Removal of sialic acid by VCN treatment increases

binding of cholera toxin (CT) to mono-sialoganglioside GM1 as

revealed by immunocytochemistry. The staining intensity of

p75NTR is not affected by VCN treatment. Scale bar 40 mm.

Found at: doi:10.1371/journal.pone.0005218.s001 (0.64 MB TIF)

Figure S2 Glycosylation of wildtype MAG and MAG mutants.

Wildtype and mutant MAG molecules which were expressed in

CHO-K1 clonal lines are differentially glycosylated; importantly,

the fully glycosylated form which, in wildtype MAG, migrates at

approx. 100 kD, is present in the wildtype and in all mutants

(arrow). Treatment of lysates with N-glycosidase F gives rise to an

approx. 72 kD immunoreactive band (asterisk) which corresponds

to the molecular weight of MAG core protein plus some O-linked

sugars [1]. MAG Ig1–3 is of lower molecular weight than the other

mutants but is shifted proportionally upon N-glycosidase treat-

ment. Anti-MAG antibody was used to detect wildtype and

mutant MAG molecules.

Found at: doi:10.1371/journal.pone.0005218.s002 (0.08 MB TIF)

Method S1

Found at: doi:10.1371/journal.pone.0005218.s003 (0.03 MB

DOC)

Method S2

Found at: doi:10.1371/journal.pone.0005218.s004 (0.02 MB

DOC)
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